purplesunrise commited on
Commit
8fb37d8
1 Parent(s): e6367ce

Upload PPO LunarLander-v2 trained agent V1

Browse files
README.md ADDED
@@ -0,0 +1,37 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ library_name: stable-baselines3
3
+ tags:
4
+ - LunarLander-v2
5
+ - deep-reinforcement-learning
6
+ - reinforcement-learning
7
+ - stable-baselines3
8
+ model-index:
9
+ - name: PPO
10
+ results:
11
+ - task:
12
+ type: reinforcement-learning
13
+ name: reinforcement-learning
14
+ dataset:
15
+ name: LunarLander-v2
16
+ type: LunarLander-v2
17
+ metrics:
18
+ - type: mean_reward
19
+ value: 248.27 +/- 14.46
20
+ name: mean_reward
21
+ verified: false
22
+ ---
23
+
24
+ # **PPO** Agent playing **LunarLander-v2**
25
+ This is a trained model of a **PPO** agent playing **LunarLander-v2**
26
+ using the [stable-baselines3 library](https://github.com/DLR-RM/stable-baselines3).
27
+
28
+ ## Usage (with Stable-baselines3)
29
+ TODO: Add your code
30
+
31
+
32
+ ```python
33
+ from stable_baselines3 import ...
34
+ from huggingface_sb3 import load_from_hub
35
+
36
+ ...
37
+ ```
config.json ADDED
@@ -0,0 +1 @@
 
 
1
+ {"policy_class": {":type:": "<class 'abc.ABCMeta'>", ":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==", "__module__": "stable_baselines3.common.policies", "__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ", "__init__": "<function ActorCriticPolicy.__init__ at 0x7fd80cc94dc0>", "_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x7fd80cc94e50>", "reset_noise": "<function ActorCriticPolicy.reset_noise at 0x7fd80cc94ee0>", "_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x7fd80cc94f70>", "_build": "<function ActorCriticPolicy._build at 0x7fd80cc98040>", "forward": "<function ActorCriticPolicy.forward at 0x7fd80cc980d0>", "extract_features": "<function ActorCriticPolicy.extract_features at 0x7fd80cc98160>", "_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x7fd80cc981f0>", "_predict": "<function ActorCriticPolicy._predict at 0x7fd80cc98280>", "evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x7fd80cc98310>", "get_distribution": "<function ActorCriticPolicy.get_distribution at 0x7fd80cc983a0>", "predict_values": "<function ActorCriticPolicy.predict_values at 0x7fd80cc98430>", "__abstractmethods__": "frozenset()", "_abc_impl": "<_abc_data object at 0x7fd80cd133f0>"}, "verbose": 1, "policy_kwargs": {}, "observation_space": {":type:": "<class 'gym.spaces.box.Box'>", ":serialized:": "gAWVnwEAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLCIWUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWIAAAAAAAAAAAAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/5RoCksIhZSMAUOUdJRSlIwEaGlnaJRoEiiWIAAAAAAAAAAAAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAf5RoCksIhZRoFXSUUpSMDWJvdW5kZWRfYmVsb3eUaBIolggAAAAAAAAAAAAAAAAAAACUaAeMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLCIWUaBV0lFKUjA1ib3VuZGVkX2Fib3ZllGgSKJYIAAAAAAAAAAAAAAAAAAAAlGghSwiFlGgVdJRSlIwKX25wX3JhbmRvbZROdWIu", "dtype": "float32", "_shape": [8], "low": "[-inf -inf -inf -inf -inf -inf -inf -inf]", "high": "[inf inf inf inf inf inf inf inf]", "bounded_below": "[False False False False False False False False]", "bounded_above": "[False False False False False False False False]", "_np_random": null}, "action_space": {":type:": "<class 'gym.spaces.discrete.Discrete'>", ":serialized:": "gAWVggAAAAAAAACME2d5bS5zcGFjZXMuZGlzY3JldGWUjAhEaXNjcmV0ZZSTlCmBlH2UKIwBbpRLBIwGX3NoYXBllCmMBWR0eXBllIwFbnVtcHmUaAeTlIwCaTiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYowKX25wX3JhbmRvbZROdWIu", "n": 4, "_shape": [], "dtype": "int64", "_np_random": null}, "n_envs": 16, "num_timesteps": 1015808, "_total_timesteps": 1000000, "_num_timesteps_at_start": 0, "seed": null, "action_noise": null, "start_time": 1676566037162488809, "learning_rate": 0.0003, "tensorboard_log": null, "lr_schedule": {":type:": "<class 'function'>", ":serialized:": "gAWVwwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOC9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZSMBGZ1bmOUS4JDAgABlIwDdmFslIWUKXSUUpR9lCiMC19fcGFja2FnZV9flIwYc3RhYmxlX2Jhc2VsaW5lczMuY29tbW9ulIwIX19uYW1lX1+UjB5zdGFibGVfYmFzZWxpbmVzMy5jb21tb24udXRpbHOUjAhfX2ZpbGVfX5SMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOC9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZR1Tk5oAIwQX21ha2VfZW1wdHlfY2VsbJSTlClSlIWUdJRSlIwcY2xvdWRwaWNrbGUuY2xvdWRwaWNrbGVfZmFzdJSMEl9mdW5jdGlvbl9zZXRzdGF0ZZSTlGgffZR9lChoFmgNjAxfX3F1YWxuYW1lX1+UjBljb25zdGFudF9mbi48bG9jYWxzPi5mdW5jlIwPX19hbm5vdGF0aW9uc19flH2UjA5fX2t3ZGVmYXVsdHNfX5ROjAxfX2RlZmF1bHRzX1+UTowKX19tb2R1bGVfX5RoF4wHX19kb2NfX5ROjAtfX2Nsb3N1cmVfX5RoAIwKX21ha2VfY2VsbJSTlEc/M6kqMFUyYYWUUpSFlIwXX2Nsb3VkcGlja2xlX3N1Ym1vZHVsZXOUXZSMC19fZ2xvYmFsc19flH2UdYaUhlIwLg=="}, "_last_obs": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVdQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYAAgAAAAAAALPG6T1b8oY/oIJNPmVNjL6KMS8+u39DPQAAAAAAAAAAelqOPsSpR73qnWm6hTFLOdtirb62MKI5AACAPwAAgD8zFYG9GcxHP8i0lrxRt6a+rAKuvRyHAT0AAAAAAAAAAEBHdz5EyIU//4nLPpJOoL77VZ4+Zg9JPQAAAAAAAAAATcGqPaT1LbuyI5a6F7iiPAmkHrykeYs9AACAPwAAgD/NEwy9ZC5xPxo/0bwTSp++AYZQvf1j1j0AAAAAAAAAAILanb5m5jk/tAoePEDD5r5jQrS+cl5bPgAAAAAAAAAATQtFPcPdcrpIBU823HVXMZeQaLtwrny1AACAPwAAgD8aXLi97MDsu2T7CTwOhK48APpFvaYekT0AAIA/AACAPzNI3TxcC0m6DNkjNMMTmS4t0qO61I2bswAAgD8AAIA/TS2Yvdt2oj+OyiK/fAEovx4hX7zAbj6+AAAAAAAAAACzwgk9XPIEvEtL/jzUAiA86l9RvWanCj0AAIA/AACAP8A8/D17aOa6Gy//tgFyhTMs1gK8NzwXNgAAgD8AAIA/GhsEPdTFnj/xNzA+ml2VvtVboD0G+sc9AAAAAAAAAABmAd287I7Qu/7+ijxuuhM9hLcGvaOmE7cAAIA/AACAP5otQL2HhrA/7ZkKvsDZur6j8oS9VsgNvgAAAAAAAAAAlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksQSwiGlIwBQ5R0lFKULg=="}, "_last_episode_starts": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVgwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSxCFlIwBQ5R0lFKULg=="}, "_last_original_obs": null, "_episode_num": 0, "use_sde": false, "sde_sample_freq": -1, "_current_progress_remaining": -0.015808000000000044, "ep_info_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVeRAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMIeT9uv3xEbkCUhpRSlIwBbJRNQgGMAXSUR0CV73DmKZUldX2UKGgGaAloD0MIhzWVReFtb0CUhpRSlGgVTQABaBZHQJXv2TpxFRZ1fZQoaAZoCWgPQwivXkVGBzhTQJSGlFKUaBVL0WgWR0CV8OrD63y7dX2UKGgGaAloD0MIk3GMZA/VbkCUhpRSlGgVTR4BaBZHQJXxR3s5XEJ1fZQoaAZoCWgPQwjuef60UYxwQJSGlFKUaBVNFQFoFkdAlfGdRzijtXV9lChoBmgJaA9DCLn98skKR3BAlIaUUpRoFU1HAWgWR0CV8bMNMGordX2UKGgGaAloD0MIUWhZ9087ckCUhpRSlGgVTRABaBZHQJXyFFEy+Ht1fZQoaAZoCWgPQwj8HYoCvetwQJSGlFKUaBVNGQFoFkdAlfLgBgeA/nV9lChoBmgJaA9DCKFKzR7oCm9AlIaUUpRoFU1PAWgWR0CV8vGD+R5kdX2UKGgGaAloD0MIYD3uW+1mcECUhpRSlGgVTTYBaBZHQJXzcNjLB9F1fZQoaAZoCWgPQwhc598u+/dJQJSGlFKUaBVL5WgWR0CV844tHxz8dX2UKGgGaAloD0MIzXaFPlibcUCUhpRSlGgVTU8BaBZHQJXzyYUnG851fZQoaAZoCWgPQwjByTZwB29sQJSGlFKUaBVNLAFoFkdAlfQHKfWc0HV9lChoBmgJaA9DCMgm+RG/nm1AlIaUUpRoFU0pAWgWR0CV9NtqYZ2qdX2UKGgGaAloD0MID9b/Ocx2cUCUhpRSlGgVTSgBaBZHQJX5ZccENfB1fZQoaAZoCWgPQwhV98jm6nJxQJSGlFKUaBVNaAFoFkdAlflpTZQHiXV9lChoBmgJaA9DCIRjlj1JRnJAlIaUUpRoFUv6aBZHQJX5/8EV32V1fZQoaAZoCWgPQwj53An2355sQJSGlFKUaBVNOAFoFkdAlfriR8twrHV9lChoBmgJaA9DCDQtsTIad0NAlIaUUpRoFUvkaBZHQJX65YxL0z11fZQoaAZoCWgPQwgNNQpJZhNvQJSGlFKUaBVNMwFoFkdAlfwQ4S6DoXV9lChoBmgJaA9DCLYPecvVGURAlIaUUpRoFUvpaBZHQJX8HSRbKRx1fZQoaAZoCWgPQwiqmiDq/ilxQJSGlFKUaBVNFAFoFkdAlfwdiUgSvnV9lChoBmgJaA9DCD27fOtDNm1AlIaUUpRoFU1CAWgWR0CV/UWX1J18dX2UKGgGaAloD0MIg79fzBa5ckCUhpRSlGgVTRwBaBZHQJX9wiFCb+d1fZQoaAZoCWgPQwgHliNkIK8vQJSGlFKUaBVL9WgWR0CV/2oHs1KodX2UKGgGaAloD0MIcY3PZP/9bkCUhpRSlGgVTTEBaBZHQJX/zuNPxhF1fZQoaAZoCWgPQwhNh07Pe0pxQJSGlFKUaBVNJwFoFkdAlgAur+5vtXV9lChoBmgJaA9DCFaalIJukXBAlIaUUpRoFU18AWgWR0CWAIcNpdrwdX2UKGgGaAloD0MIEOfhBCZMckCUhpRSlGgVTU4BaBZHQJYBae2/i5x1fZQoaAZoCWgPQwjxvb9B+3VrQJSGlFKUaBVNMQFoFkdAlgmFP8AJcHV9lChoBmgJaA9DCJOMnIU9LUlAlIaUUpRoFUvgaBZHQJYJ2D28IzF1fZQoaAZoCWgPQwjxngPLEXdwQJSGlFKUaBVNPQFoFkdAlgp2YOUdJnV9lChoBmgJaA9DCAe139qJm25AlIaUUpRoFU0pAWgWR0CWDILAHmihdX2UKGgGaAloD0MIsACmDBx6cECUhpRSlGgVTS4BaBZHQJYMtYbKifx1fZQoaAZoCWgPQwholC79i6BxQJSGlFKUaBVNNwFoFkdAlg0uTibUgHV9lChoBmgJaA9DCEn2CDVDIm5AlIaUUpRoFU1iAWgWR0CWDVFF2FFldX2UKGgGaAloD0MIrYcvE0UZb0CUhpRSlGgVTaECaBZHQJYNU2YOUdJ1fZQoaAZoCWgPQwgkXwmkRMtwQJSGlFKUaBVNYgFoFkdAlg30BwMpgHV9lChoBmgJaA9DCI24ADSKJ3FAlIaUUpRoFU1GAWgWR0CWDpvfj0cwdX2UKGgGaAloD0MIsJKP3cXmcECUhpRSlGgVTS0BaBZHQJYPlp8F6iV1fZQoaAZoCWgPQwhGelG7n0VzQJSGlFKUaBVNDQFoFkdAlg/D2SMcZXV9lChoBmgJaA9DCEH0pEzqD25AlIaUUpRoFU0oAWgWR0CWD/a5wwTNdX2UKGgGaAloD0MIFqHYChq5cECUhpRSlGgVTacBaBZHQJYQRlum78N1fZQoaAZoCWgPQwjwaU5eZDVvQJSGlFKUaBVNQgFoFkdAlhBzTWoWHnV9lChoBmgJaA9DCHak+s6vx3FAlIaUUpRoFU2ZAWgWR0CWEmzwtrbhdX2UKGgGaAloD0MI0gFJ2HcmckCUhpRSlGgVTSsBaBZHQJYVXadtl7N1fZQoaAZoCWgPQwiy8WCLnRlwQJSGlFKUaBVNPAFoFkdAlhZqTB68hHV9lChoBmgJaA9DCHWTGAQWgHBAlIaUUpRoFU0sAWgWR0CWLS7EpAlfdX2UKGgGaAloD0MIU+dR8X/IbkCUhpRSlGgVTR0BaBZHQJYtPFdcB2h1fZQoaAZoCWgPQwg5DVGFv3FwQJSGlFKUaBVNOgFoFkdAli24J/oaDXV9lChoBmgJaA9DCO2ZJQHq6nFAlIaUUpRoFU1KAWgWR0CWLc4ku6ErdX2UKGgGaAloD0MIQpWaPVCWa0CUhpRSlGgVTUYBaBZHQJYt0VUMoc91fZQoaAZoCWgPQwjmAwKdSaBvQJSGlFKUaBVNQAFoFkdAli4d+9allHV9lChoBmgJaA9DCEURUrfzQnJAlIaUUpRoFU0QAWgWR0CWLqwwj+rEdX2UKGgGaAloD0MI+dfyyvWdb0CUhpRSlGgVTZcBaBZHQJYvgZm7J4l1fZQoaAZoCWgPQwjmCBnIszhvQJSGlFKUaBVNNgFoFkdAljBen2qT83V9lChoBmgJaA9DCD//PXitbHBAlIaUUpRoFU0rAWgWR0CWMJqhUR4AdX2UKGgGaAloD0MI/u+IClWfcUCUhpRSlGgVTUgBaBZHQJYwxEmY0EZ1fZQoaAZoCWgPQwhvERjrm/5xQJSGlFKUaBVNSAFoFkdAljE/XsgMdHV9lChoBmgJaA9DCAEwnkGDw3BAlIaUUpRoFU2CAWgWR0CWMXLKmsNldX2UKGgGaAloD0MIp+uJrouAb0CUhpRSlGgVTREBaBZHQJYxyw4bS7Z1fZQoaAZoCWgPQwi5NlSMcz1xQJSGlFKUaBVNOwFoFkdAljaEoKD02HV9lChoBmgJaA9DCKfs9IO6bXBAlIaUUpRoFU0nAWgWR0CWOVIUahpQdX2UKGgGaAloD0MIqfi/I6pRb0CUhpRSlGgVTR0BaBZHQJY5desxO+J1fZQoaAZoCWgPQwiWehaE8nxyQJSGlFKUaBVNIAFoFkdAljmI7aIvanV9lChoBmgJaA9DCFNdwMvMmXFAlIaUUpRoFU1gAWgWR0CWOlinHeabdX2UKGgGaAloD0MIMjm1M0yHb0CUhpRSlGgVTSgBaBZHQJY6nJU5uIh1fZQoaAZoCWgPQwj5EFSN3hltQJSGlFKUaBVNPwFoFkdAljuRiPQv6HV9lChoBmgJaA9DCHRhpBe12W1AlIaUUpRoFU0rAWgWR0CWO6xdpqREdX2UKGgGaAloD0MIKGA7GLH7bkCUhpRSlGgVTSwBaBZHQJY9Ej5bhWJ1fZQoaAZoCWgPQwjWVBaFHTBxQJSGlFKUaBVNZwFoFkdAlj0UqMFUynV9lChoBmgJaA9DCMAF2bJ8V21AlIaUUpRoFU0dAWgWR0CWPeB/7SApdX2UKGgGaAloD0MIbXAi+rXVQUCUhpRSlGgVS/RoFkdAlj4T5XU6P3V9lChoBmgJaA9DCEVigho+xnJAlIaUUpRoFU0jAWgWR0CWPms/IKc/dX2UKGgGaAloD0MIliU6y6y9cECUhpRSlGgVTRIBaBZHQJY+xZbILgJ1fZQoaAZoCWgPQwgGY0SiUF5tQJSGlFKUaBVNQAFoFkdAlj8mVAzHj3V9lChoBmgJaA9DCJhtp62RWm1AlIaUUpRoFU04AWgWR0CWP+M72cridX2UKGgGaAloD0MISSpTzEGIbUCUhpRSlGgVTScBaBZHQJZFvenAIpp1fZQoaAZoCWgPQwgmcOtuHiJzQJSGlFKUaBVNMQFoFkdAlkoEBXCCSXV9lChoBmgJaA9DCJCkpIehs25AlIaUUpRoFU1FAWgWR0CWSiuJUHY6dX2UKGgGaAloD0MIsffiizaMckCUhpRSlGgVTUUBaBZHQJZK3sSkCV91fZQoaAZoCWgPQwgKn62DA85vQJSGlFKUaBVNXQFoFkdAlktul0o0AXV9lChoBmgJaA9DCPQWD+95kXJAlIaUUpRoFU1IAWgWR0CWTD7SiM5wdX2UKGgGaAloD0MIkrBvJ5GdckCUhpRSlGgVTWEBaBZHQJZNbzRQaaV1fZQoaAZoCWgPQwjL12X4TztxQJSGlFKUaBVNNQFoFkdAlk2hIWgvlHV9lChoBmgJaA9DCPw3L058JG9AlIaUUpRoFU0rAWgWR0CWTkOG0u14dX2UKGgGaAloD0MIat0GtV/ccUCUhpRSlGgVTUsBaBZHQJZOcskIHC51fZQoaAZoCWgPQwiKdhVSvg5yQJSGlFKUaBVNVgFoFkdAlk/BMJx//nV9lChoBmgJaA9DCADhQ4kWh3FAlIaUUpRoFU17AWgWR0CWT8z6ab4KdX2UKGgGaAloD0MIo81xbhOibUCUhpRSlGgVTWQBaBZHQJZQAVLzwtt1fZQoaAZoCWgPQwiTqBd8mr1sQJSGlFKUaBVNRAFoFkdAllAy704BFXV9lChoBmgJaA9DCOKt828Xx21AlIaUUpRoFU29AWgWR0CWUfx1gYxddX2UKGgGaAloD0MIu/JZngcVbECUhpRSlGgVTVkBaBZHQJZVpxDLKV91fZQoaAZoCWgPQwg5Y5gTdCpwQJSGlFKUaBVNFAFoFkdAllfPsJIDo3V9lChoBmgJaA9DCCtPIOwUtmxAlIaUUpRoFU0wAWgWR0CWV/jZtelbdX2UKGgGaAloD0MI+IvZklWZa0CUhpRSlGgVTU0BaBZHQJZYvSgGr0d1fZQoaAZoCWgPQwjq6o7FNihyQJSGlFKUaBVNOwFoFkdAllj7VBlcyHV9lChoBmgJaA9DCMYX7fEC+XFAlIaUUpRoFU0eAWgWR0CWWWffXPJJdX2UKGgGaAloD0MIiUUMO0zYcECUhpRSlGgVTRYBaBZHQJZZ4NVinYR1fZQoaAZoCWgPQwiQSUbOwiNwQJSGlFKUaBVNdAFoFkdAllptZ/0/W3VlLg=="}, "ep_success_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="}, "_n_updates": 248, "n_steps": 1024, "gamma": 0.999, "gae_lambda": 0.98, "ent_coef": 0.01, "vf_coef": 0.5, "max_grad_norm": 0.5, "batch_size": 64, "n_epochs": 4, "clip_range": {":type:": "<class 'function'>", ":serialized:": "gAWVwwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOC9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZSMBGZ1bmOUS4JDAgABlIwDdmFslIWUKXSUUpR9lCiMC19fcGFja2FnZV9flIwYc3RhYmxlX2Jhc2VsaW5lczMuY29tbW9ulIwIX19uYW1lX1+UjB5zdGFibGVfYmFzZWxpbmVzMy5jb21tb24udXRpbHOUjAhfX2ZpbGVfX5SMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOC9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZR1Tk5oAIwQX21ha2VfZW1wdHlfY2VsbJSTlClSlIWUdJRSlIwcY2xvdWRwaWNrbGUuY2xvdWRwaWNrbGVfZmFzdJSMEl9mdW5jdGlvbl9zZXRzdGF0ZZSTlGgffZR9lChoFmgNjAxfX3F1YWxuYW1lX1+UjBljb25zdGFudF9mbi48bG9jYWxzPi5mdW5jlIwPX19hbm5vdGF0aW9uc19flH2UjA5fX2t3ZGVmYXVsdHNfX5ROjAxfX2RlZmF1bHRzX1+UTowKX19tb2R1bGVfX5RoF4wHX19kb2NfX5ROjAtfX2Nsb3N1cmVfX5RoAIwKX21ha2VfY2VsbJSTlEc/yZmZmZmZmoWUUpSFlIwXX2Nsb3VkcGlja2xlX3N1Ym1vZHVsZXOUXZSMC19fZ2xvYmFsc19flH2UdYaUhlIwLg=="}, "clip_range_vf": null, "normalize_advantage": true, "target_kl": null, "system_info": {"OS": "Linux-5.10.147+-x86_64-with-glibc2.29 # 1 SMP Sat Dec 10 16:00:40 UTC 2022", "Python": "3.8.10", "Stable-Baselines3": "1.7.0", "PyTorch": "1.13.1+cu116", "GPU Enabled": "True", "Numpy": "1.21.6", "Gym": "0.21.0"}}
ppo-LunarLander-v2.zip ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:14fd14af8129636e96d5e8fce62e4e197832074a23566b6058c4b448368b2d66
3
+ size 147416
ppo-LunarLander-v2/_stable_baselines3_version ADDED
@@ -0,0 +1 @@
 
 
1
+ 1.7.0
ppo-LunarLander-v2/data ADDED
@@ -0,0 +1,95 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "policy_class": {
3
+ ":type:": "<class 'abc.ABCMeta'>",
4
+ ":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==",
5
+ "__module__": "stable_baselines3.common.policies",
6
+ "__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ",
7
+ "__init__": "<function ActorCriticPolicy.__init__ at 0x7fd80cc94dc0>",
8
+ "_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x7fd80cc94e50>",
9
+ "reset_noise": "<function ActorCriticPolicy.reset_noise at 0x7fd80cc94ee0>",
10
+ "_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x7fd80cc94f70>",
11
+ "_build": "<function ActorCriticPolicy._build at 0x7fd80cc98040>",
12
+ "forward": "<function ActorCriticPolicy.forward at 0x7fd80cc980d0>",
13
+ "extract_features": "<function ActorCriticPolicy.extract_features at 0x7fd80cc98160>",
14
+ "_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x7fd80cc981f0>",
15
+ "_predict": "<function ActorCriticPolicy._predict at 0x7fd80cc98280>",
16
+ "evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x7fd80cc98310>",
17
+ "get_distribution": "<function ActorCriticPolicy.get_distribution at 0x7fd80cc983a0>",
18
+ "predict_values": "<function ActorCriticPolicy.predict_values at 0x7fd80cc98430>",
19
+ "__abstractmethods__": "frozenset()",
20
+ "_abc_impl": "<_abc_data object at 0x7fd80cd133f0>"
21
+ },
22
+ "verbose": 1,
23
+ "policy_kwargs": {},
24
+ "observation_space": {
25
+ ":type:": "<class 'gym.spaces.box.Box'>",
26
+ ":serialized:": "gAWVnwEAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLCIWUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWIAAAAAAAAAAAAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/5RoCksIhZSMAUOUdJRSlIwEaGlnaJRoEiiWIAAAAAAAAAAAAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAf5RoCksIhZRoFXSUUpSMDWJvdW5kZWRfYmVsb3eUaBIolggAAAAAAAAAAAAAAAAAAACUaAeMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLCIWUaBV0lFKUjA1ib3VuZGVkX2Fib3ZllGgSKJYIAAAAAAAAAAAAAAAAAAAAlGghSwiFlGgVdJRSlIwKX25wX3JhbmRvbZROdWIu",
27
+ "dtype": "float32",
28
+ "_shape": [
29
+ 8
30
+ ],
31
+ "low": "[-inf -inf -inf -inf -inf -inf -inf -inf]",
32
+ "high": "[inf inf inf inf inf inf inf inf]",
33
+ "bounded_below": "[False False False False False False False False]",
34
+ "bounded_above": "[False False False False False False False False]",
35
+ "_np_random": null
36
+ },
37
+ "action_space": {
38
+ ":type:": "<class 'gym.spaces.discrete.Discrete'>",
39
+ ":serialized:": "gAWVggAAAAAAAACME2d5bS5zcGFjZXMuZGlzY3JldGWUjAhEaXNjcmV0ZZSTlCmBlH2UKIwBbpRLBIwGX3NoYXBllCmMBWR0eXBllIwFbnVtcHmUaAeTlIwCaTiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYowKX25wX3JhbmRvbZROdWIu",
40
+ "n": 4,
41
+ "_shape": [],
42
+ "dtype": "int64",
43
+ "_np_random": null
44
+ },
45
+ "n_envs": 16,
46
+ "num_timesteps": 1015808,
47
+ "_total_timesteps": 1000000,
48
+ "_num_timesteps_at_start": 0,
49
+ "seed": null,
50
+ "action_noise": null,
51
+ "start_time": 1676566037162488809,
52
+ "learning_rate": 0.0003,
53
+ "tensorboard_log": null,
54
+ "lr_schedule": {
55
+ ":type:": "<class 'function'>",
56
+ ":serialized:": "gAWVwwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOC9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZSMBGZ1bmOUS4JDAgABlIwDdmFslIWUKXSUUpR9lCiMC19fcGFja2FnZV9flIwYc3RhYmxlX2Jhc2VsaW5lczMuY29tbW9ulIwIX19uYW1lX1+UjB5zdGFibGVfYmFzZWxpbmVzMy5jb21tb24udXRpbHOUjAhfX2ZpbGVfX5SMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOC9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZR1Tk5oAIwQX21ha2VfZW1wdHlfY2VsbJSTlClSlIWUdJRSlIwcY2xvdWRwaWNrbGUuY2xvdWRwaWNrbGVfZmFzdJSMEl9mdW5jdGlvbl9zZXRzdGF0ZZSTlGgffZR9lChoFmgNjAxfX3F1YWxuYW1lX1+UjBljb25zdGFudF9mbi48bG9jYWxzPi5mdW5jlIwPX19hbm5vdGF0aW9uc19flH2UjA5fX2t3ZGVmYXVsdHNfX5ROjAxfX2RlZmF1bHRzX1+UTowKX19tb2R1bGVfX5RoF4wHX19kb2NfX5ROjAtfX2Nsb3N1cmVfX5RoAIwKX21ha2VfY2VsbJSTlEc/M6kqMFUyYYWUUpSFlIwXX2Nsb3VkcGlja2xlX3N1Ym1vZHVsZXOUXZSMC19fZ2xvYmFsc19flH2UdYaUhlIwLg=="
57
+ },
58
+ "_last_obs": {
59
+ ":type:": "<class 'numpy.ndarray'>",
60
+ ":serialized:": "gAWVdQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYAAgAAAAAAALPG6T1b8oY/oIJNPmVNjL6KMS8+u39DPQAAAAAAAAAAelqOPsSpR73qnWm6hTFLOdtirb62MKI5AACAPwAAgD8zFYG9GcxHP8i0lrxRt6a+rAKuvRyHAT0AAAAAAAAAAEBHdz5EyIU//4nLPpJOoL77VZ4+Zg9JPQAAAAAAAAAATcGqPaT1LbuyI5a6F7iiPAmkHrykeYs9AACAPwAAgD/NEwy9ZC5xPxo/0bwTSp++AYZQvf1j1j0AAAAAAAAAAILanb5m5jk/tAoePEDD5r5jQrS+cl5bPgAAAAAAAAAATQtFPcPdcrpIBU823HVXMZeQaLtwrny1AACAPwAAgD8aXLi97MDsu2T7CTwOhK48APpFvaYekT0AAIA/AACAPzNI3TxcC0m6DNkjNMMTmS4t0qO61I2bswAAgD8AAIA/TS2Yvdt2oj+OyiK/fAEovx4hX7zAbj6+AAAAAAAAAACzwgk9XPIEvEtL/jzUAiA86l9RvWanCj0AAIA/AACAP8A8/D17aOa6Gy//tgFyhTMs1gK8NzwXNgAAgD8AAIA/GhsEPdTFnj/xNzA+ml2VvtVboD0G+sc9AAAAAAAAAABmAd287I7Qu/7+ijxuuhM9hLcGvaOmE7cAAIA/AACAP5otQL2HhrA/7ZkKvsDZur6j8oS9VsgNvgAAAAAAAAAAlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksQSwiGlIwBQ5R0lFKULg=="
61
+ },
62
+ "_last_episode_starts": {
63
+ ":type:": "<class 'numpy.ndarray'>",
64
+ ":serialized:": "gAWVgwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSxCFlIwBQ5R0lFKULg=="
65
+ },
66
+ "_last_original_obs": null,
67
+ "_episode_num": 0,
68
+ "use_sde": false,
69
+ "sde_sample_freq": -1,
70
+ "_current_progress_remaining": -0.015808000000000044,
71
+ "ep_info_buffer": {
72
+ ":type:": "<class 'collections.deque'>",
73
+ ":serialized:": "gAWVeRAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMIeT9uv3xEbkCUhpRSlIwBbJRNQgGMAXSUR0CV73DmKZUldX2UKGgGaAloD0MIhzWVReFtb0CUhpRSlGgVTQABaBZHQJXv2TpxFRZ1fZQoaAZoCWgPQwivXkVGBzhTQJSGlFKUaBVL0WgWR0CV8OrD63y7dX2UKGgGaAloD0MIk3GMZA/VbkCUhpRSlGgVTR4BaBZHQJXxR3s5XEJ1fZQoaAZoCWgPQwjuef60UYxwQJSGlFKUaBVNFQFoFkdAlfGdRzijtXV9lChoBmgJaA9DCLn98skKR3BAlIaUUpRoFU1HAWgWR0CV8bMNMGordX2UKGgGaAloD0MIUWhZ9087ckCUhpRSlGgVTRABaBZHQJXyFFEy+Ht1fZQoaAZoCWgPQwj8HYoCvetwQJSGlFKUaBVNGQFoFkdAlfLgBgeA/nV9lChoBmgJaA9DCKFKzR7oCm9AlIaUUpRoFU1PAWgWR0CV8vGD+R5kdX2UKGgGaAloD0MIYD3uW+1mcECUhpRSlGgVTTYBaBZHQJXzcNjLB9F1fZQoaAZoCWgPQwhc598u+/dJQJSGlFKUaBVL5WgWR0CV844tHxz8dX2UKGgGaAloD0MIzXaFPlibcUCUhpRSlGgVTU8BaBZHQJXzyYUnG851fZQoaAZoCWgPQwjByTZwB29sQJSGlFKUaBVNLAFoFkdAlfQHKfWc0HV9lChoBmgJaA9DCMgm+RG/nm1AlIaUUpRoFU0pAWgWR0CV9NtqYZ2qdX2UKGgGaAloD0MID9b/Ocx2cUCUhpRSlGgVTSgBaBZHQJX5ZccENfB1fZQoaAZoCWgPQwhV98jm6nJxQJSGlFKUaBVNaAFoFkdAlflpTZQHiXV9lChoBmgJaA9DCIRjlj1JRnJAlIaUUpRoFUv6aBZHQJX5/8EV32V1fZQoaAZoCWgPQwj53An2355sQJSGlFKUaBVNOAFoFkdAlfriR8twrHV9lChoBmgJaA9DCDQtsTIad0NAlIaUUpRoFUvkaBZHQJX65YxL0z11fZQoaAZoCWgPQwgNNQpJZhNvQJSGlFKUaBVNMwFoFkdAlfwQ4S6DoXV9lChoBmgJaA9DCLYPecvVGURAlIaUUpRoFUvpaBZHQJX8HSRbKRx1fZQoaAZoCWgPQwiqmiDq/ilxQJSGlFKUaBVNFAFoFkdAlfwdiUgSvnV9lChoBmgJaA9DCD27fOtDNm1AlIaUUpRoFU1CAWgWR0CV/UWX1J18dX2UKGgGaAloD0MIg79fzBa5ckCUhpRSlGgVTRwBaBZHQJX9wiFCb+d1fZQoaAZoCWgPQwgHliNkIK8vQJSGlFKUaBVL9WgWR0CV/2oHs1KodX2UKGgGaAloD0MIcY3PZP/9bkCUhpRSlGgVTTEBaBZHQJX/zuNPxhF1fZQoaAZoCWgPQwhNh07Pe0pxQJSGlFKUaBVNJwFoFkdAlgAur+5vtXV9lChoBmgJaA9DCFaalIJukXBAlIaUUpRoFU18AWgWR0CWAIcNpdrwdX2UKGgGaAloD0MIEOfhBCZMckCUhpRSlGgVTU4BaBZHQJYBae2/i5x1fZQoaAZoCWgPQwjxvb9B+3VrQJSGlFKUaBVNMQFoFkdAlgmFP8AJcHV9lChoBmgJaA9DCJOMnIU9LUlAlIaUUpRoFUvgaBZHQJYJ2D28IzF1fZQoaAZoCWgPQwjxngPLEXdwQJSGlFKUaBVNPQFoFkdAlgp2YOUdJnV9lChoBmgJaA9DCAe139qJm25AlIaUUpRoFU0pAWgWR0CWDILAHmihdX2UKGgGaAloD0MIsACmDBx6cECUhpRSlGgVTS4BaBZHQJYMtYbKifx1fZQoaAZoCWgPQwholC79i6BxQJSGlFKUaBVNNwFoFkdAlg0uTibUgHV9lChoBmgJaA9DCEn2CDVDIm5AlIaUUpRoFU1iAWgWR0CWDVFF2FFldX2UKGgGaAloD0MIrYcvE0UZb0CUhpRSlGgVTaECaBZHQJYNU2YOUdJ1fZQoaAZoCWgPQwgkXwmkRMtwQJSGlFKUaBVNYgFoFkdAlg30BwMpgHV9lChoBmgJaA9DCI24ADSKJ3FAlIaUUpRoFU1GAWgWR0CWDpvfj0cwdX2UKGgGaAloD0MIsJKP3cXmcECUhpRSlGgVTS0BaBZHQJYPlp8F6iV1fZQoaAZoCWgPQwhGelG7n0VzQJSGlFKUaBVNDQFoFkdAlg/D2SMcZXV9lChoBmgJaA9DCEH0pEzqD25AlIaUUpRoFU0oAWgWR0CWD/a5wwTNdX2UKGgGaAloD0MIFqHYChq5cECUhpRSlGgVTacBaBZHQJYQRlum78N1fZQoaAZoCWgPQwjwaU5eZDVvQJSGlFKUaBVNQgFoFkdAlhBzTWoWHnV9lChoBmgJaA9DCHak+s6vx3FAlIaUUpRoFU2ZAWgWR0CWEmzwtrbhdX2UKGgGaAloD0MI0gFJ2HcmckCUhpRSlGgVTSsBaBZHQJYVXadtl7N1fZQoaAZoCWgPQwiy8WCLnRlwQJSGlFKUaBVNPAFoFkdAlhZqTB68hHV9lChoBmgJaA9DCHWTGAQWgHBAlIaUUpRoFU0sAWgWR0CWLS7EpAlfdX2UKGgGaAloD0MIU+dR8X/IbkCUhpRSlGgVTR0BaBZHQJYtPFdcB2h1fZQoaAZoCWgPQwg5DVGFv3FwQJSGlFKUaBVNOgFoFkdAli24J/oaDXV9lChoBmgJaA9DCO2ZJQHq6nFAlIaUUpRoFU1KAWgWR0CWLc4ku6ErdX2UKGgGaAloD0MIQpWaPVCWa0CUhpRSlGgVTUYBaBZHQJYt0VUMoc91fZQoaAZoCWgPQwjmAwKdSaBvQJSGlFKUaBVNQAFoFkdAli4d+9allHV9lChoBmgJaA9DCEURUrfzQnJAlIaUUpRoFU0QAWgWR0CWLqwwj+rEdX2UKGgGaAloD0MI+dfyyvWdb0CUhpRSlGgVTZcBaBZHQJYvgZm7J4l1fZQoaAZoCWgPQwjmCBnIszhvQJSGlFKUaBVNNgFoFkdAljBen2qT83V9lChoBmgJaA9DCD//PXitbHBAlIaUUpRoFU0rAWgWR0CWMJqhUR4AdX2UKGgGaAloD0MI/u+IClWfcUCUhpRSlGgVTUgBaBZHQJYwxEmY0EZ1fZQoaAZoCWgPQwhvERjrm/5xQJSGlFKUaBVNSAFoFkdAljE/XsgMdHV9lChoBmgJaA9DCAEwnkGDw3BAlIaUUpRoFU2CAWgWR0CWMXLKmsNldX2UKGgGaAloD0MIp+uJrouAb0CUhpRSlGgVTREBaBZHQJYxyw4bS7Z1fZQoaAZoCWgPQwi5NlSMcz1xQJSGlFKUaBVNOwFoFkdAljaEoKD02HV9lChoBmgJaA9DCKfs9IO6bXBAlIaUUpRoFU0nAWgWR0CWOVIUahpQdX2UKGgGaAloD0MIqfi/I6pRb0CUhpRSlGgVTR0BaBZHQJY5desxO+J1fZQoaAZoCWgPQwiWehaE8nxyQJSGlFKUaBVNIAFoFkdAljmI7aIvanV9lChoBmgJaA9DCFNdwMvMmXFAlIaUUpRoFU1gAWgWR0CWOlinHeabdX2UKGgGaAloD0MIMjm1M0yHb0CUhpRSlGgVTSgBaBZHQJY6nJU5uIh1fZQoaAZoCWgPQwj5EFSN3hltQJSGlFKUaBVNPwFoFkdAljuRiPQv6HV9lChoBmgJaA9DCHRhpBe12W1AlIaUUpRoFU0rAWgWR0CWO6xdpqREdX2UKGgGaAloD0MIKGA7GLH7bkCUhpRSlGgVTSwBaBZHQJY9Ej5bhWJ1fZQoaAZoCWgPQwjWVBaFHTBxQJSGlFKUaBVNZwFoFkdAlj0UqMFUynV9lChoBmgJaA9DCMAF2bJ8V21AlIaUUpRoFU0dAWgWR0CWPeB/7SApdX2UKGgGaAloD0MIbXAi+rXVQUCUhpRSlGgVS/RoFkdAlj4T5XU6P3V9lChoBmgJaA9DCEVigho+xnJAlIaUUpRoFU0jAWgWR0CWPms/IKc/dX2UKGgGaAloD0MIliU6y6y9cECUhpRSlGgVTRIBaBZHQJY+xZbILgJ1fZQoaAZoCWgPQwgGY0SiUF5tQJSGlFKUaBVNQAFoFkdAlj8mVAzHj3V9lChoBmgJaA9DCJhtp62RWm1AlIaUUpRoFU04AWgWR0CWP+M72cridX2UKGgGaAloD0MISSpTzEGIbUCUhpRSlGgVTScBaBZHQJZFvenAIpp1fZQoaAZoCWgPQwgmcOtuHiJzQJSGlFKUaBVNMQFoFkdAlkoEBXCCSXV9lChoBmgJaA9DCJCkpIehs25AlIaUUpRoFU1FAWgWR0CWSiuJUHY6dX2UKGgGaAloD0MIsffiizaMckCUhpRSlGgVTUUBaBZHQJZK3sSkCV91fZQoaAZoCWgPQwgKn62DA85vQJSGlFKUaBVNXQFoFkdAlktul0o0AXV9lChoBmgJaA9DCPQWD+95kXJAlIaUUpRoFU1IAWgWR0CWTD7SiM5wdX2UKGgGaAloD0MIkrBvJ5GdckCUhpRSlGgVTWEBaBZHQJZNbzRQaaV1fZQoaAZoCWgPQwjL12X4TztxQJSGlFKUaBVNNQFoFkdAlk2hIWgvlHV9lChoBmgJaA9DCPw3L058JG9AlIaUUpRoFU0rAWgWR0CWTkOG0u14dX2UKGgGaAloD0MIat0GtV/ccUCUhpRSlGgVTUsBaBZHQJZOcskIHC51fZQoaAZoCWgPQwiKdhVSvg5yQJSGlFKUaBVNVgFoFkdAlk/BMJx//nV9lChoBmgJaA9DCADhQ4kWh3FAlIaUUpRoFU17AWgWR0CWT8z6ab4KdX2UKGgGaAloD0MIo81xbhOibUCUhpRSlGgVTWQBaBZHQJZQAVLzwtt1fZQoaAZoCWgPQwiTqBd8mr1sQJSGlFKUaBVNRAFoFkdAllAy704BFXV9lChoBmgJaA9DCOKt828Xx21AlIaUUpRoFU29AWgWR0CWUfx1gYxddX2UKGgGaAloD0MIu/JZngcVbECUhpRSlGgVTVkBaBZHQJZVpxDLKV91fZQoaAZoCWgPQwg5Y5gTdCpwQJSGlFKUaBVNFAFoFkdAllfPsJIDo3V9lChoBmgJaA9DCCtPIOwUtmxAlIaUUpRoFU0wAWgWR0CWV/jZtelbdX2UKGgGaAloD0MI+IvZklWZa0CUhpRSlGgVTU0BaBZHQJZYvSgGr0d1fZQoaAZoCWgPQwjq6o7FNihyQJSGlFKUaBVNOwFoFkdAllj7VBlcyHV9lChoBmgJaA9DCMYX7fEC+XFAlIaUUpRoFU0eAWgWR0CWWWffXPJJdX2UKGgGaAloD0MIiUUMO0zYcECUhpRSlGgVTRYBaBZHQJZZ4NVinYR1fZQoaAZoCWgPQwiQSUbOwiNwQJSGlFKUaBVNdAFoFkdAllptZ/0/W3VlLg=="
74
+ },
75
+ "ep_success_buffer": {
76
+ ":type:": "<class 'collections.deque'>",
77
+ ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="
78
+ },
79
+ "_n_updates": 248,
80
+ "n_steps": 1024,
81
+ "gamma": 0.999,
82
+ "gae_lambda": 0.98,
83
+ "ent_coef": 0.01,
84
+ "vf_coef": 0.5,
85
+ "max_grad_norm": 0.5,
86
+ "batch_size": 64,
87
+ "n_epochs": 4,
88
+ "clip_range": {
89
+ ":type:": "<class 'function'>",
90
+ ":serialized:": "gAWVwwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOC9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZSMBGZ1bmOUS4JDAgABlIwDdmFslIWUKXSUUpR9lCiMC19fcGFja2FnZV9flIwYc3RhYmxlX2Jhc2VsaW5lczMuY29tbW9ulIwIX19uYW1lX1+UjB5zdGFibGVfYmFzZWxpbmVzMy5jb21tb24udXRpbHOUjAhfX2ZpbGVfX5SMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOC9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZR1Tk5oAIwQX21ha2VfZW1wdHlfY2VsbJSTlClSlIWUdJRSlIwcY2xvdWRwaWNrbGUuY2xvdWRwaWNrbGVfZmFzdJSMEl9mdW5jdGlvbl9zZXRzdGF0ZZSTlGgffZR9lChoFmgNjAxfX3F1YWxuYW1lX1+UjBljb25zdGFudF9mbi48bG9jYWxzPi5mdW5jlIwPX19hbm5vdGF0aW9uc19flH2UjA5fX2t3ZGVmYXVsdHNfX5ROjAxfX2RlZmF1bHRzX1+UTowKX19tb2R1bGVfX5RoF4wHX19kb2NfX5ROjAtfX2Nsb3N1cmVfX5RoAIwKX21ha2VfY2VsbJSTlEc/yZmZmZmZmoWUUpSFlIwXX2Nsb3VkcGlja2xlX3N1Ym1vZHVsZXOUXZSMC19fZ2xvYmFsc19flH2UdYaUhlIwLg=="
91
+ },
92
+ "clip_range_vf": null,
93
+ "normalize_advantage": true,
94
+ "target_kl": null
95
+ }
ppo-LunarLander-v2/policy.optimizer.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:239008055b97df238182c6d6eef654ea25d7f04889eb2ea60c3611356dcece6f
3
+ size 87929
ppo-LunarLander-v2/policy.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:6d476feb29093cc7738f9db2b96c0e82cb896847fdf801b0d3501ac76dc5ceb4
3
+ size 43393
ppo-LunarLander-v2/pytorch_variables.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:d030ad8db708280fcae77d87e973102039acd23a11bdecc3db8eb6c0ac940ee1
3
+ size 431
ppo-LunarLander-v2/system_info.txt ADDED
@@ -0,0 +1,7 @@
 
 
 
 
 
 
 
 
1
+ - OS: Linux-5.10.147+-x86_64-with-glibc2.29 # 1 SMP Sat Dec 10 16:00:40 UTC 2022
2
+ - Python: 3.8.10
3
+ - Stable-Baselines3: 1.7.0
4
+ - PyTorch: 1.13.1+cu116
5
+ - GPU Enabled: True
6
+ - Numpy: 1.21.6
7
+ - Gym: 0.21.0
replay.mp4 ADDED
Binary file (220 kB). View file
 
results.json ADDED
@@ -0,0 +1 @@
 
 
1
+ {"mean_reward": 248.26904457197423, "std_reward": 14.458906536175101, "is_deterministic": true, "n_eval_episodes": 10, "eval_datetime": "2023-02-16T17:17:54.481446"}