Create convert_simpletuner_lora.py
Browse files- lora/convert_simpletuner_lora.py +483 -0
lora/convert_simpletuner_lora.py
ADDED
|
@@ -0,0 +1,483 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
#!/usr/bin/env python3
|
| 2 |
+
"""
|
| 3 |
+
Convert SimpleTuner LoRA weights to diffusers-compatible format for AuraFlow.
|
| 4 |
+
|
| 5 |
+
This script converts LoRA weights saved by SimpleTuner into a format that can be
|
| 6 |
+
directly loaded by diffusers' load_lora_weights() method.
|
| 7 |
+
|
| 8 |
+
Usage:
|
| 9 |
+
python convert_simpletuner_lora.py <input_lora.safetensors> <output_lora.safetensors>
|
| 10 |
+
|
| 11 |
+
Example:
|
| 12 |
+
python convert_simpletuner_lora.py input_lora.safetensors diffusers_compatible_lora.safetensors
|
| 13 |
+
"""
|
| 14 |
+
|
| 15 |
+
import argparse
|
| 16 |
+
import sys
|
| 17 |
+
from pathlib import Path
|
| 18 |
+
from typing import Dict
|
| 19 |
+
|
| 20 |
+
import safetensors.torch
|
| 21 |
+
import torch
|
| 22 |
+
|
| 23 |
+
|
| 24 |
+
def detect_lora_format(state_dict: Dict[str, torch.Tensor]) -> str:
|
| 25 |
+
"""
|
| 26 |
+
Detect the format of the LoRA state dict.
|
| 27 |
+
|
| 28 |
+
Returns:
|
| 29 |
+
"peft" if already in PEFT/diffusers format
|
| 30 |
+
"mixed" if mixed format (some lora_A/B, some lora.down/up)
|
| 31 |
+
"simpletuner_transformer" if in SimpleTuner format with transformer prefix
|
| 32 |
+
"simpletuner_auraflow" if in SimpleTuner AuraFlow format
|
| 33 |
+
"kohya" if in Kohya format
|
| 34 |
+
"unknown" otherwise
|
| 35 |
+
"""
|
| 36 |
+
keys = list(state_dict.keys())
|
| 37 |
+
|
| 38 |
+
# Check the actual weight naming convention (lora_A/lora_B vs lora_down/lora_up)
|
| 39 |
+
has_lora_a_b = any((".lora_A." in k or ".lora_B." in k) for k in keys)
|
| 40 |
+
has_lora_down_up = any((".lora_down." in k or ".lora_up." in k) for k in keys)
|
| 41 |
+
has_lora_dot_down_up = any((".lora.down." in k or ".lora.up." in k) for k in keys)
|
| 42 |
+
|
| 43 |
+
# Check prefixes
|
| 44 |
+
has_transformer_prefix = any(k.startswith("transformer.") for k in keys)
|
| 45 |
+
has_lora_transformer_prefix = any(k.startswith("lora_transformer_") for k in keys)
|
| 46 |
+
has_lora_unet_prefix = any(k.startswith("lora_unet_") for k in keys)
|
| 47 |
+
|
| 48 |
+
# Mixed format: has both lora_A/B AND lora.down/up (SimpleTuner hybrid)
|
| 49 |
+
if has_transformer_prefix and has_lora_a_b and (has_lora_down_up or has_lora_dot_down_up):
|
| 50 |
+
return "mixed"
|
| 51 |
+
|
| 52 |
+
# Pure PEFT format: transformer.* with ONLY lora_A/lora_B
|
| 53 |
+
if has_transformer_prefix and has_lora_a_b and not has_lora_down_up and not has_lora_dot_down_up:
|
| 54 |
+
return "peft"
|
| 55 |
+
|
| 56 |
+
# SimpleTuner with transformer prefix but old naming: transformer.* with lora_down/lora_up
|
| 57 |
+
if has_transformer_prefix and (has_lora_down_up or has_lora_dot_down_up):
|
| 58 |
+
return "simpletuner_transformer"
|
| 59 |
+
|
| 60 |
+
# SimpleTuner AuraFlow format: lora_transformer_* with lora_down/lora_up
|
| 61 |
+
if has_lora_transformer_prefix and has_lora_down_up:
|
| 62 |
+
return "simpletuner_auraflow"
|
| 63 |
+
|
| 64 |
+
# Traditional Kohya format: lora_unet_* with lora_down/lora_up
|
| 65 |
+
if has_lora_unet_prefix and has_lora_down_up:
|
| 66 |
+
return "kohya"
|
| 67 |
+
|
| 68 |
+
return "unknown"
|
| 69 |
+
|
| 70 |
+
|
| 71 |
+
def convert_mixed_lora_to_diffusers(state_dict: Dict[str, torch.Tensor]) -> Dict[str, torch.Tensor]:
|
| 72 |
+
"""
|
| 73 |
+
Convert mixed LoRA format to pure PEFT format.
|
| 74 |
+
|
| 75 |
+
SimpleTuner sometimes saves a hybrid format where some layers use lora_A/lora_B
|
| 76 |
+
and others use .lora.down./.lora.up. This converts all to lora_A/lora_B.
|
| 77 |
+
"""
|
| 78 |
+
new_state_dict = {}
|
| 79 |
+
converted_count = 0
|
| 80 |
+
kept_count = 0
|
| 81 |
+
skipped_count = 0
|
| 82 |
+
renames = []
|
| 83 |
+
|
| 84 |
+
# Get all keys
|
| 85 |
+
all_keys = sorted(state_dict.keys())
|
| 86 |
+
|
| 87 |
+
print("\nProcessing keys:")
|
| 88 |
+
print("-" * 80)
|
| 89 |
+
|
| 90 |
+
for key in all_keys:
|
| 91 |
+
# Already in correct format (lora_A or lora_B)
|
| 92 |
+
if ".lora_A." in key or ".lora_B." in key:
|
| 93 |
+
new_state_dict[key] = state_dict[key]
|
| 94 |
+
kept_count += 1
|
| 95 |
+
|
| 96 |
+
# Needs conversion: .lora.down. -> .lora_A.
|
| 97 |
+
elif ".lora.down.weight" in key:
|
| 98 |
+
new_key = key.replace(".lora.down.weight", ".lora_A.weight")
|
| 99 |
+
new_state_dict[new_key] = state_dict[key]
|
| 100 |
+
renames.append((key, new_key))
|
| 101 |
+
converted_count += 1
|
| 102 |
+
|
| 103 |
+
# Needs conversion: .lora.up. -> .lora_B.
|
| 104 |
+
elif ".lora.up.weight" in key:
|
| 105 |
+
new_key = key.replace(".lora.up.weight", ".lora_B.weight")
|
| 106 |
+
new_state_dict[new_key] = state_dict[key]
|
| 107 |
+
renames.append((key, new_key))
|
| 108 |
+
converted_count += 1
|
| 109 |
+
|
| 110 |
+
# Skip alpha keys (not used in PEFT format)
|
| 111 |
+
elif ".alpha" in key:
|
| 112 |
+
skipped_count += 1
|
| 113 |
+
continue
|
| 114 |
+
|
| 115 |
+
# Other keys (shouldn't happen, but keep them just in case)
|
| 116 |
+
else:
|
| 117 |
+
new_state_dict[key] = state_dict[key]
|
| 118 |
+
print(f"⚠ Warning: Unexpected key format: {key}")
|
| 119 |
+
|
| 120 |
+
print(f"\nSummary:")
|
| 121 |
+
print(f" ✓ Kept {kept_count} keys already in correct format (lora_A/lora_B)")
|
| 122 |
+
print(f" ✓ Converted {converted_count} keys from .lora.down/.lora.up to lora_A/lora_B")
|
| 123 |
+
print(f" ✓ Skipped {skipped_count} alpha keys")
|
| 124 |
+
|
| 125 |
+
if renames:
|
| 126 |
+
print(f"\nRenames applied ({len(renames)} conversions):")
|
| 127 |
+
print("-" * 80)
|
| 128 |
+
for old_key, new_key in renames:
|
| 129 |
+
# Show the difference more clearly
|
| 130 |
+
if ".lora.down.weight" in old_key:
|
| 131 |
+
layer = old_key.replace(".lora.down.weight", "")
|
| 132 |
+
print(f" {layer}")
|
| 133 |
+
print(f" .lora.down.weight → .lora_A.weight")
|
| 134 |
+
elif ".lora.up.weight" in old_key:
|
| 135 |
+
layer = old_key.replace(".lora.up.weight", "")
|
| 136 |
+
print(f" {layer}")
|
| 137 |
+
print(f" .lora.up.weight → .lora_B.weight")
|
| 138 |
+
|
| 139 |
+
return new_state_dict
|
| 140 |
+
|
| 141 |
+
|
| 142 |
+
def convert_simpletuner_transformer_to_diffusers(state_dict: Dict[str, torch.Tensor]) -> Dict[str, torch.Tensor]:
|
| 143 |
+
"""
|
| 144 |
+
Convert SimpleTuner transformer format (already has transformer. prefix but uses lora_down/lora_up)
|
| 145 |
+
to diffusers PEFT format (transformer. prefix with lora_A/lora_B).
|
| 146 |
+
|
| 147 |
+
This is a simpler conversion since the key structure is already correct.
|
| 148 |
+
"""
|
| 149 |
+
new_state_dict = {}
|
| 150 |
+
renames = []
|
| 151 |
+
|
| 152 |
+
# Get all unique LoRA layer base names (without .lora_down/.lora_up/.alpha suffix)
|
| 153 |
+
all_keys = list(state_dict.keys())
|
| 154 |
+
base_keys = set()
|
| 155 |
+
|
| 156 |
+
for key in all_keys:
|
| 157 |
+
if ".lora_down.weight" in key:
|
| 158 |
+
base_key = key.replace(".lora_down.weight", "")
|
| 159 |
+
base_keys.add(base_key)
|
| 160 |
+
|
| 161 |
+
print(f"\nFound {len(base_keys)} LoRA layers to convert")
|
| 162 |
+
print("-" * 80)
|
| 163 |
+
|
| 164 |
+
# Convert each layer
|
| 165 |
+
for base_key in sorted(base_keys):
|
| 166 |
+
down_key = f"{base_key}.lora_down.weight"
|
| 167 |
+
up_key = f"{base_key}.lora_up.weight"
|
| 168 |
+
alpha_key = f"{base_key}.alpha"
|
| 169 |
+
|
| 170 |
+
if down_key not in state_dict or up_key not in state_dict:
|
| 171 |
+
print(f"⚠ Warning: Missing weights for {base_key}")
|
| 172 |
+
continue
|
| 173 |
+
|
| 174 |
+
down_weight = state_dict.pop(down_key)
|
| 175 |
+
up_weight = state_dict.pop(up_key)
|
| 176 |
+
|
| 177 |
+
# Handle alpha scaling
|
| 178 |
+
has_alpha = False
|
| 179 |
+
if alpha_key in state_dict:
|
| 180 |
+
alpha = state_dict.pop(alpha_key)
|
| 181 |
+
lora_rank = down_weight.shape[0]
|
| 182 |
+
scale = alpha / lora_rank
|
| 183 |
+
|
| 184 |
+
# Calculate scale_down and scale_up to preserve the scale value
|
| 185 |
+
scale_down = scale
|
| 186 |
+
scale_up = 1.0
|
| 187 |
+
while scale_down * 2 < scale_up:
|
| 188 |
+
scale_down *= 2
|
| 189 |
+
scale_up /= 2
|
| 190 |
+
|
| 191 |
+
down_weight = down_weight * scale_down
|
| 192 |
+
up_weight = up_weight * scale_up
|
| 193 |
+
has_alpha = True
|
| 194 |
+
|
| 195 |
+
# Store in PEFT format (lora_A = down, lora_B = up)
|
| 196 |
+
new_down_key = f"{base_key}.lora_A.weight"
|
| 197 |
+
new_up_key = f"{base_key}.lora_B.weight"
|
| 198 |
+
|
| 199 |
+
new_state_dict[new_down_key] = down_weight
|
| 200 |
+
new_state_dict[new_up_key] = up_weight
|
| 201 |
+
|
| 202 |
+
renames.append((down_key, new_down_key, has_alpha))
|
| 203 |
+
renames.append((up_key, new_up_key, has_alpha))
|
| 204 |
+
|
| 205 |
+
# Check for any remaining keys
|
| 206 |
+
remaining = [k for k in state_dict.keys() if not k.startswith("text_encoder")]
|
| 207 |
+
if remaining:
|
| 208 |
+
print(f"⚠ Warning: {len(remaining)} keys were not converted: {remaining[:5]}")
|
| 209 |
+
|
| 210 |
+
print(f"\nRenames applied ({len(renames)} conversions):")
|
| 211 |
+
print("-" * 80)
|
| 212 |
+
|
| 213 |
+
# Group by layer
|
| 214 |
+
current_layer = None
|
| 215 |
+
for old_key, new_key, has_alpha in renames:
|
| 216 |
+
layer = old_key.replace(".lora_down.weight", "").replace(".lora_up.weight", "")
|
| 217 |
+
|
| 218 |
+
if layer != current_layer:
|
| 219 |
+
alpha_str = " (alpha scaled)" if has_alpha else ""
|
| 220 |
+
print(f"\n {layer}{alpha_str}")
|
| 221 |
+
current_layer = layer
|
| 222 |
+
|
| 223 |
+
if ".lora_down.weight" in old_key:
|
| 224 |
+
print(f" .lora_down.weight → .lora_A.weight")
|
| 225 |
+
elif ".lora_up.weight" in old_key:
|
| 226 |
+
print(f" .lora_up.weight → .lora_B.weight")
|
| 227 |
+
|
| 228 |
+
return new_state_dict
|
| 229 |
+
|
| 230 |
+
|
| 231 |
+
def convert_simpletuner_auraflow_to_diffusers(state_dict: Dict[str, torch.Tensor]) -> Dict[str, torch.Tensor]:
|
| 232 |
+
"""
|
| 233 |
+
Convert SimpleTuner AuraFlow LoRA format to diffusers PEFT format.
|
| 234 |
+
|
| 235 |
+
SimpleTuner typically saves LoRAs in a format similar to Kohya's sd-scripts,
|
| 236 |
+
but for transformer-based models like AuraFlow, the keys may differ.
|
| 237 |
+
"""
|
| 238 |
+
new_state_dict = {}
|
| 239 |
+
|
| 240 |
+
def _convert(original_key, diffusers_key, state_dict, new_state_dict):
|
| 241 |
+
"""Helper to convert a single LoRA layer."""
|
| 242 |
+
down_key = f"{original_key}.lora_down.weight"
|
| 243 |
+
if down_key not in state_dict:
|
| 244 |
+
return False
|
| 245 |
+
|
| 246 |
+
down_weight = state_dict.pop(down_key)
|
| 247 |
+
lora_rank = down_weight.shape[0]
|
| 248 |
+
|
| 249 |
+
up_weight_key = f"{original_key}.lora_up.weight"
|
| 250 |
+
up_weight = state_dict.pop(up_weight_key)
|
| 251 |
+
|
| 252 |
+
# Handle alpha scaling
|
| 253 |
+
alpha_key = f"{original_key}.alpha"
|
| 254 |
+
if alpha_key in state_dict:
|
| 255 |
+
alpha = state_dict.pop(alpha_key)
|
| 256 |
+
scale = alpha / lora_rank
|
| 257 |
+
|
| 258 |
+
# Calculate scale_down and scale_up to preserve the scale value
|
| 259 |
+
scale_down = scale
|
| 260 |
+
scale_up = 1.0
|
| 261 |
+
while scale_down * 2 < scale_up:
|
| 262 |
+
scale_down *= 2
|
| 263 |
+
scale_up /= 2
|
| 264 |
+
|
| 265 |
+
down_weight = down_weight * scale_down
|
| 266 |
+
up_weight = up_weight * scale_up
|
| 267 |
+
|
| 268 |
+
# Store in PEFT format (lora_A = down, lora_B = up)
|
| 269 |
+
diffusers_down_key = f"{diffusers_key}.lora_A.weight"
|
| 270 |
+
new_state_dict[diffusers_down_key] = down_weight
|
| 271 |
+
new_state_dict[diffusers_down_key.replace(".lora_A.", ".lora_B.")] = up_weight
|
| 272 |
+
|
| 273 |
+
return True
|
| 274 |
+
|
| 275 |
+
# Get all unique LoRA layer names
|
| 276 |
+
all_unique_keys = {
|
| 277 |
+
k.replace(".lora_down.weight", "").replace(".lora_up.weight", "").replace(".alpha", "")
|
| 278 |
+
for k in state_dict
|
| 279 |
+
if ".lora_down.weight" in k or ".lora_up.weight" in k or ".alpha" in k
|
| 280 |
+
}
|
| 281 |
+
|
| 282 |
+
# Process transformer blocks
|
| 283 |
+
for original_key in sorted(all_unique_keys):
|
| 284 |
+
if original_key.startswith("lora_transformer_single_transformer_blocks_"):
|
| 285 |
+
# Single transformer blocks
|
| 286 |
+
parts = original_key.split("lora_transformer_single_transformer_blocks_")[-1].split("_")
|
| 287 |
+
block_idx = int(parts[0])
|
| 288 |
+
diffusers_key = f"single_transformer_blocks.{block_idx}"
|
| 289 |
+
|
| 290 |
+
# Map the rest of the key
|
| 291 |
+
remaining = "_".join(parts[1:])
|
| 292 |
+
if "attn_to_q" in remaining:
|
| 293 |
+
diffusers_key += ".attn.to_q"
|
| 294 |
+
elif "attn_to_k" in remaining:
|
| 295 |
+
diffusers_key += ".attn.to_k"
|
| 296 |
+
elif "attn_to_v" in remaining:
|
| 297 |
+
diffusers_key += ".attn.to_v"
|
| 298 |
+
elif "proj_out" in remaining:
|
| 299 |
+
diffusers_key += ".proj_out"
|
| 300 |
+
elif "proj_mlp" in remaining:
|
| 301 |
+
diffusers_key += ".proj_mlp"
|
| 302 |
+
elif "norm_linear" in remaining:
|
| 303 |
+
diffusers_key += ".norm.linear"
|
| 304 |
+
else:
|
| 305 |
+
print(f"Warning: Unhandled single block key pattern: {original_key}")
|
| 306 |
+
continue
|
| 307 |
+
|
| 308 |
+
elif original_key.startswith("lora_transformer_transformer_blocks_"):
|
| 309 |
+
# Double transformer blocks
|
| 310 |
+
parts = original_key.split("lora_transformer_transformer_blocks_")[-1].split("_")
|
| 311 |
+
block_idx = int(parts[0])
|
| 312 |
+
diffusers_key = f"transformer_blocks.{block_idx}"
|
| 313 |
+
|
| 314 |
+
# Map the rest of the key
|
| 315 |
+
remaining = "_".join(parts[1:])
|
| 316 |
+
if "attn_to_out_0" in remaining:
|
| 317 |
+
diffusers_key += ".attn.to_out.0"
|
| 318 |
+
elif "attn_to_add_out" in remaining:
|
| 319 |
+
diffusers_key += ".attn.to_add_out"
|
| 320 |
+
elif "attn_to_q" in remaining:
|
| 321 |
+
diffusers_key += ".attn.to_q"
|
| 322 |
+
elif "attn_to_k" in remaining:
|
| 323 |
+
diffusers_key += ".attn.to_k"
|
| 324 |
+
elif "attn_to_v" in remaining:
|
| 325 |
+
diffusers_key += ".attn.to_v"
|
| 326 |
+
elif "attn_add_q_proj" in remaining:
|
| 327 |
+
diffusers_key += ".attn.add_q_proj"
|
| 328 |
+
elif "attn_add_k_proj" in remaining:
|
| 329 |
+
diffusers_key += ".attn.add_k_proj"
|
| 330 |
+
elif "attn_add_v_proj" in remaining:
|
| 331 |
+
diffusers_key += ".attn.add_v_proj"
|
| 332 |
+
elif "ff_net_0_proj" in remaining:
|
| 333 |
+
diffusers_key += ".ff.net.0.proj"
|
| 334 |
+
elif "ff_net_2" in remaining:
|
| 335 |
+
diffusers_key += ".ff.net.2"
|
| 336 |
+
elif "ff_context_net_0_proj" in remaining:
|
| 337 |
+
diffusers_key += ".ff_context.net.0.proj"
|
| 338 |
+
elif "ff_context_net_2" in remaining:
|
| 339 |
+
diffusers_key += ".ff_context.net.2"
|
| 340 |
+
elif "norm1_linear" in remaining:
|
| 341 |
+
diffusers_key += ".norm1.linear"
|
| 342 |
+
elif "norm1_context_linear" in remaining:
|
| 343 |
+
diffusers_key += ".norm1_context.linear"
|
| 344 |
+
else:
|
| 345 |
+
print(f"Warning: Unhandled double block key pattern: {original_key}")
|
| 346 |
+
continue
|
| 347 |
+
|
| 348 |
+
elif original_key.startswith("lora_te1_") or original_key.startswith("lora_te_"):
|
| 349 |
+
# Text encoder keys - handle separately
|
| 350 |
+
print(f"Found text encoder key: {original_key}")
|
| 351 |
+
continue
|
| 352 |
+
|
| 353 |
+
else:
|
| 354 |
+
print(f"Warning: Unknown key pattern: {original_key}")
|
| 355 |
+
continue
|
| 356 |
+
|
| 357 |
+
# Perform the conversion
|
| 358 |
+
_convert(original_key, diffusers_key, state_dict, new_state_dict)
|
| 359 |
+
|
| 360 |
+
# Add "transformer." prefix to all keys
|
| 361 |
+
transformer_state_dict = {
|
| 362 |
+
f"transformer.{k}": v for k, v in new_state_dict.items() if not k.startswith("text_model.")
|
| 363 |
+
}
|
| 364 |
+
|
| 365 |
+
# Check for remaining unconverted keys
|
| 366 |
+
if len(state_dict) > 0:
|
| 367 |
+
remaining_keys = [k for k in state_dict.keys() if not k.startswith("lora_te")]
|
| 368 |
+
if remaining_keys:
|
| 369 |
+
print(f"Warning: Some keys were not converted: {remaining_keys[:10]}")
|
| 370 |
+
|
| 371 |
+
return transformer_state_dict
|
| 372 |
+
|
| 373 |
+
|
| 374 |
+
def convert_lora(input_path: str, output_path: str) -> None:
|
| 375 |
+
"""
|
| 376 |
+
Main conversion function.
|
| 377 |
+
|
| 378 |
+
Args:
|
| 379 |
+
input_path: Path to input LoRA safetensors file
|
| 380 |
+
output_path: Path to output diffusers-compatible safetensors file
|
| 381 |
+
"""
|
| 382 |
+
print(f"Loading LoRA from: {input_path}")
|
| 383 |
+
state_dict = safetensors.torch.load_file(input_path)
|
| 384 |
+
|
| 385 |
+
print(f"Detecting LoRA format...")
|
| 386 |
+
format_type = detect_lora_format(state_dict)
|
| 387 |
+
print(f"Detected format: {format_type}")
|
| 388 |
+
|
| 389 |
+
if format_type == "peft":
|
| 390 |
+
print("LoRA is already in diffusers-compatible PEFT format!")
|
| 391 |
+
print("No conversion needed. Copying file...")
|
| 392 |
+
import shutil
|
| 393 |
+
shutil.copy(input_path, output_path)
|
| 394 |
+
return
|
| 395 |
+
|
| 396 |
+
elif format_type == "mixed":
|
| 397 |
+
print("Converting MIXED format LoRA to pure PEFT format...")
|
| 398 |
+
print("(Some layers use lora_A/B, others use .lora.down/.lora.up)")
|
| 399 |
+
converted_state_dict = convert_mixed_lora_to_diffusers(state_dict.copy())
|
| 400 |
+
|
| 401 |
+
elif format_type == "simpletuner_transformer":
|
| 402 |
+
print("Converting SimpleTuner transformer format to diffusers...")
|
| 403 |
+
print("(has transformer. prefix but uses lora_down/lora_up naming)")
|
| 404 |
+
converted_state_dict = convert_simpletuner_transformer_to_diffusers(state_dict.copy())
|
| 405 |
+
|
| 406 |
+
elif format_type == "simpletuner_auraflow":
|
| 407 |
+
print("Converting SimpleTuner AuraFlow format to diffusers...")
|
| 408 |
+
converted_state_dict = convert_simpletuner_auraflow_to_diffusers(state_dict.copy())
|
| 409 |
+
|
| 410 |
+
elif format_type == "kohya":
|
| 411 |
+
print("Note: Detected Kohya format. This converter is optimized for AuraFlow.")
|
| 412 |
+
print("For other models, diffusers has built-in conversion.")
|
| 413 |
+
converted_state_dict = convert_simpletuner_auraflow_to_diffusers(state_dict.copy())
|
| 414 |
+
|
| 415 |
+
else:
|
| 416 |
+
print("Error: Unknown LoRA format!")
|
| 417 |
+
print("Sample keys from the state dict:")
|
| 418 |
+
for i, key in enumerate(list(state_dict.keys())[:20]):
|
| 419 |
+
print(f" {key}")
|
| 420 |
+
sys.exit(1)
|
| 421 |
+
|
| 422 |
+
print(f"Saving converted LoRA to: {output_path}")
|
| 423 |
+
safetensors.torch.save_file(converted_state_dict, output_path)
|
| 424 |
+
|
| 425 |
+
print("\nConversion complete!")
|
| 426 |
+
print(f"Original keys: {len(state_dict)}")
|
| 427 |
+
print(f"Converted keys: {len(converted_state_dict)}")
|
| 428 |
+
|
| 429 |
+
def main():
|
| 430 |
+
parser = argparse.ArgumentParser(
|
| 431 |
+
description="Convert SimpleTuner LoRA to diffusers-compatible format",
|
| 432 |
+
formatter_class=argparse.RawDescriptionHelpFormatter,
|
| 433 |
+
epilog="""
|
| 434 |
+
Examples:
|
| 435 |
+
# Convert a SimpleTuner LoRA for AuraFlow
|
| 436 |
+
python convert_simpletuner_lora.py my_lora.safetensors diffusers_lora.safetensors
|
| 437 |
+
|
| 438 |
+
# Check format without converting
|
| 439 |
+
python convert_simpletuner_lora.py my_lora.safetensors /tmp/test.safetensors
|
| 440 |
+
"""
|
| 441 |
+
)
|
| 442 |
+
|
| 443 |
+
parser.add_argument(
|
| 444 |
+
"input",
|
| 445 |
+
type=str,
|
| 446 |
+
help="Input LoRA file (SimpleTuner format)"
|
| 447 |
+
)
|
| 448 |
+
|
| 449 |
+
parser.add_argument(
|
| 450 |
+
"output",
|
| 451 |
+
type=str,
|
| 452 |
+
help="Output LoRA file (diffusers-compatible format)"
|
| 453 |
+
)
|
| 454 |
+
|
| 455 |
+
parser.add_argument(
|
| 456 |
+
"--dry-run",
|
| 457 |
+
action="store_true",
|
| 458 |
+
help="Only detect format, don't convert"
|
| 459 |
+
)
|
| 460 |
+
|
| 461 |
+
args = parser.parse_args()
|
| 462 |
+
|
| 463 |
+
# Validate input file exists
|
| 464 |
+
if not Path(args.input).exists():
|
| 465 |
+
print(f"Error: Input file not found: {args.input}")
|
| 466 |
+
sys.exit(1)
|
| 467 |
+
|
| 468 |
+
if args.dry_run:
|
| 469 |
+
print(f"Loading LoRA from: {args.input}")
|
| 470 |
+
state_dict = safetensors.torch.load_file(args.input)
|
| 471 |
+
format_type = detect_lora_format(state_dict)
|
| 472 |
+
print(f"Detected format: {format_type}")
|
| 473 |
+
print(f"\nSample keys ({min(10, len(state_dict))} of {len(state_dict)}):")
|
| 474 |
+
for key in list(state_dict.keys())[:10]:
|
| 475 |
+
print(f" {key}")
|
| 476 |
+
return
|
| 477 |
+
|
| 478 |
+
convert_lora(args.input, args.output)
|
| 479 |
+
|
| 480 |
+
|
| 481 |
+
if __name__ == "__main__":
|
| 482 |
+
main()
|
| 483 |
+
|