pupugu02 commited on
Commit
8a3e93a
1 Parent(s): 8d3b72a

Add SetFit ABSA model

Browse files
.gitattributes CHANGED
@@ -33,3 +33,4 @@ saved_model/**/* filter=lfs diff=lfs merge=lfs -text
33
  *.zip filter=lfs diff=lfs merge=lfs -text
34
  *.zst filter=lfs diff=lfs merge=lfs -text
35
  *tfevents* filter=lfs diff=lfs merge=lfs -text
 
 
33
  *.zip filter=lfs diff=lfs merge=lfs -text
34
  *.zst filter=lfs diff=lfs merge=lfs -text
35
  *tfevents* filter=lfs diff=lfs merge=lfs -text
36
+ tokenizer.json filter=lfs diff=lfs merge=lfs -text
1_Pooling/config.json ADDED
@@ -0,0 +1,10 @@
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "word_embedding_dimension": 1024,
3
+ "pooling_mode_cls_token": true,
4
+ "pooling_mode_mean_tokens": false,
5
+ "pooling_mode_max_tokens": false,
6
+ "pooling_mode_mean_sqrt_len_tokens": false,
7
+ "pooling_mode_weightedmean_tokens": false,
8
+ "pooling_mode_lasttoken": false,
9
+ "include_prompt": true
10
+ }
README.md ADDED
@@ -0,0 +1,196 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ library_name: setfit
3
+ tags:
4
+ - setfit
5
+ - absa
6
+ - sentence-transformers
7
+ - text-classification
8
+ - generated_from_setfit_trainer
9
+ metrics:
10
+ - accuracy
11
+ widget:
12
+ - text: yang bersih. Pelayanan sangat Ramah dan:Tempat nya yang bersih. Pelayanan
13
+ sangat Ramah dan makanan ny yg sangat lezat
14
+ - text: Restoran dengan pelayanan yang baik di:Restoran dengan pelayanan yang baik
15
+ di kota bandung, makanan yang disajikan sesuai dengan harga dan sangat enak. …
16
+ - text: dan higienis dengan pelayanan sangat maksimal dan:Saya Makanan disini sangat
17
+ enak dan higienis dengan pelayanan sangat maksimal dan ditunjang dengan fasilitas
18
+ yang oke. Parkiran luas, tempat bersih dan nyaman. Good
19
+ - text: ke sini, tempat ini makanan cepat:Saya pernah ke sini, tempat ini makanan
20
+ cepat saji yang enak bersama kalian untuk makan siang cepat saji, kamarnya bersih,
21
+ sirkulasi udaranya sempurna dan tentu saja memiliki internet berkecepatan tinggi,
22
+ sangat direkomendasikan
23
+ - text: 'Ini tempat yang bagus untuk:Ini tempat yang bagus untuk keluarga, sahabat..
24
+
25
+ Dan juga baik untuk tamu kita..
26
+
27
+ Tapi pelayanannya terlambat..'
28
+ pipeline_tag: text-classification
29
+ inference: false
30
+ ---
31
+
32
+ # SetFit Polarity Model
33
+
34
+ This is a [SetFit](https://github.com/huggingface/setfit) model that can be used for Aspect Based Sentiment Analysis (ABSA). A [LogisticRegression](https://scikit-learn.org/stable/modules/generated/sklearn.linear_model.LogisticRegression.html) instance is used for classification. In particular, this model is in charge of classifying aspect polarities.
35
+
36
+ The model has been trained using an efficient few-shot learning technique that involves:
37
+
38
+ 1. Fine-tuning a [Sentence Transformer](https://www.sbert.net) with contrastive learning.
39
+ 2. Training a classification head with features from the fine-tuned Sentence Transformer.
40
+
41
+ This model was trained within the context of a larger system for ABSA, which looks like so:
42
+
43
+ 1. Use a spaCy model to select possible aspect span candidates.
44
+ 2. Use a SetFit model to filter these possible aspect span candidates.
45
+ 3. **Use this SetFit model to classify the filtered aspect span candidates.**
46
+
47
+ ## Model Details
48
+
49
+ ### Model Description
50
+ - **Model Type:** SetFit
51
+ <!-- - **Sentence Transformer:** [Unknown](https://huggingface.co/unknown) -->
52
+ - **Classification head:** a [LogisticRegression](https://scikit-learn.org/stable/modules/generated/sklearn.linear_model.LogisticRegression.html) instance
53
+ - **spaCy Model:** id_core_news_trf
54
+ - **SetFitABSA Aspect Model:** [pupugu02/absa-setfit-resto-aspect](https://huggingface.co/pupugu02/absa-setfit-resto-aspect)
55
+ - **SetFitABSA Polarity Model:** [pupugu02/absa-setfit-resto-polarity](https://huggingface.co/pupugu02/absa-setfit-resto-polarity)
56
+ - **Maximum Sequence Length:** 8192 tokens
57
+ - **Number of Classes:** 3 classes
58
+ <!-- - **Training Dataset:** [Unknown](https://huggingface.co/datasets/unknown) -->
59
+ <!-- - **Language:** Unknown -->
60
+ <!-- - **License:** Unknown -->
61
+
62
+ ### Model Sources
63
+
64
+ - **Repository:** [SetFit on GitHub](https://github.com/huggingface/setfit)
65
+ - **Paper:** [Efficient Few-Shot Learning Without Prompts](https://arxiv.org/abs/2209.11055)
66
+ - **Blogpost:** [SetFit: Efficient Few-Shot Learning Without Prompts](https://huggingface.co/blog/setfit)
67
+
68
+ ### Model Labels
69
+ | Label | Examples |
70
+ |:--------|:-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
71
+ | positif | <ul><li>'time, selain tempat yang Sangat bersih:Mcd selalu jadi tempat ternyaman untuk me time, selain tempat yang Sangat bersih dan nyaman, mcdonals juga selalu menjaga kualitas makanan. Bagi saya mcd sangat affdorable dan worth it, selain itu paling digemari oleh kalangan anak muda dan anak anak sangat menyukai ayam nya.'</li><li>'bagus dan ada tempat buat bermain anak2:Makanan nya enak n harga nya juga murah.. View nya bagus dan ada tempat buat bermain anak2.. Naek beca ato perahu angsa..'</li><li>'produknya, memberikan pelayanan yang memuaskan,:McDonald’s adalah menjadi restoran cepat saji dengan pelayanan terbaik di dunia. Untuk mencapai visi ini, McDonald’s selalu menjamin mutu produk-produknya, memberikan pelayanan yang memuaskan, menawarkan kebersihan dan keamanan produk …'</li></ul> |
72
+ | negatif | <ul><li>"\nKopi jelly terasa agak 'cawerang:Gang drive-thru sangat sempit sehingga Anda harus ekstra hati-hati.\nLayanan yang pasti cepat dan berbagai pilihan pembayaran.\nKopi jelly terasa agak 'cawerang' tapi okelah. Mereka juga menambahkan segel plastik untuk mencegah tumpah. Pemikiran yang bagus."</li><li>'maap banget yaaaa pelayanan nya lama bgt:aduh maap banget yaaaa pelayanan nya lama bgt ga kaya gacoan2 yg lainn, dr smua gacoan yg pernah dine in cuma ini paling lama ,'</li><li>'suka terlamat dan pelayanannya kurang bagus..:Tempatnya bersih sejuk cocok buat makan sambil bersantai... Tetapi kalo kondisi ramai pesanan suka terlamat dan pelayanannya kurang bagus.. untuk kondisi sepi masih aman pelayanan bagus ramah..'</li></ul> |
73
+ | netral | <ul><li>'Banyak lalat. Rasanya biasa. Yg:Banyak lalat. Rasanya biasa. Yg lumayan sop iga bakar madu'</li><li>'Ada harga, ada rasa:Ada harga, ada rasa'</li><li>'D ini, tempat nya menjorok kedalam:Tiba di Bandung, kita mampir di restoran Mc D ini, tempat nya menjorok kedalam, tatanan design nya Mc D semua standard sesuai dengan kapasitas lahan nya. Disini memiliki tempat bermain anak-anak, dan untuk order mereka menyediakan mesin …'</li></ul> |
74
+
75
+ ## Uses
76
+
77
+ ### Direct Use for Inference
78
+
79
+ First install the SetFit library:
80
+
81
+ ```bash
82
+ pip install setfit
83
+ ```
84
+
85
+ Then you can load this model and run inference.
86
+
87
+ ```python
88
+ from setfit import AbsaModel
89
+
90
+ # Download from the 🤗 Hub
91
+ model = AbsaModel.from_pretrained(
92
+ "pupugu02/absa-setfit-resto-aspect",
93
+ "pupugu02/absa-setfit-resto-polarity",
94
+ )
95
+ # Run inference
96
+ preds = model("The food was great, but the venue is just way too busy.")
97
+ ```
98
+
99
+ <!--
100
+ ### Downstream Use
101
+
102
+ *List how someone could finetune this model on their own dataset.*
103
+ -->
104
+
105
+ <!--
106
+ ### Out-of-Scope Use
107
+
108
+ *List how the model may foreseeably be misused and address what users ought not to do with the model.*
109
+ -->
110
+
111
+ <!--
112
+ ## Bias, Risks and Limitations
113
+
114
+ *What are the known or foreseeable issues stemming from this model? You could also flag here known failure cases or weaknesses of the model.*
115
+ -->
116
+
117
+ <!--
118
+ ### Recommendations
119
+
120
+ *What are recommendations with respect to the foreseeable issues? For example, filtering explicit content.*
121
+ -->
122
+
123
+ ## Training Details
124
+
125
+ ### Training Set Metrics
126
+ | Training set | Min | Median | Max |
127
+ |:-------------|:----|:--------|:----|
128
+ | Word count | 3 | 28.0911 | 62 |
129
+
130
+ | Label | Training Sample Count |
131
+ |:--------|:----------------------|
132
+ | konflik | 0 |
133
+ | negatif | 15 |
134
+ | netral | 28 |
135
+ | positif | 363 |
136
+
137
+ ### Training Hyperparameters
138
+ - batch_size: (128, 128)
139
+ - num_epochs: (1, 1)
140
+ - max_steps: -1
141
+ - sampling_strategy: oversampling
142
+ - body_learning_rate: (2e-05, 1e-05)
143
+ - head_learning_rate: 0.01
144
+ - loss: CosineSimilarityLoss
145
+ - distance_metric: cosine_distance
146
+ - margin: 0.25
147
+ - end_to_end: False
148
+ - use_amp: True
149
+ - warmup_proportion: 0.1
150
+ - seed: 42
151
+ - eval_max_steps: -1
152
+ - load_best_model_at_end: False
153
+
154
+ ### Framework Versions
155
+ - Python: 3.10.12
156
+ - SetFit: 1.0.3
157
+ - Sentence Transformers: 3.0.0
158
+ - spaCy: 3.7.4
159
+ - Transformers: 4.36.2
160
+ - PyTorch: 2.3.0+cu121
161
+ - Datasets: 2.19.2
162
+ - Tokenizers: 0.15.2
163
+
164
+ ## Citation
165
+
166
+ ### BibTeX
167
+ ```bibtex
168
+ @article{https://doi.org/10.48550/arxiv.2209.11055,
169
+ doi = {10.48550/ARXIV.2209.11055},
170
+ url = {https://arxiv.org/abs/2209.11055},
171
+ author = {Tunstall, Lewis and Reimers, Nils and Jo, Unso Eun Seo and Bates, Luke and Korat, Daniel and Wasserblat, Moshe and Pereg, Oren},
172
+ keywords = {Computation and Language (cs.CL), FOS: Computer and information sciences, FOS: Computer and information sciences},
173
+ title = {Efficient Few-Shot Learning Without Prompts},
174
+ publisher = {arXiv},
175
+ year = {2022},
176
+ copyright = {Creative Commons Attribution 4.0 International}
177
+ }
178
+ ```
179
+
180
+ <!--
181
+ ## Glossary
182
+
183
+ *Clearly define terms in order to be accessible across audiences.*
184
+ -->
185
+
186
+ <!--
187
+ ## Model Card Authors
188
+
189
+ *Lists the people who create the model card, providing recognition and accountability for the detailed work that goes into its construction.*
190
+ -->
191
+
192
+ <!--
193
+ ## Model Card Contact
194
+
195
+ *Provides a way for people who have updates to the Model Card, suggestions, or questions, to contact the Model Card authors.*
196
+ -->
config.json ADDED
@@ -0,0 +1,28 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "_name_or_path": "firqaaa/indo-setfit-absa-bert-base-restaurants-polarity",
3
+ "architectures": [
4
+ "XLMRobertaModel"
5
+ ],
6
+ "attention_probs_dropout_prob": 0.1,
7
+ "bos_token_id": 0,
8
+ "classifier_dropout": null,
9
+ "eos_token_id": 2,
10
+ "hidden_act": "gelu",
11
+ "hidden_dropout_prob": 0.1,
12
+ "hidden_size": 1024,
13
+ "initializer_range": 0.02,
14
+ "intermediate_size": 4096,
15
+ "layer_norm_eps": 1e-05,
16
+ "max_position_embeddings": 8194,
17
+ "model_type": "xlm-roberta",
18
+ "num_attention_heads": 16,
19
+ "num_hidden_layers": 24,
20
+ "output_past": true,
21
+ "pad_token_id": 1,
22
+ "position_embedding_type": "absolute",
23
+ "torch_dtype": "float32",
24
+ "transformers_version": "4.36.2",
25
+ "type_vocab_size": 1,
26
+ "use_cache": true,
27
+ "vocab_size": 250002
28
+ }
config_sentence_transformers.json ADDED
@@ -0,0 +1,10 @@
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "__version__": {
3
+ "sentence_transformers": "2.2.2",
4
+ "transformers": "4.33.0",
5
+ "pytorch": "2.1.2+cu121"
6
+ },
7
+ "prompts": {},
8
+ "default_prompt_name": null,
9
+ "similarity_fn_name": null
10
+ }
config_setfit.json ADDED
@@ -0,0 +1,11 @@
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "labels": [
3
+ "konflik",
4
+ "negatif",
5
+ "netral",
6
+ "positif"
7
+ ],
8
+ "normalize_embeddings": false,
9
+ "span_context": 3,
10
+ "spacy_model": "id_core_news_trf"
11
+ }
model.safetensors ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:7f63dee23a0bf95fda64e8d449f3b986d248f47902b6bd425fe8c3c8a990cf1a
3
+ size 2271064456
model_head.pkl ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:b969a8393f074faca1b3632bbec9d7cc8f87bdee2a40bd4058c693cbcf86b58c
3
+ size 33735
modules.json ADDED
@@ -0,0 +1,20 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ [
2
+ {
3
+ "idx": 0,
4
+ "name": "0",
5
+ "path": "",
6
+ "type": "sentence_transformers.models.Transformer"
7
+ },
8
+ {
9
+ "idx": 1,
10
+ "name": "1",
11
+ "path": "1_Pooling",
12
+ "type": "sentence_transformers.models.Pooling"
13
+ },
14
+ {
15
+ "idx": 2,
16
+ "name": "2",
17
+ "path": "2_Normalize",
18
+ "type": "sentence_transformers.models.Normalize"
19
+ }
20
+ ]
sentence_bert_config.json ADDED
@@ -0,0 +1,4 @@
 
 
 
 
 
1
+ {
2
+ "max_seq_length": 8192,
3
+ "do_lower_case": false
4
+ }
sentencepiece.bpe.model ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:cfc8146abe2a0488e9e2a0c56de7952f7c11ab059eca145a0a727afce0db2865
3
+ size 5069051
special_tokens_map.json ADDED
@@ -0,0 +1,51 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "bos_token": {
3
+ "content": "<s>",
4
+ "lstrip": false,
5
+ "normalized": false,
6
+ "rstrip": false,
7
+ "single_word": false
8
+ },
9
+ "cls_token": {
10
+ "content": "<s>",
11
+ "lstrip": false,
12
+ "normalized": false,
13
+ "rstrip": false,
14
+ "single_word": false
15
+ },
16
+ "eos_token": {
17
+ "content": "</s>",
18
+ "lstrip": false,
19
+ "normalized": false,
20
+ "rstrip": false,
21
+ "single_word": false
22
+ },
23
+ "mask_token": {
24
+ "content": "<mask>",
25
+ "lstrip": true,
26
+ "normalized": false,
27
+ "rstrip": false,
28
+ "single_word": false
29
+ },
30
+ "pad_token": {
31
+ "content": "<pad>",
32
+ "lstrip": false,
33
+ "normalized": false,
34
+ "rstrip": false,
35
+ "single_word": false
36
+ },
37
+ "sep_token": {
38
+ "content": "</s>",
39
+ "lstrip": false,
40
+ "normalized": false,
41
+ "rstrip": false,
42
+ "single_word": false
43
+ },
44
+ "unk_token": {
45
+ "content": "<unk>",
46
+ "lstrip": false,
47
+ "normalized": false,
48
+ "rstrip": false,
49
+ "single_word": false
50
+ }
51
+ }
tokenizer.json ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:1af481bd08ed9347cf9d3d07c24e5de75a10983819de076436400609e6705686
3
+ size 17083075
tokenizer_config.json ADDED
@@ -0,0 +1,62 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "added_tokens_decoder": {
3
+ "0": {
4
+ "content": "<s>",
5
+ "lstrip": false,
6
+ "normalized": false,
7
+ "rstrip": false,
8
+ "single_word": false,
9
+ "special": true
10
+ },
11
+ "1": {
12
+ "content": "<pad>",
13
+ "lstrip": false,
14
+ "normalized": false,
15
+ "rstrip": false,
16
+ "single_word": false,
17
+ "special": true
18
+ },
19
+ "2": {
20
+ "content": "</s>",
21
+ "lstrip": false,
22
+ "normalized": false,
23
+ "rstrip": false,
24
+ "single_word": false,
25
+ "special": true
26
+ },
27
+ "3": {
28
+ "content": "<unk>",
29
+ "lstrip": false,
30
+ "normalized": false,
31
+ "rstrip": false,
32
+ "single_word": false,
33
+ "special": true
34
+ },
35
+ "250001": {
36
+ "content": "<mask>",
37
+ "lstrip": true,
38
+ "normalized": false,
39
+ "rstrip": false,
40
+ "single_word": false,
41
+ "special": true
42
+ }
43
+ },
44
+ "bos_token": "<s>",
45
+ "clean_up_tokenization_spaces": true,
46
+ "cls_token": "<s>",
47
+ "eos_token": "</s>",
48
+ "mask_token": "<mask>",
49
+ "max_length": 8192,
50
+ "model_max_length": 8192,
51
+ "pad_to_multiple_of": null,
52
+ "pad_token": "<pad>",
53
+ "pad_token_type_id": 0,
54
+ "padding_side": "right",
55
+ "sep_token": "</s>",
56
+ "sp_model_kwargs": {},
57
+ "stride": 0,
58
+ "tokenizer_class": "XLMRobertaTokenizer",
59
+ "truncation_side": "right",
60
+ "truncation_strategy": "longest_first",
61
+ "unk_token": "<unk>"
62
+ }