ptaylour's picture
πŸš€ tweaked back but still trained longer
fb01a57
{
"policy_class": {
":type:": "<class 'abc.ABCMeta'>",
":serialized:": "gASVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==",
"__module__": "stable_baselines3.common.policies",
"__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param sde_net_arch: Network architecture for extracting features\n when using gSDE. If None, the latent features from the policy will be used.\n Pass an empty list to use the states as features.\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ",
"__init__": "<function ActorCriticPolicy.__init__ at 0x7faba0117c20>",
"_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x7faba0117cb0>",
"reset_noise": "<function ActorCriticPolicy.reset_noise at 0x7faba0117d40>",
"_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x7faba0117dd0>",
"_build": "<function ActorCriticPolicy._build at 0x7faba0117e60>",
"forward": "<function ActorCriticPolicy.forward at 0x7faba0117ef0>",
"_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x7faba0117f80>",
"_predict": "<function ActorCriticPolicy._predict at 0x7faba011f050>",
"evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x7faba011f0e0>",
"get_distribution": "<function ActorCriticPolicy.get_distribution at 0x7faba011f170>",
"predict_values": "<function ActorCriticPolicy.predict_values at 0x7faba011f200>",
"__abstractmethods__": "frozenset()",
"_abc_impl": "<_abc_data object at 0x7faba00ed600>"
},
"verbose": 1,
"policy_kwargs": {},
"observation_space": {
":type:": "<class 'gym.spaces.box.Box'>",
":serialized:": "gASVwwEAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLCIWUjANsb3eUjBVudW1weS5jb3JlLm11bHRpYXJyYXmUjAxfcmVjb25zdHJ1Y3SUk5RoBowHbmRhcnJheZSTlEsAhZRDAWKUh5RSlChLAUsIhZRoColDIAAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/lHSUYowEaGlnaJRoEmgUSwCFlGgWh5RSlChLAUsIhZRoColDIAAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/lHSUYowNYm91bmRlZF9iZWxvd5RoEmgUSwCFlGgWh5RSlChLAUsIhZRoB4wCYjGUiYiHlFKUKEsDjAF8lE5OTkr/////Sv////9LAHSUYolDCAAAAAAAAAAAlHSUYowNYm91bmRlZF9hYm92ZZRoEmgUSwCFlGgWh5RSlChLAUsIhZRoKolDCAAAAAAAAAAAlHSUYowKX25wX3JhbmRvbZROdWIu",
"dtype": "float32",
"_shape": [
8
],
"low": "[-inf -inf -inf -inf -inf -inf -inf -inf]",
"high": "[inf inf inf inf inf inf inf inf]",
"bounded_below": "[False False False False False False False False]",
"bounded_above": "[False False False False False False False False]",
"_np_random": null
},
"action_space": {
":type:": "<class 'gym.spaces.discrete.Discrete'>",
":serialized:": "gASVggAAAAAAAACME2d5bS5zcGFjZXMuZGlzY3JldGWUjAhEaXNjcmV0ZZSTlCmBlH2UKIwBbpRLBIwGX3NoYXBllCmMBWR0eXBllIwFbnVtcHmUaAeTlIwCaTiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYowKX25wX3JhbmRvbZROdWIu",
"n": 4,
"_shape": [],
"dtype": "int64",
"_np_random": null
},
"n_envs": 16,
"num_timesteps": 1015808,
"_total_timesteps": 1000000,
"_num_timesteps_at_start": 0,
"seed": null,
"action_noise": null,
"start_time": 1653172968.0711062,
"learning_rate": 0.0003,
"tensorboard_log": null,
"lr_schedule": {
":type:": "<class 'function'>",
":serialized:": "gASVvwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwNX2J1aWx0aW5fdHlwZZSTlIwKTGFtYmRhVHlwZZSFlFKUKGgCjAhDb2RlVHlwZZSFlFKUKEsBSwBLAUsBSxNDBIgAUwCUToWUKYwBX5SFlIxIL3Vzci9sb2NhbC9saWIvcHl0aG9uMy43L2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lIwEZnVuY5RLgEMCAAGUjAN2YWyUhZQpdJRSlH2UKIwLX19wYWNrYWdlX1+UjBhzdGFibGVfYmFzZWxpbmVzMy5jb21tb26UjAhfX25hbWVfX5SMHnN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi51dGlsc5SMCF9fZmlsZV9flIxIL3Vzci9sb2NhbC9saWIvcHl0aG9uMy43L2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaCB9lH2UKGgXaA6MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgYjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz8zqSowVTJhhZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"
},
"_last_obs": {
":type:": "<class 'numpy.ndarray'>",
":serialized:": "gASVjQIAAAAAAACMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMDF9yZWNvbnN0cnVjdJSTlIwFbnVtcHmUjAduZGFycmF5lJOUSwCFlEMBYpSHlFKUKEsBSxBLCIaUaAOMBWR0eXBllJOUjAJmNJSJiIeUUpQoSwOMATyUTk5OSv////9K/////0sAdJRiiUIAAgAAJmC+PfEyvD9mdfE+hOCmvTlOvD0uZoU+AAAAAAAAAADNclG8iByxP2IV177fG9y+e5sQPOwVtDwAAAAAAAAAAIAYWT00RJe8Y+r/vL0xiruxRwg+M5JbPAAAgD8AAIA/On0NPs9RUD9c0MY9e47UvnvLCz4PIia9AAAAAAAAAACGCAi+GdqCP4XaKT06pMS+iDRtvoFxAz4AAAAAAAAAAK0UcL6nITY/qsawPil5ob5I3/e9Pjp9PgAAAAAAAAAAZk6Gu3Z8SD+oNYS8hVSwvthyw7uYQGw9AAAAAAAAAADmmH49qxG4PhC+4jx1Mqa+rzI1PQithL0AAAAAAAAAAABGeD0KHa8/UyhXPv6wwb6BRto9Ln22PQAAAAAAAAAAmoRiPnxmlj8D6Ac/jdr0vinCxD7PprQ+AAAAAAAAAAAmDkO++9IDPyW6UT7QA42+jH22vPoKrLwAAAAAAAAAAM2kh7uF0I+752KFO169gzxVvc48luBhvQAAgD8AAIA/c2uXPV/NOj7+5OO6DOxsvvxLrT1FDai8AAAAAAAAAACaOrW9+ELnPjqJCz7Z66q+Jn1jPcbzhTwAAAAAAAAAAA0AUr5iOYk/jTnuvsR8kL4pwW2+2vt+vgAAAAAAAAAATYslPVfnvj8l/nA+9WW/PONniD1nQAo+AAAAAAAAAACUdJRiLg=="
},
"_last_episode_starts": {
":type:": "<class 'numpy.ndarray'>",
":serialized:": "gASVmAAAAAAAAACMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMDF9yZWNvbnN0cnVjdJSTlIwFbnVtcHmUjAduZGFycmF5lJOUSwCFlEMBYpSHlFKUKEsBSxCFlGgDjAVkdHlwZZSTlIwCYjGUiYiHlFKUKEsDjAF8lE5OTkr/////Sv////9LAHSUYolDEAAAAAAAAAAAAAAAAAAAAACUdJRiLg=="
},
"_last_original_obs": null,
"_episode_num": 0,
"use_sde": false,
"sde_sample_freq": -1,
"_current_progress_remaining": -0.015808000000000044,
"ep_info_buffer": {
":type:": "<class 'collections.deque'>",
":serialized:": "gASVbhAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMInQ35Z0Y4cUCUhpRSlIwBbJRNDgGMAXSUR0CsKzafra/RdX2UKGgGaAloD0MIuHTMeQYjc0CUhpRSlGgVS+toFkdArCtufRNRFnV9lChoBmgJaA9DCAVrnE3HWG5AlIaUUpRoFUvxaBZHQKwr/iWE9Md1fZQoaAZoCWgPQwjvqZz21OByQJSGlFKUaBVNBQFoFkdArCv1zjm0V3V9lChoBmgJaA9DCLbWFwmtWHJAlIaUUpRoFU0aAWgWR0CsLB2wFC9idX2UKGgGaAloD0MIU1ipoOIJcECUhpRSlGgVTR0BaBZHQKwsUq6vq1R1fZQoaAZoCWgPQwjNPSR8b71xQJSGlFKUaBVNnQFoFkdArCzzho/RmnV9lChoBmgJaA9DCAJGlzcH529AlIaUUpRoFUv+aBZHQKwtMH4XXRR1fZQoaAZoCWgPQwgjv36IjR5wQJSGlFKUaBVNHAFoFkdArC1POhTOxHV9lChoBmgJaA9DCEG7Q4oBhEVAlIaUUpRoFUvhaBZHQKwuWHwgDA91fZQoaAZoCWgPQwgxX16APZtxQJSGlFKUaBVNCAFoFkdArC57sY2sJnV9lChoBmgJaA9DCK9EoPoHQXFAlIaUUpRoFU0VAWgWR0CsLqsM7U5NdX2UKGgGaAloD0MIIQIOocrJbkCUhpRSlGgVTQsBaBZHQKwuqsRxtHh1fZQoaAZoCWgPQwgPXyaKECRxQJSGlFKUaBVL+GgWR0CsLuMrNGExdX2UKGgGaAloD0MIA1yQLYvzcUCUhpRSlGgVTRMBaBZHQKwvGQyRB/t1fZQoaAZoCWgPQwjzdoTTwlFwQJSGlFKUaBVNegJoFkdArC9lDpkf93V9lChoBmgJaA9DCHqLh/cc+W5AlIaUUpRoFU1FAWgWR0CsL9pAUtZndX2UKGgGaAloD0MI2a873XkJckCUhpRSlGgVTSoBaBZHQKwv4oZQ53l1fZQoaAZoCWgPQwhFYoIaPnlvQJSGlFKUaBVNAwFoFkdArDAAte2NN3V9lChoBmgJaA9DCBQ/xtw1HXBAlIaUUpRoFU0hAWgWR0CsMFXUQTVUdX2UKGgGaAloD0MI4uXpXBGacECUhpRSlGgVTScBaBZHQKwwX+PRzBB1fZQoaAZoCWgPQwh8mShCasduQJSGlFKUaBVL+mgWR0CsMLT4+KTCdX2UKGgGaAloD0MIL75ojxddbkCUhpRSlGgVTUUBaBZHQKwxEFXaJyh1fZQoaAZoCWgPQwgG1QYnIu9uQJSGlFKUaBVNAgFoFkdArDEkS7GvOnV9lChoBmgJaA9DCIRkARP4ZXJAlIaUUpRoFU0XAWgWR0CsMUryMDOkdX2UKGgGaAloD0MIgGCOHj+vcUCUhpRSlGgVS/toFkdArDI3yf+S83V9lChoBmgJaA9DCH+l8+FZHnFAlIaUUpRoFU0VAWgWR0CsMnbX6InCdX2UKGgGaAloD0MIryKjAxIrckCUhpRSlGgVTR8BaBZHQKwyftu1ndx1fZQoaAZoCWgPQwisOxbbJI5vQJSGlFKUaBVNCwFoFkdArDJ6zJIUanV9lChoBmgJaA9DCDxNZrxtv3BAlIaUUpRoFU0oAWgWR0CsMxK2SdOJdX2UKGgGaAloD0MI/8wgPrDsbECUhpRSlGgVTSgBaBZHQKwzlvPTodN1fZQoaAZoCWgPQwj0GrtE9S9xQJSGlFKUaBVNRwFoFkdArDPFGViWmnV9lChoBmgJaA9DCJiFdk4z7nBAlIaUUpRoFU0MAWgWR0CsM8OQIUrTdX2UKGgGaAloD0MIjWMkewQebkCUhpRSlGgVTToBaBZHQKw0Vj81n/V1fZQoaAZoCWgPQwgnEeFfhIVtQJSGlFKUaBVNEwFoFkdArDS4USIxg3V9lChoBmgJaA9DCMBeYcH9Lm9AlIaUUpRoFU1NAWgWR0CsNK+sHSncdX2UKGgGaAloD0MIZ0gVxWtZc0CUhpRSlGgVTT8BaBZHQKw07kWAPNF1fZQoaAZoCWgPQwjW/WMhut5wQJSGlFKUaBVNCwFoFkdArDUDlRxcV3V9lChoBmgJaA9DCM9LxcY8pG5AlIaUUpRoFU1MAWgWR0CsNSXAEdNndX2UKGgGaAloD0MIMNrjhXRJckCUhpRSlGgVTScBaBZHQKw1oPq9oOB1fZQoaAZoCWgPQwjnHDwTWotxQJSGlFKUaBVNNgFoFkdArD8mv2Xb/XV9lChoBmgJaA9DCOf9f5zwW3BAlIaUUpRoFU0NAWgWR0CsP6KkEcKgdX2UKGgGaAloD0MIlzszwfCvcECUhpRSlGgVTQ8BaBZHQKw/4zi0fHR1fZQoaAZoCWgPQwjH1F3ZBZdvQJSGlFKUaBVNEQFoFkdArD/lxCIDYHV9lChoBmgJaA9DCMtIvady93JAlIaUUpRoFUv3aBZHQKxAH9lVcUx1fZQoaAZoCWgPQwjshQK2gyVzQJSGlFKUaBVNIQFoFkdArEAWGmDUVnV9lChoBmgJaA9DCArYDkbs5W5AlIaUUpRoFUv5aBZHQKxAtWeYlY51fZQoaAZoCWgPQwgKZkzB2gx0QJSGlFKUaBVL5WgWR0CsQO748EFGdX2UKGgGaAloD0MI4jsx68U7ckCUhpRSlGgVTTIBaBZHQKxBiEOiFkB1fZQoaAZoCWgPQwjHoX4X9m9xQJSGlFKUaBVNEQFoFkdArEHyXrt3OnV9lChoBmgJaA9DCErvG1+7sHFAlIaUUpRoFU0DAWgWR0CsQg5g5R0mdX2UKGgGaAloD0MIA30iTxLGckCUhpRSlGgVTWIBaBZHQKxCIImgJ1J1fZQoaAZoCWgPQwgSiNf1C6BuQJSGlFKUaBVNDgFoFkdArEJkl5WzW3V9lChoBmgJaA9DCDeq04Hsw3JAlIaUUpRoFUv2aBZHQKxCk84gieN1fZQoaAZoCWgPQwjqspjYvGxyQJSGlFKUaBVNPAFoFkdArEKW+/QBxXV9lChoBmgJaA9DCCv2l92Tc3BAlIaUUpRoFU0cAWgWR0CsQyw3HaN/dX2UKGgGaAloD0MIZK93fzyhb0CUhpRSlGgVTV0BaBZHQKxDUJtzjm11fZQoaAZoCWgPQwhtWFNZVDxxQJSGlFKUaBVNHQFoFkdArEP8N6PbPHV9lChoBmgJaA9DCE/ltKekKnJAlIaUUpRoFU0TAWgWR0CsRB2vbGm2dX2UKGgGaAloD0MIm1q21peCcUCUhpRSlGgVTRYBaBZHQKxEIiosI3R1fZQoaAZoCWgPQwgQ7PgvEBFwQJSGlFKUaBVNRQFoFkdArERQG+sYEXV9lChoBmgJaA9DCBBYObTIWW9AlIaUUpRoFUv4aBZHQKxEa+MZP2x1fZQoaAZoCWgPQwh0forjwO9xQJSGlFKUaBVNRgFoFkdArESa4MF2V3V9lChoBmgJaA9DCNpYiXmWgHBAlIaUUpRoFU0aAWgWR0CsRRWWY4Q0dX2UKGgGaAloD0MI+YOB557FcUCUhpRSlGgVTQsBaBZHQKxFeaOPvKF1fZQoaAZoCWgPQwj+Rjtu+KZxQJSGlFKUaBVL+2gWR0CsRZ8y31BddX2UKGgGaAloD0MI5CzsaccucUCUhpRSlGgVS/hoFkdArEWscS5AhXV9lChoBmgJaA9DCI7O+SmOu25AlIaUUpRoFUv+aBZHQKxF0ntOVPh1fZQoaAZoCWgPQwjqWRDKe8NyQJSGlFKUaBVNFAFoFkdArEZdObiIcnV9lChoBmgJaA9DCLtDigESSHFAlIaUUpRoFUv4aBZHQKxG6w/PgNx1fZQoaAZoCWgPQwjo+GhxxvZwQJSGlFKUaBVNEAFoFkdArEconWrfcnV9lChoBmgJaA9DCJ5dvvXh1XBAlIaUUpRoFU1qAWgWR0CsSAQ5eZ5SdX2UKGgGaAloD0MICW8PQkC4a0CUhpRSlGgVTQcBaBZHQKxIIHrQgLZ1fZQoaAZoCWgPQwgvFLAdjBJxQJSGlFKUaBVNFgFoFkdArEg4exOclXV9lChoBmgJaA9DCCGU93E0JnFAlIaUUpRoFU0SAWgWR0CsSIGMGX5WdX2UKGgGaAloD0MI+RQA4xmbcECUhpRSlGgVTRUBaBZHQKxI8V8kUsZ1fZQoaAZoCWgPQwgeF9UiYq9wQJSGlFKUaBVL/WgWR0CsSSylN1yOdX2UKGgGaAloD0MIfNXKhF9rb0CUhpRSlGgVTbABaBZHQKxJP6ol2Nh1fZQoaAZoCWgPQwjB4nDm189uQJSGlFKUaBVNQwFoFkdArEl7iZOSGXV9lChoBmgJaA9DCEhQ/Bjzm29AlIaUUpRoFU1cAWgWR0CsSZAzxgAqdX2UKGgGaAloD0MIGlBvRk1pbkCUhpRSlGgVTQMBaBZHQKxJqfpUxVR1fZQoaAZoCWgPQwichxOYDltzQJSGlFKUaBVNAwFoFkdArEn4yIpH7XV9lChoBmgJaA9DCOT1YFI8cHBAlIaUUpRoFU0SAWgWR0CsSfyWiUPhdX2UKGgGaAloD0MIRkQxeQP0b0CUhpRSlGgVTTsBaBZHQKxKhnwob4t1fZQoaAZoCWgPQwjlZOJWQStyQJSGlFKUaBVNFgFoFkdArEqsyBTXKHV9lChoBmgJaA9DCNl5G5udXW5AlIaUUpRoFU0nAWgWR0CsS2KaG5+ZdX2UKGgGaAloD0MIoIfaNsx2ckCUhpRSlGgVTTABaBZHQKxLvWMju8d1fZQoaAZoCWgPQwgGMGXgQO1yQJSGlFKUaBVNEwFoFkdArEwQna37UHV9lChoBmgJaA9DCDlf7L24aHFAlIaUUpRoFU0dAWgWR0CsTG0cfeUIdX2UKGgGaAloD0MI0QfL2NB4bkCUhpRSlGgVTS0BaBZHQKxMmlsP8Q91fZQoaAZoCWgPQwijIHh8eyFsQJSGlFKUaBVNBAFoFkdArEzj52yLRHV9lChoBmgJaA9DCIWWdf9YknFAlIaUUpRoFU0yAWgWR0CsTQthmXgMdX2UKGgGaAloD0MIhzQqcDJcc0CUhpRSlGgVS+loFkdArE1ZaX8fm3V9lChoBmgJaA9DCGX9ZmK6O3BAlIaUUpRoFU0KAWgWR0CsTV1VPva2dX2UKGgGaAloD0MIyeTUznDdcUCUhpRSlGgVTSsBaBZHQKxNwUTtb9t1fZQoaAZoCWgPQwj1DrdDQ2lyQJSGlFKUaBVNSwFoFkdArE3BU1hsqXV9lChoBmgJaA9DCF6CUx9IDXFAlIaUUpRoFU1AAWgWR0CsTdOOKfnPdX2UKGgGaAloD0MISYPb2oLZckCUhpRSlGgVTTABaBZHQKxN+62fChx1fZQoaAZoCWgPQwjpmzQNytlyQJSGlFKUaBVL6WgWR0CsTfK3d9DydX2UKGgGaAloD0MIqS7gZUYGckCUhpRSlGgVTScBaBZHQKxOJV3ljmV1ZS4="
},
"ep_success_buffer": {
":type:": "<class 'collections.deque'>",
":serialized:": "gASVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="
},
"_n_updates": 276,
"n_steps": 1024,
"gamma": 0.999,
"gae_lambda": 0.98,
"ent_coef": 0.01,
"vf_coef": 0.5,
"max_grad_norm": 0.5,
"batch_size": 64,
"n_epochs": 4,
"clip_range": {
":type:": "<class 'function'>",
":serialized:": "gASVvwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwNX2J1aWx0aW5fdHlwZZSTlIwKTGFtYmRhVHlwZZSFlFKUKGgCjAhDb2RlVHlwZZSFlFKUKEsBSwBLAUsBSxNDBIgAUwCUToWUKYwBX5SFlIxIL3Vzci9sb2NhbC9saWIvcHl0aG9uMy43L2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lIwEZnVuY5RLgEMCAAGUjAN2YWyUhZQpdJRSlH2UKIwLX19wYWNrYWdlX1+UjBhzdGFibGVfYmFzZWxpbmVzMy5jb21tb26UjAhfX25hbWVfX5SMHnN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi51dGlsc5SMCF9fZmlsZV9flIxIL3Vzci9sb2NhbC9saWIvcHl0aG9uMy43L2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaCB9lH2UKGgXaA6MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgYjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz/JmZmZmZmahZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"
},
"clip_range_vf": null,
"normalize_advantage": true,
"target_kl": null
}