Upload folder using huggingface_hub
Browse files- model.py +375 -0
- parallel_scan.py +226 -0
model.py
ADDED
@@ -0,0 +1,375 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
"""Simple, minimal implementation of Mamba in one file of PyTorch.
|
2 |
+
|
3 |
+
Suggest reading the following before/while reading the code:
|
4 |
+
[1] Mamba: Linear-Time Sequence Modeling with Selective State Spaces (Albert Gu and Tri Dao)
|
5 |
+
https://arxiv.org/abs/2312.00752
|
6 |
+
[2] The Annotated S4 (Sasha Rush and Sidd Karamcheti)
|
7 |
+
https://srush.github.io/annotated-s4
|
8 |
+
|
9 |
+
Glossary:
|
10 |
+
b: batch size (`B` in Mamba paper [1] Algorithm 2)
|
11 |
+
l: sequence length (`L` in [1] Algorithm 2)
|
12 |
+
d or d_model: hidden dim
|
13 |
+
n or d_state: latent state dim (`N` in [1] Algorithm 2)
|
14 |
+
expand: expansion factor (`E` in [1] Section 3.4)
|
15 |
+
d_in or d_inner: d * expand (`D` in [1] Algorithm 2)
|
16 |
+
A, B, C, D: state space parameters (See any state space representation formula)
|
17 |
+
(B, C are input-dependent (aka selective, a key innovation in Mamba); A, D are not)
|
18 |
+
Δ or delta: input-dependent step size
|
19 |
+
dt_rank: rank of Δ (See [1] Section 3.6 "Parameterization of ∆")
|
20 |
+
|
21 |
+
"""
|
22 |
+
from __future__ import annotations
|
23 |
+
import math
|
24 |
+
import json
|
25 |
+
import torch
|
26 |
+
import torch.nn as nn
|
27 |
+
import torch.nn.functional as F
|
28 |
+
from dataclasses import dataclass
|
29 |
+
from typing import Union
|
30 |
+
from einops import rearrange, repeat, einsum
|
31 |
+
from parallel_scan import pscan
|
32 |
+
|
33 |
+
|
34 |
+
@dataclass
|
35 |
+
class ModelArgs:
|
36 |
+
d_model: int
|
37 |
+
n_layer: int
|
38 |
+
vocab_size: int
|
39 |
+
d_state: int = 16
|
40 |
+
expand: int = 2
|
41 |
+
dt_rank: Union[int, str] = 'auto'
|
42 |
+
d_conv: int = 4
|
43 |
+
pad_vocab_size_multiple: int = 8
|
44 |
+
conv_bias: bool = True
|
45 |
+
bias: bool = False
|
46 |
+
|
47 |
+
def __post_init__(self):
|
48 |
+
self.d_inner = int(self.expand * self.d_model)
|
49 |
+
|
50 |
+
if self.dt_rank == 'auto':
|
51 |
+
self.dt_rank = math.ceil(self.d_model / 16)
|
52 |
+
|
53 |
+
if self.vocab_size % self.pad_vocab_size_multiple != 0:
|
54 |
+
self.vocab_size += (self.pad_vocab_size_multiple
|
55 |
+
- self.vocab_size % self.pad_vocab_size_multiple)
|
56 |
+
|
57 |
+
|
58 |
+
class Mamba(nn.Module):
|
59 |
+
def __init__(self, args: ModelArgs):
|
60 |
+
"""Full Mamba model."""
|
61 |
+
super().__init__()
|
62 |
+
self.args = args
|
63 |
+
|
64 |
+
self.embedding = nn.Embedding(args.vocab_size, args.d_model)
|
65 |
+
self.layers = nn.ModuleList([ResidualBlock(args) for _ in range(args.n_layer)])
|
66 |
+
self.norm_f = RMSNorm(args.d_model)
|
67 |
+
|
68 |
+
self.lm_head = nn.Linear(args.d_model, args.vocab_size, bias=False)
|
69 |
+
self.lm_head.weight = self.embedding.weight # Tie output projection to embedding weights.
|
70 |
+
# See "Weight Tying" paper
|
71 |
+
|
72 |
+
|
73 |
+
def forward(self, input_ids):
|
74 |
+
"""
|
75 |
+
Args:
|
76 |
+
input_ids (long tensor): shape (b, l) (See Glossary at top for definitions of b, l, d_in, n...)
|
77 |
+
|
78 |
+
Returns:
|
79 |
+
logits: shape (b, l, vocab_size)
|
80 |
+
|
81 |
+
Official Implementation:
|
82 |
+
class MambaLMHeadModel, https://github.com/state-spaces/mamba/blob/main/mamba_ssm/models/mixer_seq_simple.py#L173
|
83 |
+
|
84 |
+
"""
|
85 |
+
x = self.embedding(input_ids)
|
86 |
+
|
87 |
+
for layer in self.layers:
|
88 |
+
x = layer(x)
|
89 |
+
|
90 |
+
x = self.norm_f(x)
|
91 |
+
logits = self.lm_head(x)
|
92 |
+
|
93 |
+
return logits
|
94 |
+
|
95 |
+
|
96 |
+
@staticmethod
|
97 |
+
def from_config(pretrained_model_name: str):
|
98 |
+
from transformers.utils import CONFIG_NAME
|
99 |
+
from transformers.utils.hub import cached_file
|
100 |
+
|
101 |
+
def load_config_hf(model_name):
|
102 |
+
resolved_archive_file = cached_file(model_name, CONFIG_NAME,
|
103 |
+
_raise_exceptions_for_missing_entries=False)
|
104 |
+
return json.load(open(resolved_archive_file))
|
105 |
+
config_data = load_config_hf(pretrained_model_name)
|
106 |
+
args = ModelArgs(
|
107 |
+
d_model=config_data['d_model'],
|
108 |
+
n_layer=config_data['n_layer'],
|
109 |
+
vocab_size=config_data['vocab_size']
|
110 |
+
)
|
111 |
+
model = Mamba(args)
|
112 |
+
return model
|
113 |
+
|
114 |
+
|
115 |
+
@staticmethod
|
116 |
+
def from_pretrained(pretrained_model_name: str):
|
117 |
+
"""Load pretrained weights from HuggingFace into model.
|
118 |
+
|
119 |
+
Args:
|
120 |
+
pretrained_model_name: One of
|
121 |
+
* 'state-spaces/mamba-2.8b-slimpj'
|
122 |
+
* 'state-spaces/mamba-2.8b'
|
123 |
+
* 'state-spaces/mamba-1.4b'
|
124 |
+
* 'state-spaces/mamba-790m'
|
125 |
+
* 'state-spaces/mamba-370m'
|
126 |
+
* 'state-spaces/mamba-130m'
|
127 |
+
|
128 |
+
Returns:
|
129 |
+
model: Mamba model with weights loaded
|
130 |
+
|
131 |
+
"""
|
132 |
+
from transformers.utils import WEIGHTS_NAME, CONFIG_NAME
|
133 |
+
from transformers.utils.hub import cached_file
|
134 |
+
|
135 |
+
def load_config_hf(model_name):
|
136 |
+
resolved_archive_file = cached_file(model_name, CONFIG_NAME,
|
137 |
+
_raise_exceptions_for_missing_entries=False)
|
138 |
+
return json.load(open(resolved_archive_file))
|
139 |
+
|
140 |
+
|
141 |
+
def load_state_dict_hf(model_name, device=None, dtype=None):
|
142 |
+
resolved_archive_file = cached_file(model_name, WEIGHTS_NAME,
|
143 |
+
_raise_exceptions_for_missing_entries=False)
|
144 |
+
return torch.load(resolved_archive_file, weights_only=True, map_location='cpu', mmap=True)
|
145 |
+
|
146 |
+
config_data = load_config_hf(pretrained_model_name)
|
147 |
+
args = ModelArgs(
|
148 |
+
d_model=config_data['d_model'],
|
149 |
+
n_layer=config_data['n_layer'],
|
150 |
+
vocab_size=config_data['vocab_size']
|
151 |
+
)
|
152 |
+
model = Mamba(args)
|
153 |
+
|
154 |
+
state_dict = load_state_dict_hf(pretrained_model_name)
|
155 |
+
new_state_dict = {}
|
156 |
+
for key in state_dict:
|
157 |
+
new_key = key.replace('backbone.', '')
|
158 |
+
new_state_dict[new_key] = state_dict[key]
|
159 |
+
model.load_state_dict(new_state_dict)
|
160 |
+
|
161 |
+
return model
|
162 |
+
|
163 |
+
|
164 |
+
class ResidualBlock(nn.Module):
|
165 |
+
def __init__(self, args: ModelArgs):
|
166 |
+
"""Simple block wrapping Mamba block with normalization and residual connection."""
|
167 |
+
super().__init__()
|
168 |
+
self.args = args
|
169 |
+
self.mixer = MambaBlock(args)
|
170 |
+
self.norm = RMSNorm(args.d_model)
|
171 |
+
|
172 |
+
|
173 |
+
def forward(self, x):
|
174 |
+
"""
|
175 |
+
Args:
|
176 |
+
x: shape (b, l, d) (See Glossary at top for definitions of b, l, d_in, n...)
|
177 |
+
|
178 |
+
Returns:
|
179 |
+
output: shape (b, l, d)
|
180 |
+
|
181 |
+
Official Implementation:
|
182 |
+
Block.forward(), https://github.com/state-spaces/mamba/blob/main/mamba_ssm/modules/mamba_simple.py#L297
|
183 |
+
|
184 |
+
Note: the official repo chains residual blocks that look like
|
185 |
+
[Add -> Norm -> Mamba] -> [Add -> Norm -> Mamba] -> [Add -> Norm -> Mamba] -> ...
|
186 |
+
where the first Add is a no-op. This is purely for performance reasons as this
|
187 |
+
allows them to fuse the Add->Norm.
|
188 |
+
|
189 |
+
We instead implement our blocks as the more familiar, simpler, and numerically equivalent
|
190 |
+
[Norm -> Mamba -> Add] -> [Norm -> Mamba -> Add] -> [Norm -> Mamba -> Add] -> ....
|
191 |
+
|
192 |
+
"""
|
193 |
+
output = self.mixer(self.norm(x)) + x
|
194 |
+
|
195 |
+
return output
|
196 |
+
|
197 |
+
|
198 |
+
class MambaBlock(nn.Module):
|
199 |
+
def __init__(self, args: ModelArgs):
|
200 |
+
"""A single Mamba block, as described in Figure 3 in Section 3.4 in the Mamba paper [1]."""
|
201 |
+
super().__init__()
|
202 |
+
self.args = args
|
203 |
+
|
204 |
+
self.in_proj = nn.Linear(args.d_model, args.d_inner * 2, bias=args.bias)
|
205 |
+
|
206 |
+
self.conv1d = nn.Conv1d(
|
207 |
+
in_channels=args.d_inner,
|
208 |
+
out_channels=args.d_inner,
|
209 |
+
bias=args.conv_bias,
|
210 |
+
kernel_size=args.d_conv,
|
211 |
+
groups=args.d_inner,
|
212 |
+
padding=args.d_conv - 1,
|
213 |
+
)
|
214 |
+
|
215 |
+
# x_proj takes in `x` and outputs the input-specific Δ, B, C
|
216 |
+
self.x_proj = nn.Linear(args.d_inner, args.dt_rank + args.d_state * 2, bias=False)
|
217 |
+
|
218 |
+
# dt_proj projects Δ from dt_rank to d_in
|
219 |
+
self.dt_proj = nn.Linear(args.dt_rank, args.d_inner, bias=True)
|
220 |
+
|
221 |
+
A = repeat(torch.arange(1, args.d_state + 1), 'n -> d n', d=args.d_inner)
|
222 |
+
self.A_log = nn.Parameter(torch.log(A))
|
223 |
+
self.D = nn.Parameter(torch.ones(args.d_inner))
|
224 |
+
self.out_proj = nn.Linear(args.d_inner, args.d_model, bias=args.bias)
|
225 |
+
|
226 |
+
|
227 |
+
def forward(self, x):
|
228 |
+
"""Mamba block forward. This looks the same as Figure 3 in Section 3.4 in the Mamba paper [1].
|
229 |
+
|
230 |
+
Args:
|
231 |
+
x: shape (b, l, d) (See Glossary at top for definitions of b, l, d_in, n...)
|
232 |
+
|
233 |
+
Returns:
|
234 |
+
output: shape (b, l, d)
|
235 |
+
|
236 |
+
Official Implementation:
|
237 |
+
class Mamba, https://github.com/state-spaces/mamba/blob/main/mamba_ssm/modules/mamba_simple.py#L119
|
238 |
+
mamba_inner_ref(), https://github.com/state-spaces/mamba/blob/main/mamba_ssm/ops/selective_scan_interface.py#L311
|
239 |
+
|
240 |
+
"""
|
241 |
+
(b, l, d) = x.shape
|
242 |
+
|
243 |
+
x_and_res = self.in_proj(x) # shape (b, l, 2 * d_in)
|
244 |
+
(x, res) = x_and_res.split(split_size=[self.args.d_inner, self.args.d_inner], dim=-1)
|
245 |
+
|
246 |
+
x = rearrange(x, 'b l d_in -> b d_in l')
|
247 |
+
x = self.conv1d(x)[:, :, :l]
|
248 |
+
x = rearrange(x, 'b d_in l -> b l d_in')
|
249 |
+
|
250 |
+
x = F.silu(x)
|
251 |
+
|
252 |
+
y = self.ssm(x)
|
253 |
+
|
254 |
+
y = y * F.silu(res)
|
255 |
+
|
256 |
+
output = self.out_proj(y)
|
257 |
+
|
258 |
+
return output
|
259 |
+
|
260 |
+
|
261 |
+
def ssm(self, x):
|
262 |
+
"""Runs the SSM. See:
|
263 |
+
- Algorithm 2 in Section 3.2 in the Mamba paper [1]
|
264 |
+
- run_SSM(A, B, C, u) in The Annotated S4 [2]
|
265 |
+
|
266 |
+
Args:
|
267 |
+
x: shape (b, l, d_in) (See Glossary at top for definitions of b, l, d_in, n...)
|
268 |
+
|
269 |
+
Returns:
|
270 |
+
output: shape (b, l, d_in)
|
271 |
+
|
272 |
+
Official Implementation:
|
273 |
+
mamba_inner_ref(), https://github.com/state-spaces/mamba/blob/main/mamba_ssm/ops/selective_scan_interface.py#L311
|
274 |
+
|
275 |
+
"""
|
276 |
+
(d_in, n) = self.A_log.shape
|
277 |
+
|
278 |
+
# Compute ∆ A B C D, the state space parameters.
|
279 |
+
# A, D are input independent (see Mamba paper [1] Section 3.5.2 "Interpretation of A" for why A isn't selective)
|
280 |
+
# ∆, B, C are input-dependent (this is a key difference between Mamba and the linear time invariant S4,
|
281 |
+
# and is why Mamba is called **selective** state spaces)
|
282 |
+
|
283 |
+
A = -torch.exp(self.A_log.float()) # shape (d_in, n)
|
284 |
+
D = self.D.float()
|
285 |
+
|
286 |
+
x_dbl = self.x_proj(x) # (b, l, dt_rank + 2*n)
|
287 |
+
|
288 |
+
(delta, B, C) = x_dbl.split(split_size=[self.args.dt_rank, n, n], dim=-1) # delta: (b, l, dt_rank). B, C: (b, l, n)
|
289 |
+
delta = F.softplus(self.dt_proj(delta)) # (b, l, d_in)
|
290 |
+
|
291 |
+
y = self.selective_scan(x, delta, A, B, C, D) # This is similar to run_SSM(A, B, C, u) in The Annotated S4 [2]
|
292 |
+
|
293 |
+
return y
|
294 |
+
|
295 |
+
|
296 |
+
def selective_scan(self, x, delta, A, B, C, D):
|
297 |
+
"""Does selective scan algorithm. See:
|
298 |
+
- Section 2 State Space Models in the Mamba paper [1]
|
299 |
+
- Algorithm 2 in Section 3.2 in the Mamba paper [1]
|
300 |
+
- run_SSM(A, B, C, u) in The Annotated S4 [2]
|
301 |
+
|
302 |
+
This is the classic discrete state space formula:
|
303 |
+
x(t + 1) = Ax(t) + Bu(t)
|
304 |
+
y(t) = Cx(t) + Du(t)
|
305 |
+
except B and C (and the step size delta, which is used for discretization) are dependent on the input x(t).
|
306 |
+
|
307 |
+
Args:
|
308 |
+
u: shape (b, l, d_in) (See Glossary at top for definitions of b, l, d_in, n...)
|
309 |
+
delta: shape (b, l, d_in)
|
310 |
+
A: shape (d_in, n)
|
311 |
+
B: shape (b, l, n)
|
312 |
+
C: shape (b, l, n)
|
313 |
+
D: shape (d_in,)
|
314 |
+
|
315 |
+
Returns:
|
316 |
+
output: shape (b, l, d_in)
|
317 |
+
|
318 |
+
Official Implementation:
|
319 |
+
selective_scan_ref(), https://github.com/state-spaces/mamba/blob/main/mamba_ssm/ops/selective_scan_interface.py#L86
|
320 |
+
Note: I refactored some parts out of `selective_scan_ref` out, so the functionality doesn't match exactly.
|
321 |
+
|
322 |
+
"""
|
323 |
+
# sequential scan
|
324 |
+
# (b, l, d_in) = u.shape
|
325 |
+
# n = A.shape[1]
|
326 |
+
|
327 |
+
# # Discretize continuous parameters (A, B)
|
328 |
+
# # - A is discretized using zero-order hold (ZOH) discretization (see Section 2 Equation 4 in the Mamba paper [1])
|
329 |
+
# # - B is discretized using a simplified Euler discretization instead of ZOH. From a discussion with authors:
|
330 |
+
# # "A is the more important term and the performance doesn't change much with the simplification on B"
|
331 |
+
# deltaA = torch.exp(einsum(delta, A, 'b l d_in, d_in n -> b l d_in n'))
|
332 |
+
# deltaB_u = einsum(delta, B, u, 'b l d_in, b l n, b l d_in -> b l d_in n')
|
333 |
+
|
334 |
+
# # Perform selective scan (see scan_SSM() in The Annotated S4 [2])
|
335 |
+
# # Note that the below is sequential, while the official implementation does a much faster parallel scan that
|
336 |
+
# # is additionally hardware-aware (like FlashAttention).
|
337 |
+
# x = torch.zeros((b, d_in, n), device=deltaA.device)
|
338 |
+
# ys = []
|
339 |
+
# for i in range(l):
|
340 |
+
# x = deltaA[:, i] * x + deltaB_u[:, i]
|
341 |
+
# y = einsum(x, C[:, i, :], 'b d_in n, b n -> b d_in')
|
342 |
+
# ys.append(y)
|
343 |
+
# y = torch.stack(ys, dim=1) # shape (b, l, d_in)
|
344 |
+
|
345 |
+
# y = y + u * D
|
346 |
+
|
347 |
+
# return y
|
348 |
+
# parallel scan
|
349 |
+
deltaA = torch.exp(delta.unsqueeze(-1) * A) # (B, L, ED, N)
|
350 |
+
deltaB = delta.unsqueeze(-1) * B.unsqueeze(2) # (B, L, ED, N)
|
351 |
+
|
352 |
+
BX = deltaB * (x.unsqueeze(-1)) # (B, L, ED, N)
|
353 |
+
|
354 |
+
hs = pscan(deltaA, BX)
|
355 |
+
|
356 |
+
y = (hs @ C.unsqueeze(-1)).squeeze(3) # (B, L, ED, N) @ (B, L, N, 1) -> (B, L, ED, 1)
|
357 |
+
|
358 |
+
y = y + D * x
|
359 |
+
|
360 |
+
return y
|
361 |
+
|
362 |
+
|
363 |
+
class RMSNorm(nn.Module):
|
364 |
+
def __init__(self,
|
365 |
+
d_model: int,
|
366 |
+
eps: float = 1e-5):
|
367 |
+
super().__init__()
|
368 |
+
self.eps = eps
|
369 |
+
self.weight = nn.Parameter(torch.ones(d_model))
|
370 |
+
|
371 |
+
|
372 |
+
def forward(self, x):
|
373 |
+
output = x * torch.rsqrt(x.pow(2).mean(-1, keepdim=True) + self.eps) * self.weight
|
374 |
+
|
375 |
+
return output
|
parallel_scan.py
ADDED
@@ -0,0 +1,226 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import math
|
2 |
+
|
3 |
+
import torch
|
4 |
+
import torch.nn.functional as F
|
5 |
+
|
6 |
+
"""
|
7 |
+
|
8 |
+
An implementation of the parallel scan operation in PyTorch (Blelloch version).
|
9 |
+
Please see docs/pscan.ipynb for a detailed explanation of what happens here.
|
10 |
+
|
11 |
+
"""
|
12 |
+
|
13 |
+
def npo2(len):
|
14 |
+
"""
|
15 |
+
Returns the next power of 2 above len
|
16 |
+
"""
|
17 |
+
|
18 |
+
return 2 ** math.ceil(math.log2(len))
|
19 |
+
|
20 |
+
def pad_npo2(X):
|
21 |
+
"""
|
22 |
+
Pads input length dim to the next power of 2
|
23 |
+
|
24 |
+
Args:
|
25 |
+
X : (B, L, D, N)
|
26 |
+
|
27 |
+
Returns:
|
28 |
+
Y : (B, npo2(L), D, N)
|
29 |
+
"""
|
30 |
+
|
31 |
+
len_npo2 = npo2(X.size(1))
|
32 |
+
pad_tuple = (0, 0, 0, 0, 0, len_npo2 - X.size(1))
|
33 |
+
return F.pad(X, pad_tuple, "constant", 0)
|
34 |
+
|
35 |
+
class PScan(torch.autograd.Function):
|
36 |
+
@staticmethod
|
37 |
+
def pscan(A, X):
|
38 |
+
# A : (B, D, L, N)
|
39 |
+
# X : (B, D, L, N)
|
40 |
+
|
41 |
+
# modifies X in place by doing a parallel scan.
|
42 |
+
# more formally, X will be populated by these values :
|
43 |
+
# H[t] = A[t] * H[t-1] + X[t] with H[0] = 0
|
44 |
+
# which are computed in parallel (2*log2(T) sequential steps (ideally), instead of T sequential steps)
|
45 |
+
|
46 |
+
# only supports L that is a power of two (mainly for a clearer code)
|
47 |
+
|
48 |
+
B, D, L, _ = A.size()
|
49 |
+
num_steps = int(math.log2(L))
|
50 |
+
|
51 |
+
# up sweep (last 2 steps unfolded)
|
52 |
+
Aa = A
|
53 |
+
Xa = X
|
54 |
+
for _ in range(num_steps-2):
|
55 |
+
T = Xa.size(2)
|
56 |
+
Aa = Aa.view(B, D, T//2, 2, -1)
|
57 |
+
Xa = Xa.view(B, D, T//2, 2, -1)
|
58 |
+
|
59 |
+
Xa[:, :, :, 1].add_(Aa[:, :, :, 1].mul(Xa[:, :, :, 0]))
|
60 |
+
Aa[:, :, :, 1].mul_(Aa[:, :, :, 0])
|
61 |
+
|
62 |
+
Aa = Aa[:, :, :, 1]
|
63 |
+
Xa = Xa[:, :, :, 1]
|
64 |
+
|
65 |
+
# we have only 4, 2 or 1 nodes left
|
66 |
+
if Xa.size(2) == 4:
|
67 |
+
Xa[:, :, 1].add_(Aa[:, :, 1].mul(Xa[:, :, 0]))
|
68 |
+
Aa[:, :, 1].mul_(Aa[:, :, 0])
|
69 |
+
|
70 |
+
Xa[:, :, 3].add_(Aa[:, :, 3].mul(Xa[:, :, 2] + Aa[:, :, 2].mul(Xa[:, :, 1])))
|
71 |
+
elif Xa.size(2) == 2:
|
72 |
+
Xa[:, :, 1].add_(Aa[:, :, 1].mul(Xa[:, :, 0]))
|
73 |
+
return
|
74 |
+
else:
|
75 |
+
return
|
76 |
+
|
77 |
+
# down sweep (first 2 steps unfolded)
|
78 |
+
Aa = A[:, :, 2**(num_steps-2)-1:L:2**(num_steps-2)]
|
79 |
+
Xa = X[:, :, 2**(num_steps-2)-1:L:2**(num_steps-2)]
|
80 |
+
Xa[:, :, 2].add_(Aa[:, :, 2].mul(Xa[:, :, 1]))
|
81 |
+
Aa[:, :, 2].mul_(Aa[:, :, 1])
|
82 |
+
|
83 |
+
for k in range(num_steps-3, -1, -1):
|
84 |
+
Aa = A[:, :, 2**k-1:L:2**k]
|
85 |
+
Xa = X[:, :, 2**k-1:L:2**k]
|
86 |
+
|
87 |
+
T = Xa.size(2)
|
88 |
+
Aa = Aa.view(B, D, T//2, 2, -1)
|
89 |
+
Xa = Xa.view(B, D, T//2, 2, -1)
|
90 |
+
|
91 |
+
Xa[:, :, 1:, 0].add_(Aa[:, :, 1:, 0].mul(Xa[:, :, :-1, 1]))
|
92 |
+
Aa[:, :, 1:, 0].mul_(Aa[:, :, :-1, 1])
|
93 |
+
|
94 |
+
@staticmethod
|
95 |
+
def pscan_rev(A, X):
|
96 |
+
# A : (B, D, L, N)
|
97 |
+
# X : (B, D, L, N)
|
98 |
+
|
99 |
+
# the same function as above, but in reverse
|
100 |
+
# (if you flip the input, call pscan, then flip the output, you get what this function outputs)
|
101 |
+
# it is used in the backward pass
|
102 |
+
|
103 |
+
# only supports L that is a power of two (mainly for a clearer code)
|
104 |
+
|
105 |
+
B, D, L, _ = A.size()
|
106 |
+
num_steps = int(math.log2(L))
|
107 |
+
|
108 |
+
# up sweep (last 2 steps unfolded)
|
109 |
+
Aa = A
|
110 |
+
Xa = X
|
111 |
+
for _ in range(num_steps-2):
|
112 |
+
T = Xa.size(2)
|
113 |
+
Aa = Aa.view(B, D, T//2, 2, -1)
|
114 |
+
Xa = Xa.view(B, D, T//2, 2, -1)
|
115 |
+
|
116 |
+
Xa[:, :, :, 0].add_(Aa[:, :, :, 0].mul(Xa[:, :, :, 1]))
|
117 |
+
Aa[:, :, :, 0].mul_(Aa[:, :, :, 1])
|
118 |
+
|
119 |
+
Aa = Aa[:, :, :, 0]
|
120 |
+
Xa = Xa[:, :, :, 0]
|
121 |
+
|
122 |
+
# we have only 4, 2 or 1 nodes left
|
123 |
+
if Xa.size(2) == 4:
|
124 |
+
Xa[:, :, 2].add_(Aa[:, :, 2].mul(Xa[:, :, 3]))
|
125 |
+
Aa[:, :, 2].mul_(Aa[:, :, 3])
|
126 |
+
|
127 |
+
Xa[:, :, 0].add_(Aa[:, :, 0].mul(Xa[:, :, 1].add(Aa[:, :, 1].mul(Xa[:, :, 2]))))
|
128 |
+
elif Xa.size(2) == 2:
|
129 |
+
Xa[:, :, 0].add_(Aa[:, :, 0].mul(Xa[:, :, 1]))
|
130 |
+
return
|
131 |
+
else:
|
132 |
+
return
|
133 |
+
|
134 |
+
# down sweep (first 2 steps unfolded)
|
135 |
+
Aa = A[:, :, 0:L:2**(num_steps-2)]
|
136 |
+
Xa = X[:, :, 0:L:2**(num_steps-2)]
|
137 |
+
Xa[:, :, 1].add_(Aa[:, :, 1].mul(Xa[:, :, 2]))
|
138 |
+
Aa[:, :, 1].mul_(Aa[:, :, 2])
|
139 |
+
|
140 |
+
for k in range(num_steps-3, -1, -1):
|
141 |
+
Aa = A[:, :, 0:L:2**k]
|
142 |
+
Xa = X[:, :, 0:L:2**k]
|
143 |
+
|
144 |
+
T = Xa.size(2)
|
145 |
+
Aa = Aa.view(B, D, T//2, 2, -1)
|
146 |
+
Xa = Xa.view(B, D, T//2, 2, -1)
|
147 |
+
|
148 |
+
Xa[:, :, :-1, 1].add_(Aa[:, :, :-1, 1].mul(Xa[:, :, 1:, 0]))
|
149 |
+
Aa[:, :, :-1, 1].mul_(Aa[:, :, 1:, 0])
|
150 |
+
|
151 |
+
@staticmethod
|
152 |
+
def forward(ctx, A_in, X_in):
|
153 |
+
"""
|
154 |
+
Applies the parallel scan operation, as defined above. Returns a new tensor.
|
155 |
+
If you can, privilege sequence lengths that are powers of two.
|
156 |
+
|
157 |
+
Args:
|
158 |
+
A_in : (B, L, D, N)
|
159 |
+
X_in : (B, L, D, N)
|
160 |
+
|
161 |
+
Returns:
|
162 |
+
H : (B, L, D, N)
|
163 |
+
"""
|
164 |
+
|
165 |
+
L = X_in.size(1)
|
166 |
+
|
167 |
+
# cloning is requiered because of the in-place ops
|
168 |
+
if L == npo2(L):
|
169 |
+
A = A_in.clone()
|
170 |
+
X = X_in.clone()
|
171 |
+
else:
|
172 |
+
# pad tensors (and clone btw)
|
173 |
+
A = pad_npo2(A_in) # (B, npo2(L), D, N)
|
174 |
+
X = pad_npo2(X_in) # (B, npo2(L), D, N)
|
175 |
+
|
176 |
+
# prepare tensors
|
177 |
+
A = A.transpose(2, 1) # (B, D, npo2(L), N)
|
178 |
+
X = X.transpose(2, 1) # (B, D, npo2(L), N)
|
179 |
+
|
180 |
+
# parallel scan (modifies X in-place)
|
181 |
+
PScan.pscan(A, X)
|
182 |
+
|
183 |
+
ctx.save_for_backward(A_in, X)
|
184 |
+
|
185 |
+
# slice [:, :L] (cut if there was padding)
|
186 |
+
return X.transpose(2, 1)[:, :L]
|
187 |
+
|
188 |
+
@staticmethod
|
189 |
+
def backward(ctx, grad_output_in):
|
190 |
+
"""
|
191 |
+
Flows the gradient from the output to the input. Returns two new tensors.
|
192 |
+
|
193 |
+
Args:
|
194 |
+
ctx : A_in : (B, L, D, N), X : (B, D, L, N)
|
195 |
+
grad_output_in : (B, L, D, N)
|
196 |
+
|
197 |
+
Returns:
|
198 |
+
gradA : (B, L, D, N), gradX : (B, L, D, N)
|
199 |
+
"""
|
200 |
+
|
201 |
+
A_in, X = ctx.saved_tensors
|
202 |
+
|
203 |
+
L = grad_output_in.size(1)
|
204 |
+
|
205 |
+
# cloning is requiered because of the in-place ops
|
206 |
+
if L == npo2(L):
|
207 |
+
grad_output = grad_output_in.clone()
|
208 |
+
# the next padding will clone A_in
|
209 |
+
else:
|
210 |
+
grad_output = pad_npo2(grad_output_in) # (B, npo2(L), D, N)
|
211 |
+
A_in = pad_npo2(A_in) # (B, npo2(L), D, N)
|
212 |
+
|
213 |
+
# prepare tensors
|
214 |
+
grad_output = grad_output.transpose(2, 1)
|
215 |
+
A_in = A_in.transpose(2, 1) # (B, D, npo2(L), N)
|
216 |
+
A = torch.nn.functional.pad(A_in[:, :, 1:], (0, 0, 0, 1)) # (B, D, npo2(L), N) shift 1 to the left (see hand derivation)
|
217 |
+
|
218 |
+
# reverse parallel scan (modifies grad_output in-place)
|
219 |
+
PScan.pscan_rev(A, grad_output)
|
220 |
+
|
221 |
+
Q = torch.zeros_like(X)
|
222 |
+
Q[:, :, 1:].add_(X[:, :, :-1] * grad_output[:, :, 1:])
|
223 |
+
|
224 |
+
return Q.transpose(2, 1)[:, :L], grad_output.transpose(2, 1)[:, :L]
|
225 |
+
|
226 |
+
pscan = PScan.apply
|