mamba / code /model.py
pt-sk's picture
Upload 2 files
315f1bc verified
raw
history blame contribute delete
No virus
14.5 kB
"""Simple, minimal implementation of Mamba in one file of PyTorch.
Suggest reading the following before/while reading the code:
[1] Mamba: Linear-Time Sequence Modeling with Selective State Spaces (Albert Gu and Tri Dao)
https://arxiv.org/abs/2312.00752
[2] The Annotated S4 (Sasha Rush and Sidd Karamcheti)
https://srush.github.io/annotated-s4
Glossary:
b: batch size (`B` in Mamba paper [1] Algorithm 2)
l: sequence length (`L` in [1] Algorithm 2)
d or d_model: hidden dim
n or d_state: latent state dim (`N` in [1] Algorithm 2)
expand: expansion factor (`E` in [1] Section 3.4)
d_in or d_inner: d * expand (`D` in [1] Algorithm 2)
A, B, C, D: state space parameters (See any state space representation formula)
(B, C are input-dependent (aka selective, a key innovation in Mamba); A, D are not)
Δ or delta: input-dependent step size
dt_rank: rank of Δ (See [1] Section 3.6 "Parameterization of ∆")
"""
from __future__ import annotations
import math
import json
import torch
import torch.nn as nn
import torch.nn.functional as F
from dataclasses import dataclass
from typing import Union
from einops import rearrange, repeat, einsum
from parallel_scan import pscan
@dataclass
class ModelArgs:
d_model: int
n_layer: int
vocab_size: int
d_state: int = 16
expand: int = 2
dt_rank: Union[int, str] = 'auto'
d_conv: int = 4
pad_vocab_size_multiple: int = 8
conv_bias: bool = True
bias: bool = False
def __post_init__(self):
self.d_inner = int(self.expand * self.d_model)
if self.dt_rank == 'auto':
self.dt_rank = math.ceil(self.d_model / 16)
if self.vocab_size % self.pad_vocab_size_multiple != 0:
self.vocab_size += (self.pad_vocab_size_multiple
- self.vocab_size % self.pad_vocab_size_multiple)
class Mamba(nn.Module):
def __init__(self, args: ModelArgs):
"""Full Mamba model."""
super().__init__()
self.args = args
self.embedding = nn.Embedding(args.vocab_size, args.d_model)
self.layers = nn.ModuleList([ResidualBlock(args) for _ in range(args.n_layer)])
self.norm_f = RMSNorm(args.d_model)
self.lm_head = nn.Linear(args.d_model, args.vocab_size, bias=False)
self.lm_head.weight = self.embedding.weight # Tie output projection to embedding weights.
# See "Weight Tying" paper
def forward(self, input_ids):
"""
Args:
input_ids (long tensor): shape (b, l) (See Glossary at top for definitions of b, l, d_in, n...)
Returns:
logits: shape (b, l, vocab_size)
Official Implementation:
class MambaLMHeadModel, https://github.com/state-spaces/mamba/blob/main/mamba_ssm/models/mixer_seq_simple.py#L173
"""
x = self.embedding(input_ids)
for layer in self.layers:
x = layer(x)
x = self.norm_f(x)
logits = self.lm_head(x)
return logits
@staticmethod
def from_config(pretrained_model_name: str):
from transformers.utils import CONFIG_NAME
from transformers.utils.hub import cached_file
def load_config_hf(model_name):
resolved_archive_file = cached_file(model_name, CONFIG_NAME,
_raise_exceptions_for_missing_entries=False)
return json.load(open(resolved_archive_file))
config_data = load_config_hf(pretrained_model_name)
args = ModelArgs(
d_model=config_data['d_model'],
n_layer=config_data['n_layer'],
vocab_size=config_data['vocab_size']
)
model = Mamba(args)
return model
@staticmethod
def from_pretrained(pretrained_model_name: str):
"""Load pretrained weights from HuggingFace into model.
Args:
pretrained_model_name: One of
* 'state-spaces/mamba-2.8b-slimpj'
* 'state-spaces/mamba-2.8b'
* 'state-spaces/mamba-1.4b'
* 'state-spaces/mamba-790m'
* 'state-spaces/mamba-370m'
* 'state-spaces/mamba-130m'
Returns:
model: Mamba model with weights loaded
"""
from transformers.utils import WEIGHTS_NAME, CONFIG_NAME
from transformers.utils.hub import cached_file
def load_config_hf(model_name):
resolved_archive_file = cached_file(model_name, CONFIG_NAME,
_raise_exceptions_for_missing_entries=False)
return json.load(open(resolved_archive_file))
def load_state_dict_hf(model_name, device=None, dtype=None):
resolved_archive_file = cached_file(model_name, WEIGHTS_NAME,
_raise_exceptions_for_missing_entries=False)
return torch.load(resolved_archive_file, weights_only=True, map_location='cpu', mmap=True)
config_data = load_config_hf(pretrained_model_name)
args = ModelArgs(
d_model=config_data['d_model'],
n_layer=config_data['n_layer'],
vocab_size=config_data['vocab_size']
)
model = Mamba(args)
state_dict = load_state_dict_hf(pretrained_model_name)
new_state_dict = {}
for key in state_dict:
new_key = key.replace('backbone.', '')
new_state_dict[new_key] = state_dict[key]
model.load_state_dict(new_state_dict)
return model
class ResidualBlock(nn.Module):
def __init__(self, args: ModelArgs):
"""Simple block wrapping Mamba block with normalization and residual connection."""
super().__init__()
self.args = args
self.mixer = MambaBlock(args)
self.norm = RMSNorm(args.d_model)
def forward(self, x):
"""
Args:
x: shape (b, l, d) (See Glossary at top for definitions of b, l, d_in, n...)
Returns:
output: shape (b, l, d)
Official Implementation:
Block.forward(), https://github.com/state-spaces/mamba/blob/main/mamba_ssm/modules/mamba_simple.py#L297
Note: the official repo chains residual blocks that look like
[Add -> Norm -> Mamba] -> [Add -> Norm -> Mamba] -> [Add -> Norm -> Mamba] -> ...
where the first Add is a no-op. This is purely for performance reasons as this
allows them to fuse the Add->Norm.
We instead implement our blocks as the more familiar, simpler, and numerically equivalent
[Norm -> Mamba -> Add] -> [Norm -> Mamba -> Add] -> [Norm -> Mamba -> Add] -> ....
"""
output = self.mixer(self.norm(x)) + x
return output
class MambaBlock(nn.Module):
def __init__(self, args: ModelArgs):
"""A single Mamba block, as described in Figure 3 in Section 3.4 in the Mamba paper [1]."""
super().__init__()
self.args = args
self.in_proj = nn.Linear(args.d_model, args.d_inner * 2, bias=args.bias)
self.conv1d = nn.Conv1d(
in_channels=args.d_inner,
out_channels=args.d_inner,
bias=args.conv_bias,
kernel_size=args.d_conv,
groups=args.d_inner,
padding=args.d_conv - 1,
)
# x_proj takes in `x` and outputs the input-specific Δ, B, C
self.x_proj = nn.Linear(args.d_inner, args.dt_rank + args.d_state * 2, bias=False)
# dt_proj projects Δ from dt_rank to d_in
self.dt_proj = nn.Linear(args.dt_rank, args.d_inner, bias=True)
A = repeat(torch.arange(1, args.d_state + 1), 'n -> d n', d=args.d_inner)
self.A_log = nn.Parameter(torch.log(A))
self.D = nn.Parameter(torch.ones(args.d_inner))
self.out_proj = nn.Linear(args.d_inner, args.d_model, bias=args.bias)
def forward(self, x):
"""Mamba block forward. This looks the same as Figure 3 in Section 3.4 in the Mamba paper [1].
Args:
x: shape (b, l, d) (See Glossary at top for definitions of b, l, d_in, n...)
Returns:
output: shape (b, l, d)
Official Implementation:
class Mamba, https://github.com/state-spaces/mamba/blob/main/mamba_ssm/modules/mamba_simple.py#L119
mamba_inner_ref(), https://github.com/state-spaces/mamba/blob/main/mamba_ssm/ops/selective_scan_interface.py#L311
"""
(b, l, d) = x.shape
x_and_res = self.in_proj(x) # shape (b, l, 2 * d_in)
(x, res) = x_and_res.split(split_size=[self.args.d_inner, self.args.d_inner], dim=-1)
x = rearrange(x, 'b l d_in -> b d_in l')
x = self.conv1d(x)[:, :, :l]
x = rearrange(x, 'b d_in l -> b l d_in')
x = F.silu(x)
y = self.ssm(x)
y = y * F.silu(res)
output = self.out_proj(y)
return output
def ssm(self, x):
"""Runs the SSM. See:
- Algorithm 2 in Section 3.2 in the Mamba paper [1]
- run_SSM(A, B, C, u) in The Annotated S4 [2]
Args:
x: shape (b, l, d_in) (See Glossary at top for definitions of b, l, d_in, n...)
Returns:
output: shape (b, l, d_in)
Official Implementation:
mamba_inner_ref(), https://github.com/state-spaces/mamba/blob/main/mamba_ssm/ops/selective_scan_interface.py#L311
"""
(d_in, n) = self.A_log.shape
# Compute ∆ A B C D, the state space parameters.
# A, D are input independent (see Mamba paper [1] Section 3.5.2 "Interpretation of A" for why A isn't selective)
# ∆, B, C are input-dependent (this is a key difference between Mamba and the linear time invariant S4,
# and is why Mamba is called **selective** state spaces)
A = -torch.exp(self.A_log.float()) # shape (d_in, n)
D = self.D.float()
x_dbl = self.x_proj(x) # (b, l, dt_rank + 2*n)
(delta, B, C) = x_dbl.split(split_size=[self.args.dt_rank, n, n], dim=-1) # delta: (b, l, dt_rank). B, C: (b, l, n)
delta = F.softplus(self.dt_proj(delta)) # (b, l, d_in)
y = self.selective_scan(x, delta, A, B, C, D) # This is similar to run_SSM(A, B, C, u) in The Annotated S4 [2]
return y
def selective_scan(self, x, delta, A, B, C, D):
"""Does selective scan algorithm. See:
- Section 2 State Space Models in the Mamba paper [1]
- Algorithm 2 in Section 3.2 in the Mamba paper [1]
- run_SSM(A, B, C, u) in The Annotated S4 [2]
This is the classic discrete state space formula:
x(t + 1) = Ax(t) + Bu(t)
y(t) = Cx(t) + Du(t)
except B and C (and the step size delta, which is used for discretization) are dependent on the input x(t).
Args:
u: shape (b, l, d_in) (See Glossary at top for definitions of b, l, d_in, n...)
delta: shape (b, l, d_in)
A: shape (d_in, n)
B: shape (b, l, n)
C: shape (b, l, n)
D: shape (d_in,)
Returns:
output: shape (b, l, d_in)
Official Implementation:
selective_scan_ref(), https://github.com/state-spaces/mamba/blob/main/mamba_ssm/ops/selective_scan_interface.py#L86
Note: I refactored some parts out of `selective_scan_ref` out, so the functionality doesn't match exactly.
"""
# sequential scan
# (b, l, d_in) = u.shape
# n = A.shape[1]
# # Discretize continuous parameters (A, B)
# # - A is discretized using zero-order hold (ZOH) discretization (see Section 2 Equation 4 in the Mamba paper [1])
# # - B is discretized using a simplified Euler discretization instead of ZOH. From a discussion with authors:
# # "A is the more important term and the performance doesn't change much with the simplification on B"
# deltaA = torch.exp(einsum(delta, A, 'b l d_in, d_in n -> b l d_in n'))
# deltaB_u = einsum(delta, B, u, 'b l d_in, b l n, b l d_in -> b l d_in n')
# # Perform selective scan (see scan_SSM() in The Annotated S4 [2])
# # Note that the below is sequential, while the official implementation does a much faster parallel scan that
# # is additionally hardware-aware (like FlashAttention).
# x = torch.zeros((b, d_in, n), device=deltaA.device)
# ys = []
# for i in range(l):
# x = deltaA[:, i] * x + deltaB_u[:, i]
# y = einsum(x, C[:, i, :], 'b d_in n, b n -> b d_in')
# ys.append(y)
# y = torch.stack(ys, dim=1) # shape (b, l, d_in)
# y = y + u * D
# return y
# parallel scan
deltaA = torch.exp(delta.unsqueeze(-1) * A) # (B, L, ED, N)
deltaB = delta.unsqueeze(-1) * B.unsqueeze(2) # (B, L, ED, N)
BX = deltaB * (x.unsqueeze(-1)) # (B, L, ED, N)
hs = pscan(deltaA, BX)
y = (hs @ C.unsqueeze(-1)).squeeze(3) # (B, L, ED, N) @ (B, L, N, 1) -> (B, L, ED, 1)
y = y + D * x
return y
class RMSNorm(nn.Module):
def __init__(self,
d_model: int,
eps: float = 1e-5):
super().__init__()
self.eps = eps
self.weight = nn.Parameter(torch.ones(d_model))
def forward(self, x):
output = x * torch.rsqrt(x.pow(2).mean(-1, keepdim=True) + self.eps) * self.weight
return output