Commit
•
1d984cf
1
Parent(s):
f4154e1
Add verifyToken field to verify evaluation results are produced by Hugging Face's automatic model evaluator (#9)
Browse files- Add verifyToken field to verify evaluation results are produced by Hugging Face's automatic model evaluator (2b0367a02b5727479cde5decb252d10b389bb904)
Co-authored-by: Evaluation Bot <autoevaluator@users.noreply.huggingface.co>
README.md
CHANGED
@@ -1,13 +1,13 @@
|
|
1 |
---
|
|
|
|
|
|
|
2 |
tags:
|
3 |
- summarization
|
4 |
- summary
|
5 |
- booksum
|
6 |
- long-document
|
7 |
- long-form
|
8 |
-
license:
|
9 |
-
- apache-2.0
|
10 |
-
- bsd-3-clause
|
11 |
datasets:
|
12 |
- kmfoda/booksum
|
13 |
metrics:
|
@@ -26,39 +26,38 @@ widget:
|
|
26 |
deviation of the average recurrence interval, the more specific could be the long
|
27 |
term prediction of a future mainshock.
|
28 |
example_title: earthquakes
|
29 |
-
- text:
|
30 |
-
|
31 |
-
|
32 |
-
|
33 |
-
|
34 |
-
|
35 |
-
|
36 |
-
|
37 |
-
|
38 |
-
|
39 |
-
|
40 |
-
|
41 |
-
|
42 |
-
|
43 |
-
|
44 |
-
|
45 |
-
|
46 |
-
|
47 |
-
|
48 |
-
|
49 |
-
|
50 |
-
|
51 |
-
|
52 |
-
|
53 |
-
|
54 |
-
|
55 |
-
|
56 |
-
|
57 |
-
|
58 |
-
|
59 |
-
|
60 |
-
|
61 |
-
\ this function space (Section 5)."
|
62 |
example_title: scientific paper
|
63 |
- text: 'Is a else or outside the cob and tree written being of early client rope
|
64 |
and you have is for good reasons. On to the ocean in Orange for time. By''s the
|
@@ -110,68 +109,82 @@ widget:
|
|
110 |
the point of you of your model. This hidden data is complete by unseen. In other
|
111 |
words, we solve our problem of validation.'
|
112 |
example_title: transcribed audio - lecture
|
113 |
-
- text:
|
114 |
-
|
115 |
-
|
116 |
-
|
117 |
-
|
118 |
-
|
119 |
-
|
120 |
-
|
121 |
-
|
122 |
-
|
123 |
-
|
124 |
-
|
125 |
-
|
126 |
-
|
127 |
-
|
128 |
-
|
129 |
-
|
130 |
-
|
131 |
-
|
132 |
-
|
133 |
-
|
134 |
-
|
135 |
-
|
136 |
-
|
137 |
-
|
138 |
-
|
139 |
-
|
140 |
-
|
141 |
-
|
142 |
-
|
143 |
-
|
144 |
-
|
145 |
-
|
146 |
-
|
147 |
-
|
148 |
-
|
149 |
-
|
150 |
-
|
151 |
-
|
152 |
-
|
153 |
-
|
154 |
-
|
155 |
-
|
156 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
157 |
example_title: bigbird blog intro
|
158 |
-
- text:
|
159 |
-
|
160 |
-
|
161 |
-
|
162 |
-
|
163 |
-
|
164 |
-
|
165 |
-
|
166 |
-
|
167 |
-
|
168 |
-
|
169 |
-
|
170 |
-
|
171 |
-
|
172 |
-
|
173 |
-
|
174 |
-
|
|
|
|
|
175 |
example_title: Richard & Mortimer
|
176 |
parameters:
|
177 |
max_length: 64
|
@@ -194,30 +207,36 @@ model-index:
|
|
194 |
config: samsum
|
195 |
split: test
|
196 |
metrics:
|
197 |
-
-
|
198 |
-
type: rouge
|
199 |
value: 30.0032
|
|
|
200 |
verified: true
|
201 |
-
|
202 |
-
|
203 |
value: 7.2671
|
|
|
204 |
verified: true
|
205 |
-
|
206 |
-
|
207 |
value: 21.8779
|
|
|
208 |
verified: true
|
209 |
-
|
210 |
-
|
211 |
value: 26.4371
|
|
|
212 |
verified: true
|
213 |
-
|
214 |
-
|
215 |
value: 2.6383285522460938
|
|
|
216 |
verified: true
|
217 |
-
|
218 |
-
|
219 |
value: 54.2357
|
|
|
220 |
verified: true
|
|
|
221 |
- task:
|
222 |
type: summarization
|
223 |
name: Summarization
|
@@ -227,30 +246,36 @@ model-index:
|
|
227 |
config: plain_text
|
228 |
split: test
|
229 |
metrics:
|
230 |
-
-
|
231 |
-
type: rouge
|
232 |
value: 37.0538
|
|
|
233 |
verified: true
|
234 |
-
|
235 |
-
|
236 |
value: 8.1512
|
|
|
237 |
verified: true
|
238 |
-
|
239 |
-
|
240 |
value: 17.6645
|
|
|
241 |
verified: true
|
242 |
-
|
243 |
-
|
244 |
value: 33.4275
|
|
|
245 |
verified: true
|
246 |
-
|
247 |
-
|
248 |
value: 2.6052205562591553
|
|
|
249 |
verified: true
|
250 |
-
|
251 |
-
|
252 |
value: 201.5951
|
|
|
253 |
verified: true
|
|
|
254 |
- task:
|
255 |
type: summarization
|
256 |
name: Summarization
|
@@ -260,30 +285,36 @@ model-index:
|
|
260 |
config: kmfoda--booksum
|
261 |
split: test
|
262 |
metrics:
|
263 |
-
-
|
264 |
-
type: rouge
|
265 |
value: 36.1423
|
|
|
266 |
verified: true
|
267 |
-
|
268 |
-
|
269 |
value: 5.634
|
|
|
270 |
verified: true
|
271 |
-
|
272 |
-
|
273 |
value: 16.3747
|
|
|
274 |
verified: true
|
275 |
-
|
276 |
-
|
277 |
value: 33.0665
|
|
|
278 |
verified: true
|
279 |
-
|
280 |
-
|
281 |
value: 2.454127550125122
|
|
|
282 |
verified: true
|
283 |
-
|
284 |
-
|
285 |
value: 239.4179
|
|
|
286 |
verified: true
|
|
|
287 |
- task:
|
288 |
type: summarization
|
289 |
name: Summarization
|
@@ -293,30 +324,36 @@ model-index:
|
|
293 |
config: y
|
294 |
split: test
|
295 |
metrics:
|
296 |
-
-
|
297 |
-
type: rouge
|
298 |
value: 35.615
|
|
|
299 |
verified: true
|
300 |
-
|
301 |
-
|
302 |
value: 8.2625
|
|
|
303 |
verified: true
|
304 |
-
|
305 |
-
|
306 |
value: 19.9883
|
|
|
307 |
verified: true
|
308 |
-
|
309 |
-
|
310 |
value: 30.1801
|
|
|
311 |
verified: true
|
312 |
-
|
313 |
-
|
314 |
value: 2.8106656074523926
|
|
|
315 |
verified: true
|
316 |
-
|
317 |
-
|
318 |
value: 170.3483
|
|
|
319 |
verified: true
|
|
|
320 |
---
|
321 |
# pszemraj/long-t5-tglobal-base-16384-booksum-V12
|
322 |
|
|
|
1 |
---
|
2 |
+
license:
|
3 |
+
- apache-2.0
|
4 |
+
- bsd-3-clause
|
5 |
tags:
|
6 |
- summarization
|
7 |
- summary
|
8 |
- booksum
|
9 |
- long-document
|
10 |
- long-form
|
|
|
|
|
|
|
11 |
datasets:
|
12 |
- kmfoda/booksum
|
13 |
metrics:
|
|
|
26 |
deviation of the average recurrence interval, the more specific could be the long
|
27 |
term prediction of a future mainshock.
|
28 |
example_title: earthquakes
|
29 |
+
- text: ' A typical feed-forward neural field algorithm. Spatiotemporal coordinates
|
30 |
+
are fed into a neural network that predicts values in the reconstructed domain.
|
31 |
+
Then, this domain is mapped to the sensor domain where sensor measurements are
|
32 |
+
available as supervision. Class and Section Problems Addressed Generalization
|
33 |
+
(Section 2) Inverse problems, ill-posed problems, editability; symmetries. Hybrid
|
34 |
+
Representations (Section 3) Computation & memory efficiency, representation capacity,
|
35 |
+
editability: Forward Maps (Section 4) Inverse problems Network Architecture (Section
|
36 |
+
5) Spectral bias, integration & derivatives. Manipulating Neural Fields (Section
|
37 |
+
6) Edit ability, constraints, regularization. Table 2: The five classes of techniques
|
38 |
+
in the neural field toolbox each addresses problems that arise in learning, inference,
|
39 |
+
and control. (Section 3). We can supervise reconstruction via differentiable forward
|
40 |
+
maps that transform Or project our domain (e.g, 3D reconstruction via 2D images;
|
41 |
+
Section 4) With appropriate network architecture choices, we can overcome neural
|
42 |
+
network spectral biases (blurriness) and efficiently compute derivatives and integrals
|
43 |
+
(Section 5). Finally, we can manipulate neural fields to add constraints and regularizations,
|
44 |
+
and to achieve editable representations (Section 6). Collectively, these classes
|
45 |
+
constitute a ''toolbox'' of techniques to help solve problems with neural fields
|
46 |
+
There are three components in a conditional neural field: (1) An encoder or inference
|
47 |
+
function € that outputs the conditioning latent variable 2 given an observation
|
48 |
+
0 E(0) =2. 2 is typically a low-dimensional vector, and is often referred to aS
|
49 |
+
a latent code Or feature code_ (2) A mapping function 4 between Z and neural field
|
50 |
+
parameters O: Y(z) = O; (3) The neural field itself $. The encoder € finds the
|
51 |
+
most probable z given the observations O: argmaxz P(2/0). The decoder maximizes
|
52 |
+
the inverse conditional probability to find the most probable 0 given Z: arg-
|
53 |
+
max P(Olz). We discuss different encoding schemes with different optimality guarantees
|
54 |
+
(Section 2.1.1), both global and local conditioning (Section 2.1.2), and different
|
55 |
+
mapping functions Y (Section 2.1.3) 2. Generalization Suppose we wish to estimate
|
56 |
+
a plausible 3D surface shape given a partial or noisy point cloud. We need a suitable
|
57 |
+
prior over the sur- face in its reconstruction domain to generalize to the partial
|
58 |
+
observations. A neural network expresses a prior via the function space of its
|
59 |
+
architecture and parameters 0, and generalization is influenced by the inductive
|
60 |
+
bias of this function space (Section 5).'
|
|
|
61 |
example_title: scientific paper
|
62 |
- text: 'Is a else or outside the cob and tree written being of early client rope
|
63 |
and you have is for good reasons. On to the ocean in Orange for time. By''s the
|
|
|
109 |
the point of you of your model. This hidden data is complete by unseen. In other
|
110 |
words, we solve our problem of validation.'
|
111 |
example_title: transcribed audio - lecture
|
112 |
+
- text: 'Transformer-based models have shown to be very useful for many NLP tasks.
|
113 |
+
However, a major limitation of transformers-based models is its O(n^2)O(n 2) time
|
114 |
+
& memory complexity (where nn is sequence length). Hence, it''s computationally
|
115 |
+
very expensive to apply transformer-based models on long sequences n > 512n>512.
|
116 |
+
Several recent papers, e.g. Longformer, Performer, Reformer, Clustered attention
|
117 |
+
try to remedy this problem by approximating the full attention matrix. You can
|
118 |
+
checkout 🤗''s recent blog post in case you are unfamiliar with these models.
|
119 |
+
|
120 |
+
BigBird (introduced in paper) is one of such recent models to address this issue.
|
121 |
+
BigBird relies on block sparse attention instead of normal attention (i.e. BERT''s
|
122 |
+
attention) and can handle sequences up to a length of 4096 at a much lower computational
|
123 |
+
cost compared to BERT. It has achieved SOTA on various tasks involving very long
|
124 |
+
sequences such as long documents summarization, question-answering with long contexts.
|
125 |
+
|
126 |
+
BigBird RoBERTa-like model is now available in 🤗Transformers. The goal of this
|
127 |
+
post is to give the reader an in-depth understanding of big bird implementation
|
128 |
+
& ease one''s life in using BigBird with 🤗Transformers. But, before going into
|
129 |
+
more depth, it is important to remember that the BigBird''s attention is an approximation
|
130 |
+
of BERT''s full attention and therefore does not strive to be better than BERT''s
|
131 |
+
full attention, but rather to be more efficient. It simply allows to apply transformer-based
|
132 |
+
models to much longer sequences since BERT''s quadratic memory requirement quickly
|
133 |
+
becomes unbearable. Simply put, if we would have ∞ compute & ∞ time, BERT''s attention
|
134 |
+
would be preferred over block sparse attention (which we are going to discuss
|
135 |
+
in this post).
|
136 |
+
|
137 |
+
If you wonder why we need more compute when working with longer sequences, this
|
138 |
+
blog post is just right for you!
|
139 |
+
|
140 |
+
Some of the main questions one might have when working with standard BERT-like
|
141 |
+
attention include:
|
142 |
+
|
143 |
+
Do all tokens really have to attend to all other tokens? Why not compute attention
|
144 |
+
only over important tokens? How to decide what tokens are important? How to attend
|
145 |
+
to just a few tokens in a very efficient way? In this blog post, we will try to
|
146 |
+
answer those questions.
|
147 |
+
|
148 |
+
What tokens should be attended to? We will give a practical example of how attention
|
149 |
+
works by considering the sentence ''BigBird is now available in HuggingFace for
|
150 |
+
extractive question answering''. In BERT-like attention, every word would simply
|
151 |
+
attend to all other tokens.
|
152 |
+
|
153 |
+
Let''s think about a sensible choice of key tokens that a queried token actually
|
154 |
+
only should attend to by writing some pseudo-code. Will will assume that the token
|
155 |
+
available is queried and build a sensible list of key tokens to attend to.
|
156 |
+
|
157 |
+
>>> # let''s consider following sentence as an example >>> example = [''BigBird'',
|
158 |
+
''is'', ''now'', ''available'', ''in'', ''HuggingFace'', ''for'', ''extractive'',
|
159 |
+
''question'', ''answering'']
|
160 |
+
|
161 |
+
>>> # further let''s assume, we''re trying to understand the representation of
|
162 |
+
''available'' i.e. >>> query_token = ''available'' >>> # We will initialize an
|
163 |
+
empty `set` and fill up the tokens of our interest as we proceed in this section.
|
164 |
+
>>> key_tokens = [] # => currently ''available'' token doesn''t have anything
|
165 |
+
to attend Nearby tokens should be important because, in a sentence (sequence of
|
166 |
+
words), the current word is highly dependent on neighboring past & future tokens.
|
167 |
+
This intuition is the idea behind the concept of sliding attention.'
|
168 |
example_title: bigbird blog intro
|
169 |
+
- text: 'To be fair, you have to have a very high IQ to understand Rick and Morty.
|
170 |
+
The humour is extremely subtle, and without a solid grasp of theoretical physics
|
171 |
+
most of the jokes will go over a typical viewer''s head. There''s also Rick''s
|
172 |
+
nihilistic outlook, which is deftly woven into his characterisation- his personal
|
173 |
+
philosophy draws heavily from Narodnaya Volya literature, for instance. The fans
|
174 |
+
understand this stuff; they have the intellectual capacity to truly appreciate
|
175 |
+
the depths of these jokes, to realise that they''re not just funny- they say something
|
176 |
+
deep about LIFE. As a consequence people who dislike Rick & Morty truly ARE idiots-
|
177 |
+
of course they wouldn''t appreciate, for instance, the humour in Rick''s existential
|
178 |
+
catchphrase ''Wubba Lubba Dub Dub,'' which itself is a cryptic reference to Turgenev''s
|
179 |
+
Russian epic Fathers and Sons. I''m smirking right now just imagining one of those
|
180 |
+
addlepated simpletons scratching their heads in confusion as Dan Harmon''s genius
|
181 |
+
wit unfolds itself on their television screens. What fools.. how I pity them.
|
182 |
+
😂
|
183 |
+
|
184 |
+
And yes, by the way, i DO have a Rick & Morty tattoo. And no, you cannot see it.
|
185 |
+
It''s for the ladies'' eyes only- and even then they have to demonstrate that
|
186 |
+
they''re within 5 IQ points of my own (preferably lower) beforehand. Nothin personnel
|
187 |
+
kid 😎'
|
188 |
example_title: Richard & Mortimer
|
189 |
parameters:
|
190 |
max_length: 64
|
|
|
207 |
config: samsum
|
208 |
split: test
|
209 |
metrics:
|
210 |
+
- type: rouge
|
|
|
211 |
value: 30.0032
|
212 |
+
name: ROUGE-1
|
213 |
verified: true
|
214 |
+
verifyToken: eyJhbGciOiJFZERTQSIsInR5cCI6IkpXVCJ9.eyJoYXNoIjoiNjk2MTRiNDljZTM4NzliNDdmMTdkZGY3MGY4OTVmMzFhOTdjNGFjYjJhYTBjYTI4Y2VkOGMxYWI5M2M3YWEyZSIsInZlcnNpb24iOjF9.cZtcCwB1Bnnn1g4x8Ia_8oTSK89feGF80r20jwjSb-xy5Xt3eR3dOVjJyjurfN0UOGyEe7inTpneJhcAoRwwBg
|
215 |
+
- type: rouge
|
216 |
value: 7.2671
|
217 |
+
name: ROUGE-2
|
218 |
verified: true
|
219 |
+
verifyToken: eyJhbGciOiJFZERTQSIsInR5cCI6IkpXVCJ9.eyJoYXNoIjoiNThiYmJhN2NkYmU0MmZmZGY5MGU2NmEzZGQwNjM0MDEwNzlhNDgzY2E2MzkxMWVkZTUwMWFlZmFhYWEwN2M5ZSIsInZlcnNpb24iOjF9.IaaaHiOxUdh6IDGbb2vCCEcL-YhXCtaFlZnIpcgQwsC3KRgfrpQi5vdhyaaIJSieA2pzbFjUO--WqjylvpysCA
|
220 |
+
- type: rouge
|
221 |
value: 21.8779
|
222 |
+
name: ROUGE-L
|
223 |
verified: true
|
224 |
+
verifyToken: eyJhbGciOiJFZERTQSIsInR5cCI6IkpXVCJ9.eyJoYXNoIjoiNTc1N2YwODk4YmU1Mjk3NGQ2ZDVkYWVjN2Y1ZDVlOTNkMjU5MjcyYjY0ZWY5NjJkNzZjNjMwZWUxNWY0NTY1ZiIsInZlcnNpb24iOjF9.HhYA0t2Ee3YhtBDPneU7hzEEz5c4FeBcTo-3TSSClltG3A5E3RIgbxUbQNbldRAL9Y44Z8uzEHfe676eL22vBg
|
225 |
+
- type: rouge
|
226 |
value: 26.4371
|
227 |
+
name: ROUGE-LSUM
|
228 |
verified: true
|
229 |
+
verifyToken: eyJhbGciOiJFZERTQSIsInR5cCI6IkpXVCJ9.eyJoYXNoIjoiOTJmZmJhZTBiZDczYmNkNWQ0MGQ3ZTIyNzc2NGExMGY1MGNkOThlNDg0OWQ3YWFmNDRmYTUxZTYzN2U5Yzc4MCIsInZlcnNpb24iOjF9.fgr8NNlhDCvtXMudOce1pf_slujIhXAEC3a6fH6AAlgIvzxg1oGV5QiUcrPDNhyFD2XazZ39Xk1GhoMk4AnxAQ
|
230 |
+
- type: loss
|
231 |
value: 2.6383285522460938
|
232 |
+
name: loss
|
233 |
verified: true
|
234 |
+
verifyToken: eyJhbGciOiJFZERTQSIsInR5cCI6IkpXVCJ9.eyJoYXNoIjoiNjRiMjAyMjJkM2M5NGZjYzRiZGFlNTJhM2UyNjExODlmNjM4NjRmZTRlMWEzMTUzYTI2NjYzYTAyNmVlYjJjMCIsInZlcnNpb24iOjF9.wKAqpXyvHNGDpxwLmR6mzI4gRwVQI88uFJZJoRAWQD_d-H97y5cpP4VSBes_YfVpFpYzEF8miN9fv660xukiBA
|
235 |
+
- type: gen_len
|
236 |
value: 54.2357
|
237 |
+
name: gen_len
|
238 |
verified: true
|
239 |
+
verifyToken: eyJhbGciOiJFZERTQSIsInR5cCI6IkpXVCJ9.eyJoYXNoIjoiNzA1Y2IxN2Q4OGU0N2FkNDFmNTFmMjQwZDA4MTczMDJmNWIyMjdhYzhkNTE5ZjI4M2NjZTdkMmUwMTFjMzk1ZCIsInZlcnNpb24iOjF9.JuADjJNIcaqmZTw1RFnklHJYEYfTEKQ0YnmvL1TmvSihIVJORbK-3cFkJLVJdyaaRq40HjhQRw6mmpur9Lq1CQ
|
240 |
- task:
|
241 |
type: summarization
|
242 |
name: Summarization
|
|
|
246 |
config: plain_text
|
247 |
split: test
|
248 |
metrics:
|
249 |
+
- type: rouge
|
|
|
250 |
value: 37.0538
|
251 |
+
name: ROUGE-1
|
252 |
verified: true
|
253 |
+
verifyToken: eyJhbGciOiJFZERTQSIsInR5cCI6IkpXVCJ9.eyJoYXNoIjoiMzViY2Y2ZWIwMDdhNDEzMDU3MmE4ZTBlZjQ2MDI2YTVjOGZjZDM5NzhiZDk2MWJhZWY5MDUwY2NhZTY2OTc5ZSIsInZlcnNpb24iOjF9.p2z_oZD9uVTnBtf7vRRKvisW-rXWVibpU0QQ-S_16CIYLc2kTJRZMLzaMJqbi1d8icBTeG5PdIzKcAVwu7JKCA
|
254 |
+
- type: rouge
|
255 |
value: 8.1512
|
256 |
+
name: ROUGE-2
|
257 |
verified: true
|
258 |
+
verifyToken: eyJhbGciOiJFZERTQSIsInR5cCI6IkpXVCJ9.eyJoYXNoIjoiMWUzZGM0ZGJiMDYwM2ZmYjI5Mzk5MTU2N2JlZGVlOGRjMTJjY2QwOWIwMjgyMjM0ZjIzY2Q4MzJjNDkxZmVhMCIsInZlcnNpb24iOjF9.z6pMF8l4uMQIEcdyU1kgDc1v3rCn-0TVxntKP3hmOEwRJqfbeqDmhhAROWadYTPNewpfsCpShVHGJt9DvH55BQ
|
259 |
+
- type: rouge
|
260 |
value: 17.6645
|
261 |
+
name: ROUGE-L
|
262 |
verified: true
|
263 |
+
verifyToken: eyJhbGciOiJFZERTQSIsInR5cCI6IkpXVCJ9.eyJoYXNoIjoiZWNkYzY2NGY4YmFiNWRhODAwZmFmOTkzM2M3MGY0ZTQzZTUwNmExNDc5ZDdhZWVhZjFhYTUyYjFlZjQ3ZDA4ZCIsInZlcnNpb24iOjF9.XbVCDhR_l7OalwF2DsHJSZ39z_HHdG3PlwKL0Ls9lBvRo4E8sk00vrQy4IRCqPF8hPJusl2Nb65V3CvgIldqAA
|
264 |
+
- type: rouge
|
265 |
value: 33.4275
|
266 |
+
name: ROUGE-LSUM
|
267 |
verified: true
|
268 |
+
verifyToken: eyJhbGciOiJFZERTQSIsInR5cCI6IkpXVCJ9.eyJoYXNoIjoiNDdiYzI0MDlmYjg0MWFjZDBmMmIyZWUyNzNhYTUyNTU1ZDdhODE4ZTlmMTg5MDY1MDhhMGRlMGU1OTA3YzM4ZSIsInZlcnNpb24iOjF9.pDHKUDMXHihmLSQzYq6bxclcLyajcRf6Q5ImhpvpoepG8du5ggwb1q_2anGfDjJ0kkFa-Iwtbl8KmdqD7TTCAQ
|
269 |
+
- type: loss
|
270 |
value: 2.6052205562591553
|
271 |
+
name: loss
|
272 |
verified: true
|
273 |
+
verifyToken: eyJhbGciOiJFZERTQSIsInR5cCI6IkpXVCJ9.eyJoYXNoIjoiNjk0YWNjMjkxZjUwMDBlODNkNjE0ZWRkYzYxZmRjNjBhMmVjNTE2OWFkZTU1OTYzMzMxNzdkMGFlODVjOWVkNCIsInZlcnNpb24iOjF9.n-p8JJBe9nOsKwvS2CHO6HBiI6b-0dUZuVaL9aQgX_qFhETvwR_gHggWXU6sCiLCzkElH6ZpGpcMw9AogJWkCw
|
274 |
+
- type: gen_len
|
275 |
value: 201.5951
|
276 |
+
name: gen_len
|
277 |
verified: true
|
278 |
+
verifyToken: eyJhbGciOiJFZERTQSIsInR5cCI6IkpXVCJ9.eyJoYXNoIjoiMzMyYWViNDNjMzY2NmQyZjI5MWU2ZjMwMmYyOGFkMzM0YzgwMzg5ZDhmYzYzYzg0OTMzOWY5ZDRiM2NkNWViOSIsInZlcnNpb24iOjF9.6T6C1dimUVOHNbqm5drVZmiWVrQEC0VBc7nSAiyLm2K3WE99FisSByk4zhBtUf_CntT_TZm1dBpfTaAUVPDOAQ
|
279 |
- task:
|
280 |
type: summarization
|
281 |
name: Summarization
|
|
|
285 |
config: kmfoda--booksum
|
286 |
split: test
|
287 |
metrics:
|
288 |
+
- type: rouge
|
|
|
289 |
value: 36.1423
|
290 |
+
name: ROUGE-1
|
291 |
verified: true
|
292 |
+
verifyToken: eyJhbGciOiJFZERTQSIsInR5cCI6IkpXVCJ9.eyJoYXNoIjoiOTZkYTA5N2FhNjVhMzg1ZDRjOThhZjcwMjdmYzQ1MGE5N2RhNTM0MmNjMzVkYjNlYmZjOGZjMDFlZDBkMGM5MSIsInZlcnNpb24iOjF9.odQ-NMcQ06o2mqzXOfGY1c967_RUfg93YfGnMTpKUXPM5dGawkdVYGO8rPCHt5bttPvYlBmRgNl6Z7H_OhgnCA
|
293 |
+
- type: rouge
|
294 |
value: 5.634
|
295 |
+
name: ROUGE-2
|
296 |
verified: true
|
297 |
+
verifyToken: eyJhbGciOiJFZERTQSIsInR5cCI6IkpXVCJ9.eyJoYXNoIjoiZmFkODViOTg2MDYxZDhlMjZiOTNjZWE2ZTI5YmVhYWRiNGM1OTAzZDEzN2Y1ODI4OWI3NzU2ZmZlMGJjNGIyZiIsInZlcnNpb24iOjF9.4-VpnxVDiC0AG-de1dFr6VHNNbK2qZhAMQ62EpVU7Et-n25w8GPcoyr9l4AXIodQpU6p0H0pdntEUqQwJOHaDg
|
298 |
+
- type: rouge
|
299 |
value: 16.3747
|
300 |
+
name: ROUGE-L
|
301 |
verified: true
|
302 |
+
verifyToken: eyJhbGciOiJFZERTQSIsInR5cCI6IkpXVCJ9.eyJoYXNoIjoiYzkzYWY1NmEyMWNkODQ2N2ExYzMwNWExZDgwNTkxMTg5OTNjYjU5NjMwNWU3NzZhZDYwYzA4M2I0ZmU3Yjg2NiIsInZlcnNpb24iOjF9.tY2mQ0bZU9GMYYTJPot_vgvmiAoubdYWAzEQSQskigleh7AWtsXbO2CnhBsE_7UpsLPVWGccP0IWkHdHRg9zAA
|
303 |
+
- type: rouge
|
304 |
value: 33.0665
|
305 |
+
name: ROUGE-LSUM
|
306 |
verified: true
|
307 |
+
verifyToken: eyJhbGciOiJFZERTQSIsInR5cCI6IkpXVCJ9.eyJoYXNoIjoiZTEyZGZlNmRhNjllMGExZTJhOWE0NDQwN2Q3MjQyZmM5OGZjZDQwMGE4MGRiMjJmMWVmNjc2ZTQwOWFlMTdmNyIsInZlcnNpb24iOjF9.W1bgFs6XhmbeWJlX_6IvWx6MX-yUj5ErdBU1cGAAZRrEA0elBa_-FdbRkwnLDcBNmBm16vtxPAQfQgJQXmIcDA
|
308 |
+
- type: loss
|
309 |
value: 2.454127550125122
|
310 |
+
name: loss
|
311 |
verified: true
|
312 |
+
verifyToken: eyJhbGciOiJFZERTQSIsInR5cCI6IkpXVCJ9.eyJoYXNoIjoiMTQ0OGMyZGNmZjVlMDYzOTA1NjdlZjZhOThhN2M3ZTZjNWM5N2Y2MjQwZjg4Y2E4MjhiOWUzODFiMzY1YzU0NyIsInZlcnNpb24iOjF9.TOjsyBEWqDD5N9FzJPE9Z7Poj0oXefGryUy7rgj4uXbbWb8DMsMXMcxNVEKixG_vbGyFyASSmgyeW6bAFHaPCw
|
313 |
+
- type: gen_len
|
314 |
value: 239.4179
|
315 |
+
name: gen_len
|
316 |
verified: true
|
317 |
+
verifyToken: eyJhbGciOiJFZERTQSIsInR5cCI6IkpXVCJ9.eyJoYXNoIjoiMGZmOWY5NmMyNjUzZDM2NmNjNzBjMzU2OTMxYWE2MGFhM2JiMmFmNzQwOTg4NGY5Yzc1NmZjNGZmZjM5NWQzNyIsInZlcnNpb24iOjF9.piE6u39D58dKz2HimpE4Fng7cHELJPuSpZaoEU3gOXSXYw_lx2KQhi2VfFg-mUasmLuQn4bBvMJcWXyBTY8YBw
|
318 |
- task:
|
319 |
type: summarization
|
320 |
name: Summarization
|
|
|
324 |
config: y
|
325 |
split: test
|
326 |
metrics:
|
327 |
+
- type: rouge
|
|
|
328 |
value: 35.615
|
329 |
+
name: ROUGE-1
|
330 |
verified: true
|
331 |
+
verifyToken: eyJhbGciOiJFZERTQSIsInR5cCI6IkpXVCJ9.eyJoYXNoIjoiMWM4ZWQxMjBmNzFlYWMwODg5YTEzOWRmYzBiNmI4ZjBmNmFiZjk2NWQxNDFmY2QzNTA3ZTc5ODZkNmJkZGE4NSIsInZlcnNpb24iOjF9.MABjYbSyTQrT0QxzXM9VRpdDb5dchk1GI_TD_NSB27ozZdWEXyZ-dp44jR-M9mJTSsGk60czxmCF1gq-e4YhAQ
|
332 |
+
- type: rouge
|
333 |
value: 8.2625
|
334 |
+
name: ROUGE-2
|
335 |
verified: true
|
336 |
+
verifyToken: eyJhbGciOiJFZERTQSIsInR5cCI6IkpXVCJ9.eyJoYXNoIjoiNTk3MmI3ZmQyOTlmYzc4YTkwNjBjOTM3YmE5NjQxOGVkMDFlODc4YjgxMzlhNGRkYThkMzQ5OTU4YWFjYTg0NiIsInZlcnNpb24iOjF9.KHipwLhPWwc55GQpvNe3bSrKOgaAs4sFvLEGvzVa4HWWyvz4oX2ZaytYnURH9Xid7d9nTr7zWYYiwQ7TmSXPDA
|
337 |
+
- type: rouge
|
338 |
value: 19.9883
|
339 |
+
name: ROUGE-L
|
340 |
verified: true
|
341 |
+
verifyToken: eyJhbGciOiJFZERTQSIsInR5cCI6IkpXVCJ9.eyJoYXNoIjoiOTlhZDk5ZmEyYzgxY2IyNWI1MTk1Nzg2YmVlNmRhMjcyZmFmMWZkNGQ4OWEwYjQwYTk3YzllODdiNzRkN2M5ZCIsInZlcnNpb24iOjF9.ah1-tJ5rUuUToNUHUMf9v9_TGJdhffBMdPDthvo3fmKcFtUQFAMwIloGLp0ePcCS_h8IMEyrtpMwqcDc7jrgAw
|
342 |
+
- type: rouge
|
343 |
value: 30.1801
|
344 |
+
name: ROUGE-LSUM
|
345 |
verified: true
|
346 |
+
verifyToken: eyJhbGciOiJFZERTQSIsInR5cCI6IkpXVCJ9.eyJoYXNoIjoiMzViMzBiY2I2NWNkMjJmMmZhOTk2YzY3NTFhZTIxOTAzY2ZmNmJlYTlmZDI4YjAyYmRiNDRlNTk0MWJjMmY1MCIsInZlcnNpb24iOjF9.KUPyHMK77clPtJHyXR5WirKcy5O5hZP-MBZE-gFRy21S_sIsHpZNnBuGTJ6AMVi_38MNvDgLQWwSE-4y9eG8Dg
|
347 |
+
- type: loss
|
348 |
value: 2.8106656074523926
|
349 |
+
name: loss
|
350 |
verified: true
|
351 |
+
verifyToken: eyJhbGciOiJFZERTQSIsInR5cCI6IkpXVCJ9.eyJoYXNoIjoiYjA1ZTk2NzA5NDUwMjQ1ZDcxZTA0ZTA3YzdjYzhhZWM1ZjI3MTllYTg2YzAxOTk0Nzk1Yjc0OTRiNzIyOWExZSIsInZlcnNpb24iOjF9.q2sdYyFeFxpjGPKGpJDnoOmzTznwA1Z99GBWOHA-9YUI5q_w_kbV8JdfbiQ9GsaN8EqDlmkCL2kv5lC3xvvUAA
|
352 |
+
- type: gen_len
|
353 |
value: 170.3483
|
354 |
+
name: gen_len
|
355 |
verified: true
|
356 |
+
verifyToken: eyJhbGciOiJFZERTQSIsInR5cCI6IkpXVCJ9.eyJoYXNoIjoiY2MxNWFjYTg1Yjc3YmNjMjViYjM5ZDdmY2NhNjFjMWQxYWQwOWI3NTczY2M5ZWVmMGM2MmQ0ZmY3M2Y0MDEwZiIsInZlcnNpb24iOjF9.J80uRlSZCVIsvyVkO8rqQ4vyZrgBMu1YpOckAzIaj_jTWKGaOPM3kj6sSePiEN8OLZYwDueqLsKkPa0B6ZXIBw
|
357 |
---
|
358 |
# pszemraj/long-t5-tglobal-base-16384-booksum-V12
|
359 |
|