add stuff
Browse files- .gitignore +1 -0
- config.json +2 -2
- latest +1 -0
- long-t5-tglobal-base-16384-booksum-V7.9-ft1-booksum_training_metadata.json +1 -0
- pytorch_model.bin +1 -1
- tokenizer_config.json +1 -1
- trainer_state.json +845 -179
- training_args.bin +1 -1
- zero_to_fp32.py +484 -0
.gitignore
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
checkpoint-*/
|
config.json
CHANGED
@@ -1,5 +1,5 @@
|
|
1 |
{
|
2 |
-
"_name_or_path": "pszemraj/long-t5-tglobal-base-16384-booksum-
|
3 |
"architectures": [
|
4 |
"LongT5ForConditionalGeneration"
|
5 |
],
|
@@ -36,7 +36,7 @@
|
|
36 |
"relative_attention_num_buckets": 32,
|
37 |
"repetition_penalty": 3.5,
|
38 |
"tie_word_embeddings": false,
|
39 |
-
"torch_dtype": "
|
40 |
"transformers_version": "4.20.1",
|
41 |
"use_cache": false,
|
42 |
"vocab_size": 32128
|
|
|
1 |
{
|
2 |
+
"_name_or_path": "pszemraj/long-t5-tglobal-base-16384-booksum-V7.9",
|
3 |
"architectures": [
|
4 |
"LongT5ForConditionalGeneration"
|
5 |
],
|
|
|
36 |
"relative_attention_num_buckets": 32,
|
37 |
"repetition_penalty": 3.5,
|
38 |
"tie_word_embeddings": false,
|
39 |
+
"torch_dtype": "float32",
|
40 |
"transformers_version": "4.20.1",
|
41 |
"use_cache": false,
|
42 |
"vocab_size": 32128
|
latest
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
global_step330
|
long-t5-tglobal-base-16384-booksum-V7.9-ft1-booksum_training_metadata.json
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
{"output_dir": "/content/drive/MyDrive/Programming/hf-trainer/long-t5-tglobal-base-16384-booksum-V7.9-ft1-booksum", "overwrite_output_dir": true, "do_train": false, "do_eval": false, "do_predict": false, "evaluation_strategy": "no", "prediction_loss_only": false, "per_device_train_batch_size": 1, "per_device_eval_batch_size": 1, "per_gpu_train_batch_size": "None", "per_gpu_eval_batch_size": "None", "gradient_accumulation_steps": 64, "eval_accumulation_steps": "None", "eval_delay": 0, "learning_rate": 0.001, "weight_decay": 0.05, "adam_beta1": 0.9, "adam_beta2": 0.999, "adam_epsilon": 1e-08, "max_grad_norm": 0.5, "num_train_epochs": 2, "max_steps": -1, "lr_scheduler_type": "cosine", "warmup_ratio": 0.01, "warmup_steps": 0, "log_level": -1, "log_level_replica": -1, "log_on_each_node": true, "logging_dir": "/content/drive/MyDrive/Programming/hf-trainer/long-t5-tglobal-base-16384-booksum-V7.9-ft1-booksum/logs", "logging_strategy": "steps", "logging_first_step": false, "logging_steps": 2, "logging_nan_inf_filter": true, "save_strategy": "epoch", "save_steps": 500, "save_total_limit": 1, "save_on_each_node": false, "no_cuda": false, "seed": 42, "data_seed": "None", "jit_mode_eval": false, "use_ipex": false, "bf16": false, "fp16": true, "fp16_opt_level": "O1", "half_precision_backend": "cuda_amp", "bf16_full_eval": false, "fp16_full_eval": false, "tf32": "None", "local_rank": 0, "xpu_backend": "None", "tpu_num_cores": "None", "tpu_metrics_debug": false, "debug": "[]", "dataloader_drop_last": false, "eval_steps": "None", "dataloader_num_workers": 0, "past_index": -1, "run_name": "/content/drive/MyDrive/Programming/hf-trainer/long-t5-tglobal-base-16384-booksum-V7.9-ft1-booksum", "disable_tqdm": false, "remove_unused_columns": true, "label_names": "None", "load_best_model_at_end": false, "metric_for_best_model": "None", "greater_is_better": "None", "ignore_data_skip": false, "sharded_ddp": "[]", "fsdp": "[]", "fsdp_min_num_params": 0, "deepspeed": "/content/ds_config_zero2.json", "label_smoothing_factor": 0.0, "optim": "adamw_hf", "adafactor": false, "group_by_length": false, "length_column_name": "length", "report_to": "['tensorboard']", "ddp_find_unused_parameters": "None", "ddp_bucket_cap_mb": "None", "dataloader_pin_memory": true, "skip_memory_metrics": true, "use_legacy_prediction_loop": false, "push_to_hub": true, "resume_from_checkpoint": "None", "hub_model_id": "long-t5-tglobal-base-16384-booksum-V7.9-ft1-booksum", "hub_strategy": "end", "hub_token": "<HUB_TOKEN>", "hub_private_repo": true, "gradient_checkpointing": true, "include_inputs_for_metrics": false, "fp16_backend": "auto", "push_to_hub_model_id": "None", "push_to_hub_organization": "None", "push_to_hub_token": "<PUSH_TO_HUB_TOKEN>", "_n_gpu": 1, "mp_parameters": "", "auto_find_batch_size": false, "full_determinism": false, "torchdynamo": "None", "ray_scope": "last", "sortish_sampler": false, "predict_with_generate": false, "generation_max_length": "None", "generation_num_beams": "None", "train_batch_size": 1, "eval_batch_size": 1, "configs_src": "long-t5-tglobal-base-16384-booksum-V7.9-ft1-booksum"}
|
pytorch_model.bin
CHANGED
@@ -1,3 +1,3 @@
|
|
1 |
version https://git-lfs.github.com/spec/v1
|
2 |
-
oid sha256:
|
3 |
size 990388907
|
|
|
1 |
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:b05f4b28e354b9cc1c758956764bfd54d590226a1dfbe604856ded1dbafd148e
|
3 |
size 990388907
|
tokenizer_config.json
CHANGED
@@ -103,7 +103,7 @@
|
|
103 |
],
|
104 |
"eos_token": "</s>",
|
105 |
"extra_ids": 100,
|
106 |
-
"name_or_path": "pszemraj/long-t5-tglobal-base-16384-booksum-
|
107 |
"pad_token": "<pad>",
|
108 |
"special_tokens_map_file": null,
|
109 |
"tokenizer_class": "T5Tokenizer",
|
|
|
103 |
],
|
104 |
"eos_token": "</s>",
|
105 |
"extra_ids": 100,
|
106 |
+
"name_or_path": "pszemraj/long-t5-tglobal-base-16384-booksum-V7.9",
|
107 |
"pad_token": "<pad>",
|
108 |
"special_tokens_map_file": null,
|
109 |
"tokenizer_class": "T5Tokenizer",
|
trainer_state.json
CHANGED
@@ -1,349 +1,1015 @@
|
|
1 |
{
|
2 |
"best_metric": null,
|
3 |
"best_model_checkpoint": null,
|
4 |
-
"epoch": 1.
|
5 |
-
"global_step":
|
6 |
"is_hyper_param_search": false,
|
7 |
"is_local_process_zero": true,
|
8 |
"is_world_process_zero": true,
|
9 |
"log_history": [
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
10 |
{
|
11 |
"epoch": 0.04,
|
12 |
-
"learning_rate": 0.
|
13 |
-
"loss": 2.
|
14 |
-
"step":
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
15 |
},
|
16 |
{
|
17 |
"epoch": 0.07,
|
18 |
-
"learning_rate": 0.
|
19 |
-
"loss": 2.
|
20 |
-
"step":
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
21 |
},
|
22 |
{
|
23 |
"epoch": 0.11,
|
24 |
-
"learning_rate": 0.
|
25 |
-
"loss": 2.
|
26 |
-
"step":
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
27 |
},
|
28 |
{
|
29 |
"epoch": 0.15,
|
30 |
-
"learning_rate": 0.
|
31 |
-
"loss": 2.
|
32 |
-
"step":
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
33 |
},
|
34 |
{
|
35 |
"epoch": 0.18,
|
36 |
-
"learning_rate": 0.
|
37 |
-
"loss": 2.
|
38 |
-
"step":
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
39 |
},
|
40 |
{
|
41 |
"epoch": 0.22,
|
42 |
-
"learning_rate": 0.
|
43 |
-
"loss": 2.
|
44 |
-
"step":
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
45 |
},
|
46 |
{
|
47 |
"epoch": 0.25,
|
48 |
-
"learning_rate": 0.
|
49 |
-
"loss": 2.
|
50 |
-
"step":
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
51 |
},
|
52 |
{
|
53 |
"epoch": 0.29,
|
54 |
-
"learning_rate": 0.
|
55 |
-
"loss": 2.
|
56 |
-
"step":
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
57 |
},
|
58 |
{
|
59 |
"epoch": 0.33,
|
60 |
-
"learning_rate": 0.
|
61 |
-
"loss": 2.
|
62 |
-
"step":
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
63 |
},
|
64 |
{
|
65 |
"epoch": 0.36,
|
66 |
-
"learning_rate": 0.
|
67 |
-
"loss": 2.
|
68 |
-
"step":
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
69 |
},
|
70 |
{
|
71 |
"epoch": 0.4,
|
72 |
-
"learning_rate": 0.
|
73 |
-
"loss": 2.
|
74 |
-
"step":
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
75 |
},
|
76 |
{
|
77 |
"epoch": 0.44,
|
78 |
-
"learning_rate": 0.
|
79 |
-
"loss": 2.
|
80 |
-
"step":
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
81 |
},
|
82 |
{
|
83 |
"epoch": 0.47,
|
84 |
-
"learning_rate": 0.
|
85 |
-
"loss": 2.
|
86 |
-
"step":
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
87 |
},
|
88 |
{
|
89 |
"epoch": 0.51,
|
90 |
-
"learning_rate": 0.
|
91 |
-
"loss": 2.
|
92 |
-
"step":
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
93 |
},
|
94 |
{
|
95 |
"epoch": 0.54,
|
96 |
-
"learning_rate": 0.
|
97 |
-
"loss": 2.
|
98 |
-
"step":
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
99 |
},
|
100 |
{
|
101 |
"epoch": 0.58,
|
102 |
-
"learning_rate": 0.
|
103 |
-
"loss": 2.
|
104 |
-
"step":
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
105 |
},
|
106 |
{
|
107 |
"epoch": 0.62,
|
108 |
-
"learning_rate": 0.
|
109 |
-
"loss": 2.
|
110 |
-
"step":
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
111 |
},
|
112 |
{
|
113 |
"epoch": 0.65,
|
114 |
-
"learning_rate": 0.
|
115 |
-
"loss": 2.
|
116 |
-
"step":
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
117 |
},
|
118 |
{
|
119 |
"epoch": 0.69,
|
120 |
-
"learning_rate": 0.
|
121 |
-
"loss": 2.
|
122 |
-
"step":
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
123 |
},
|
124 |
{
|
125 |
"epoch": 0.73,
|
126 |
-
"learning_rate": 0.
|
127 |
-
"loss": 2.
|
128 |
-
"step":
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
129 |
},
|
130 |
{
|
131 |
"epoch": 0.76,
|
132 |
-
"learning_rate": 0.
|
133 |
-
"loss": 2.
|
134 |
-
"step":
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
135 |
},
|
136 |
{
|
137 |
"epoch": 0.8,
|
138 |
-
"learning_rate": 0.
|
139 |
-
"loss": 2.
|
140 |
-
"step":
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
141 |
},
|
142 |
{
|
143 |
"epoch": 0.83,
|
144 |
-
"learning_rate": 0.
|
145 |
-
"loss": 2.
|
146 |
-
"step":
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
147 |
},
|
148 |
{
|
149 |
"epoch": 0.87,
|
150 |
-
"learning_rate": 0.
|
151 |
-
"loss": 2.
|
152 |
-
"step":
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
153 |
},
|
154 |
{
|
155 |
"epoch": 0.91,
|
156 |
-
"learning_rate": 0.
|
157 |
-
"loss": 2.
|
158 |
-
"step":
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
159 |
},
|
160 |
{
|
161 |
"epoch": 0.94,
|
162 |
-
"learning_rate": 0.
|
163 |
-
"loss": 2.
|
164 |
-
"step":
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
165 |
},
|
166 |
{
|
167 |
"epoch": 0.98,
|
168 |
-
"learning_rate": 0.
|
169 |
-
"loss": 2.
|
170 |
-
"step":
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
171 |
},
|
172 |
{
|
173 |
"epoch": 1.02,
|
174 |
-
"learning_rate": 0.
|
175 |
-
"loss":
|
176 |
-
"step":
|
|
|
|
|
|
|
|
|
|
|
|
|
177 |
},
|
178 |
{
|
179 |
-
"epoch": 1.
|
180 |
-
"learning_rate": 0.
|
181 |
-
"loss": 2.
|
182 |
-
"step":
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
183 |
},
|
184 |
{
|
185 |
"epoch": 1.1,
|
186 |
-
"learning_rate": 0.
|
187 |
-
"loss": 2.
|
188 |
-
"step":
|
|
|
|
|
|
|
|
|
|
|
|
|
189 |
},
|
190 |
{
|
191 |
"epoch": 1.13,
|
192 |
-
"learning_rate": 0.
|
193 |
-
"loss": 2.
|
194 |
-
"step":
|
195 |
},
|
196 |
{
|
197 |
-
"epoch": 1.
|
198 |
-
"learning_rate": 0.
|
199 |
-
"loss": 2.
|
200 |
-
"step":
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
201 |
},
|
202 |
{
|
203 |
"epoch": 1.21,
|
204 |
-
"learning_rate": 0.
|
205 |
-
"loss": 2.
|
206 |
-
"step":
|
|
|
|
|
|
|
|
|
|
|
|
|
207 |
},
|
208 |
{
|
209 |
"epoch": 1.24,
|
210 |
-
"learning_rate": 0.
|
211 |
-
"loss": 2.
|
212 |
-
"step":
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
213 |
},
|
214 |
{
|
215 |
"epoch": 1.28,
|
216 |
-
"learning_rate": 0.
|
217 |
-
"loss": 2.
|
218 |
-
"step":
|
|
|
|
|
|
|
|
|
|
|
|
|
219 |
},
|
220 |
{
|
221 |
"epoch": 1.31,
|
222 |
-
"learning_rate": 0.
|
223 |
-
"loss": 2.
|
224 |
-
"step":
|
|
|
|
|
|
|
|
|
|
|
|
|
225 |
},
|
226 |
{
|
227 |
-
"epoch": 1.
|
228 |
-
"learning_rate":
|
229 |
-
"loss": 2.
|
230 |
-
"step":
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
231 |
},
|
232 |
{
|
233 |
"epoch": 1.39,
|
234 |
-
"learning_rate":
|
235 |
-
"loss": 2.
|
236 |
-
"step":
|
|
|
|
|
|
|
|
|
|
|
|
|
237 |
},
|
238 |
{
|
239 |
"epoch": 1.42,
|
240 |
-
"learning_rate":
|
241 |
-
"loss": 2.
|
242 |
-
"step":
|
243 |
},
|
244 |
{
|
245 |
-
"epoch": 1.
|
246 |
-
"learning_rate":
|
247 |
-
"loss": 2.
|
248 |
-
"step":
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
249 |
},
|
250 |
{
|
251 |
"epoch": 1.5,
|
252 |
-
"learning_rate":
|
253 |
-
"loss": 2.
|
254 |
-
"step":
|
|
|
|
|
|
|
|
|
|
|
|
|
255 |
},
|
256 |
{
|
257 |
"epoch": 1.53,
|
258 |
-
"learning_rate":
|
259 |
-
"loss": 2.
|
260 |
-
"step":
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
261 |
},
|
262 |
{
|
263 |
"epoch": 1.57,
|
264 |
-
"learning_rate":
|
265 |
-
"loss": 2.
|
266 |
-
"step":
|
|
|
|
|
|
|
|
|
|
|
|
|
267 |
},
|
268 |
{
|
269 |
"epoch": 1.6,
|
270 |
-
"learning_rate":
|
271 |
-
"loss": 2.
|
272 |
-
"step":
|
273 |
},
|
274 |
{
|
275 |
-
"epoch": 1.
|
276 |
-
"learning_rate":
|
277 |
-
"loss": 2.
|
278 |
-
"step":
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
279 |
},
|
280 |
{
|
281 |
"epoch": 1.68,
|
282 |
-
"learning_rate":
|
283 |
-
"loss": 2.
|
284 |
-
"step":
|
|
|
|
|
|
|
|
|
|
|
|
|
285 |
},
|
286 |
{
|
287 |
"epoch": 1.71,
|
288 |
-
"learning_rate":
|
289 |
-
"loss": 2.
|
290 |
-
"step":
|
291 |
},
|
292 |
{
|
293 |
-
"epoch": 1.
|
294 |
-
"learning_rate":
|
295 |
-
"loss": 2.
|
296 |
-
"step":
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
297 |
},
|
298 |
{
|
299 |
"epoch": 1.79,
|
300 |
-
"learning_rate":
|
301 |
-
"loss": 2.
|
302 |
-
"step":
|
|
|
|
|
|
|
|
|
|
|
|
|
303 |
},
|
304 |
{
|
305 |
"epoch": 1.82,
|
306 |
-
"learning_rate":
|
307 |
-
"loss": 2.
|
308 |
-
"step":
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
309 |
},
|
310 |
{
|
311 |
"epoch": 1.86,
|
312 |
-
"learning_rate":
|
313 |
-
"loss": 2.
|
314 |
-
"step":
|
|
|
|
|
|
|
|
|
|
|
|
|
315 |
},
|
316 |
{
|
317 |
"epoch": 1.89,
|
318 |
-
"learning_rate":
|
319 |
-
"loss": 2.
|
320 |
-
"step":
|
321 |
},
|
322 |
{
|
323 |
-
"epoch": 1.
|
324 |
-
"learning_rate":
|
325 |
-
"loss": 2.
|
326 |
-
"step":
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
327 |
},
|
328 |
{
|
329 |
"epoch": 1.97,
|
330 |
-
"learning_rate":
|
331 |
-
"loss": 2.
|
332 |
-
"step":
|
333 |
},
|
334 |
{
|
335 |
"epoch": 1.99,
|
336 |
-
"
|
337 |
-
"
|
338 |
-
"
|
339 |
-
|
340 |
-
|
341 |
-
"
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
342 |
}
|
343 |
],
|
344 |
-
"max_steps":
|
345 |
"num_train_epochs": 2,
|
346 |
-
"total_flos": 4.
|
347 |
"trial_name": null,
|
348 |
"trial_params": null
|
349 |
}
|
|
|
1 |
{
|
2 |
"best_metric": null,
|
3 |
"best_model_checkpoint": null,
|
4 |
+
"epoch": 1.9971671388101981,
|
5 |
+
"global_step": 330,
|
6 |
"is_hyper_param_search": false,
|
7 |
"is_local_process_zero": true,
|
8 |
"is_world_process_zero": true,
|
9 |
"log_history": [
|
10 |
+
{
|
11 |
+
"epoch": 0.01,
|
12 |
+
"learning_rate": 0.0005,
|
13 |
+
"loss": 2.3487,
|
14 |
+
"step": 2
|
15 |
+
},
|
16 |
+
{
|
17 |
+
"epoch": 0.02,
|
18 |
+
"learning_rate": 0.001,
|
19 |
+
"loss": 2.3946,
|
20 |
+
"step": 4
|
21 |
+
},
|
22 |
{
|
23 |
"epoch": 0.04,
|
24 |
+
"learning_rate": 0.0009999071352056674,
|
25 |
+
"loss": 2.4059,
|
26 |
+
"step": 6
|
27 |
+
},
|
28 |
+
{
|
29 |
+
"epoch": 0.05,
|
30 |
+
"learning_rate": 0.00099962857531815,
|
31 |
+
"loss": 2.4061,
|
32 |
+
"step": 8
|
33 |
+
},
|
34 |
+
{
|
35 |
+
"epoch": 0.06,
|
36 |
+
"learning_rate": 0.000999164423811074,
|
37 |
+
"loss": 2.3801,
|
38 |
+
"step": 10
|
39 |
},
|
40 |
{
|
41 |
"epoch": 0.07,
|
42 |
+
"learning_rate": 0.0009985148530977765,
|
43 |
+
"loss": 2.4389,
|
44 |
+
"step": 12
|
45 |
+
},
|
46 |
+
{
|
47 |
+
"epoch": 0.08,
|
48 |
+
"learning_rate": 0.0009976801044672607,
|
49 |
+
"loss": 2.4007,
|
50 |
+
"step": 14
|
51 |
+
},
|
52 |
+
{
|
53 |
+
"epoch": 0.1,
|
54 |
+
"learning_rate": 0.0009966604879945657,
|
55 |
+
"loss": 2.4691,
|
56 |
+
"step": 16
|
57 |
},
|
58 |
{
|
59 |
"epoch": 0.11,
|
60 |
+
"learning_rate": 0.0009954563824255878,
|
61 |
+
"loss": 2.4015,
|
62 |
+
"step": 18
|
63 |
+
},
|
64 |
+
{
|
65 |
+
"epoch": 0.12,
|
66 |
+
"learning_rate": 0.0009940682350363913,
|
67 |
+
"loss": 2.4415,
|
68 |
+
"step": 20
|
69 |
+
},
|
70 |
+
{
|
71 |
+
"epoch": 0.13,
|
72 |
+
"learning_rate": 0.000992496561467063,
|
73 |
+
"loss": 2.477,
|
74 |
+
"step": 22
|
75 |
},
|
76 |
{
|
77 |
"epoch": 0.15,
|
78 |
+
"learning_rate": 0.000990741945530174,
|
79 |
+
"loss": 2.4429,
|
80 |
+
"step": 24
|
81 |
+
},
|
82 |
+
{
|
83 |
+
"epoch": 0.16,
|
84 |
+
"learning_rate": 0.0009888050389939172,
|
85 |
+
"loss": 2.4429,
|
86 |
+
"step": 26
|
87 |
+
},
|
88 |
+
{
|
89 |
+
"epoch": 0.17,
|
90 |
+
"learning_rate": 0.0009866865613400006,
|
91 |
+
"loss": 2.4597,
|
92 |
+
"step": 28
|
93 |
},
|
94 |
{
|
95 |
"epoch": 0.18,
|
96 |
+
"learning_rate": 0.0009843872994963912,
|
97 |
+
"loss": 2.4501,
|
98 |
+
"step": 30
|
99 |
+
},
|
100 |
+
{
|
101 |
+
"epoch": 0.19,
|
102 |
+
"learning_rate": 0.0009819081075450014,
|
103 |
+
"loss": 2.4307,
|
104 |
+
"step": 32
|
105 |
+
},
|
106 |
+
{
|
107 |
+
"epoch": 0.21,
|
108 |
+
"learning_rate": 0.0009792499064044343,
|
109 |
+
"loss": 2.4182,
|
110 |
+
"step": 34
|
111 |
},
|
112 |
{
|
113 |
"epoch": 0.22,
|
114 |
+
"learning_rate": 0.0009764136834878986,
|
115 |
+
"loss": 2.4354,
|
116 |
+
"step": 36
|
117 |
+
},
|
118 |
+
{
|
119 |
+
"epoch": 0.23,
|
120 |
+
"learning_rate": 0.0009734004923364257,
|
121 |
+
"loss": 2.4323,
|
122 |
+
"step": 38
|
123 |
+
},
|
124 |
+
{
|
125 |
+
"epoch": 0.24,
|
126 |
+
"learning_rate": 0.0009702114522275216,
|
127 |
+
"loss": 2.4592,
|
128 |
+
"step": 40
|
129 |
},
|
130 |
{
|
131 |
"epoch": 0.25,
|
132 |
+
"learning_rate": 0.000966847747759402,
|
133 |
+
"loss": 2.4242,
|
134 |
+
"step": 42
|
135 |
+
},
|
136 |
+
{
|
137 |
+
"epoch": 0.27,
|
138 |
+
"learning_rate": 0.0009633106284109611,
|
139 |
+
"loss": 2.4355,
|
140 |
+
"step": 44
|
141 |
+
},
|
142 |
+
{
|
143 |
+
"epoch": 0.28,
|
144 |
+
"learning_rate": 0.0009596014080776422,
|
145 |
+
"loss": 2.4379,
|
146 |
+
"step": 46
|
147 |
},
|
148 |
{
|
149 |
"epoch": 0.29,
|
150 |
+
"learning_rate": 0.0009557214645833791,
|
151 |
+
"loss": 2.3786,
|
152 |
+
"step": 48
|
153 |
+
},
|
154 |
+
{
|
155 |
+
"epoch": 0.3,
|
156 |
+
"learning_rate": 0.0009516722391687902,
|
157 |
+
"loss": 2.4303,
|
158 |
+
"step": 50
|
159 |
+
},
|
160 |
+
{
|
161 |
+
"epoch": 0.31,
|
162 |
+
"learning_rate": 0.0009474552359558167,
|
163 |
+
"loss": 2.3946,
|
164 |
+
"step": 52
|
165 |
},
|
166 |
{
|
167 |
"epoch": 0.33,
|
168 |
+
"learning_rate": 0.000943072021389003,
|
169 |
+
"loss": 2.4104,
|
170 |
+
"step": 54
|
171 |
+
},
|
172 |
+
{
|
173 |
+
"epoch": 0.34,
|
174 |
+
"learning_rate": 0.0009385242236536259,
|
175 |
+
"loss": 2.4266,
|
176 |
+
"step": 56
|
177 |
+
},
|
178 |
+
{
|
179 |
+
"epoch": 0.35,
|
180 |
+
"learning_rate": 0.0009338135320708912,
|
181 |
+
"loss": 2.5106,
|
182 |
+
"step": 58
|
183 |
},
|
184 |
{
|
185 |
"epoch": 0.36,
|
186 |
+
"learning_rate": 0.0009289416964704185,
|
187 |
+
"loss": 2.4225,
|
188 |
+
"step": 60
|
189 |
+
},
|
190 |
+
{
|
191 |
+
"epoch": 0.37,
|
192 |
+
"learning_rate": 0.0009239105265402525,
|
193 |
+
"loss": 2.4745,
|
194 |
+
"step": 62
|
195 |
+
},
|
196 |
+
{
|
197 |
+
"epoch": 0.39,
|
198 |
+
"learning_rate": 0.0009187218911546363,
|
199 |
+
"loss": 2.4572,
|
200 |
+
"step": 64
|
201 |
},
|
202 |
{
|
203 |
"epoch": 0.4,
|
204 |
+
"learning_rate": 0.0009133777176798013,
|
205 |
+
"loss": 2.4366,
|
206 |
+
"step": 66
|
207 |
+
},
|
208 |
+
{
|
209 |
+
"epoch": 0.41,
|
210 |
+
"learning_rate": 0.0009078799912580304,
|
211 |
+
"loss": 2.4021,
|
212 |
+
"step": 68
|
213 |
+
},
|
214 |
+
{
|
215 |
+
"epoch": 0.42,
|
216 |
+
"learning_rate": 0.0009022307540702576,
|
217 |
+
"loss": 2.4054,
|
218 |
+
"step": 70
|
219 |
},
|
220 |
{
|
221 |
"epoch": 0.44,
|
222 |
+
"learning_rate": 0.0008964321045774807,
|
223 |
+
"loss": 2.4628,
|
224 |
+
"step": 72
|
225 |
+
},
|
226 |
+
{
|
227 |
+
"epoch": 0.45,
|
228 |
+
"learning_rate": 0.0008904861967412702,
|
229 |
+
"loss": 2.5038,
|
230 |
+
"step": 74
|
231 |
+
},
|
232 |
+
{
|
233 |
+
"epoch": 0.46,
|
234 |
+
"learning_rate": 0.0008843952392236594,
|
235 |
+
"loss": 2.3801,
|
236 |
+
"step": 76
|
237 |
},
|
238 |
{
|
239 |
"epoch": 0.47,
|
240 |
+
"learning_rate": 0.0008781614945667169,
|
241 |
+
"loss": 2.4056,
|
242 |
+
"step": 78
|
243 |
+
},
|
244 |
+
{
|
245 |
+
"epoch": 0.48,
|
246 |
+
"learning_rate": 0.0008717872783521047,
|
247 |
+
"loss": 2.3334,
|
248 |
+
"step": 80
|
249 |
+
},
|
250 |
+
{
|
251 |
+
"epoch": 0.5,
|
252 |
+
"learning_rate": 0.0008652749583409339,
|
253 |
+
"loss": 2.3913,
|
254 |
+
"step": 82
|
255 |
},
|
256 |
{
|
257 |
"epoch": 0.51,
|
258 |
+
"learning_rate": 0.0008586269535942384,
|
259 |
+
"loss": 2.3784,
|
260 |
+
"step": 84
|
261 |
+
},
|
262 |
+
{
|
263 |
+
"epoch": 0.52,
|
264 |
+
"learning_rate": 0.0008518457335743926,
|
265 |
+
"loss": 2.4436,
|
266 |
+
"step": 86
|
267 |
+
},
|
268 |
+
{
|
269 |
+
"epoch": 0.53,
|
270 |
+
"learning_rate": 0.0008449338172278058,
|
271 |
+
"loss": 2.3735,
|
272 |
+
"step": 88
|
273 |
},
|
274 |
{
|
275 |
"epoch": 0.54,
|
276 |
+
"learning_rate": 0.0008378937720492384,
|
277 |
+
"loss": 2.374,
|
278 |
+
"step": 90
|
279 |
+
},
|
280 |
+
{
|
281 |
+
"epoch": 0.56,
|
282 |
+
"learning_rate": 0.0008307282131280805,
|
283 |
+
"loss": 2.4064,
|
284 |
+
"step": 92
|
285 |
+
},
|
286 |
+
{
|
287 |
+
"epoch": 0.57,
|
288 |
+
"learning_rate": 0.000823439802176954,
|
289 |
+
"loss": 2.4124,
|
290 |
+
"step": 94
|
291 |
},
|
292 |
{
|
293 |
"epoch": 0.58,
|
294 |
+
"learning_rate": 0.0008160312465429952,
|
295 |
+
"loss": 2.4181,
|
296 |
+
"step": 96
|
297 |
+
},
|
298 |
+
{
|
299 |
+
"epoch": 0.59,
|
300 |
+
"learning_rate": 0.0008085052982021848,
|
301 |
+
"loss": 2.4253,
|
302 |
+
"step": 98
|
303 |
+
},
|
304 |
+
{
|
305 |
+
"epoch": 0.6,
|
306 |
+
"learning_rate": 0.0008008647527371022,
|
307 |
+
"loss": 2.4678,
|
308 |
+
"step": 100
|
309 |
},
|
310 |
{
|
311 |
"epoch": 0.62,
|
312 |
+
"learning_rate": 0.0007931124482984802,
|
313 |
+
"loss": 2.4738,
|
314 |
+
"step": 102
|
315 |
+
},
|
316 |
+
{
|
317 |
+
"epoch": 0.63,
|
318 |
+
"learning_rate": 0.0007852512645509479,
|
319 |
+
"loss": 2.3738,
|
320 |
+
"step": 104
|
321 |
+
},
|
322 |
+
{
|
323 |
+
"epoch": 0.64,
|
324 |
+
"learning_rate": 0.0007772841216033533,
|
325 |
+
"loss": 2.4081,
|
326 |
+
"step": 106
|
327 |
},
|
328 |
{
|
329 |
"epoch": 0.65,
|
330 |
+
"learning_rate": 0.0007692139789240611,
|
331 |
+
"loss": 2.3738,
|
332 |
+
"step": 108
|
333 |
+
},
|
334 |
+
{
|
335 |
+
"epoch": 0.66,
|
336 |
+
"learning_rate": 0.0007610438342416319,
|
337 |
+
"loss": 2.3701,
|
338 |
+
"step": 110
|
339 |
+
},
|
340 |
+
{
|
341 |
+
"epoch": 0.68,
|
342 |
+
"learning_rate": 0.0007527767224312882,
|
343 |
+
"loss": 2.4355,
|
344 |
+
"step": 112
|
345 |
},
|
346 |
{
|
347 |
"epoch": 0.69,
|
348 |
+
"learning_rate": 0.000744415714387582,
|
349 |
+
"loss": 2.4036,
|
350 |
+
"step": 114
|
351 |
+
},
|
352 |
+
{
|
353 |
+
"epoch": 0.7,
|
354 |
+
"learning_rate": 0.0007359639158836828,
|
355 |
+
"loss": 2.3746,
|
356 |
+
"step": 116
|
357 |
+
},
|
358 |
+
{
|
359 |
+
"epoch": 0.71,
|
360 |
+
"learning_rate": 0.0007274244664177097,
|
361 |
+
"loss": 2.4855,
|
362 |
+
"step": 118
|
363 |
},
|
364 |
{
|
365 |
"epoch": 0.73,
|
366 |
+
"learning_rate": 0.0007188005380465365,
|
367 |
+
"loss": 2.379,
|
368 |
+
"step": 120
|
369 |
+
},
|
370 |
+
{
|
371 |
+
"epoch": 0.74,
|
372 |
+
"learning_rate": 0.000710095334207501,
|
373 |
+
"loss": 2.4178,
|
374 |
+
"step": 122
|
375 |
+
},
|
376 |
+
{
|
377 |
+
"epoch": 0.75,
|
378 |
+
"learning_rate": 0.0007013120885284599,
|
379 |
+
"loss": 2.4561,
|
380 |
+
"step": 124
|
381 |
},
|
382 |
{
|
383 |
"epoch": 0.76,
|
384 |
+
"learning_rate": 0.0006924540636266272,
|
385 |
+
"loss": 2.4024,
|
386 |
+
"step": 126
|
387 |
+
},
|
388 |
+
{
|
389 |
+
"epoch": 0.77,
|
390 |
+
"learning_rate": 0.000683524549896646,
|
391 |
+
"loss": 2.4172,
|
392 |
+
"step": 128
|
393 |
+
},
|
394 |
+
{
|
395 |
+
"epoch": 0.79,
|
396 |
+
"learning_rate": 0.0006745268642883404,
|
397 |
+
"loss": 2.3858,
|
398 |
+
"step": 130
|
399 |
},
|
400 |
{
|
401 |
"epoch": 0.8,
|
402 |
+
"learning_rate": 0.0006654643490746042,
|
403 |
+
"loss": 2.3547,
|
404 |
+
"step": 132
|
405 |
+
},
|
406 |
+
{
|
407 |
+
"epoch": 0.81,
|
408 |
+
"learning_rate": 0.0006563403706098833,
|
409 |
+
"loss": 2.4372,
|
410 |
+
"step": 134
|
411 |
+
},
|
412 |
+
{
|
413 |
+
"epoch": 0.82,
|
414 |
+
"learning_rate": 0.0006471583180797121,
|
415 |
+
"loss": 2.3785,
|
416 |
+
"step": 136
|
417 |
},
|
418 |
{
|
419 |
"epoch": 0.83,
|
420 |
+
"learning_rate": 0.0006379216022417695,
|
421 |
+
"loss": 2.3815,
|
422 |
+
"step": 138
|
423 |
+
},
|
424 |
+
{
|
425 |
+
"epoch": 0.85,
|
426 |
+
"learning_rate": 0.0006286336541589224,
|
427 |
+
"loss": 2.4209,
|
428 |
+
"step": 140
|
429 |
+
},
|
430 |
+
{
|
431 |
+
"epoch": 0.86,
|
432 |
+
"learning_rate": 0.0006192979239247243,
|
433 |
+
"loss": 2.3962,
|
434 |
+
"step": 142
|
435 |
},
|
436 |
{
|
437 |
"epoch": 0.87,
|
438 |
+
"learning_rate": 0.0006099178793818478,
|
439 |
+
"loss": 2.3626,
|
440 |
+
"step": 144
|
441 |
+
},
|
442 |
+
{
|
443 |
+
"epoch": 0.88,
|
444 |
+
"learning_rate": 0.0006004970048339225,
|
445 |
+
"loss": 2.3991,
|
446 |
+
"step": 146
|
447 |
+
},
|
448 |
+
{
|
449 |
+
"epoch": 0.89,
|
450 |
+
"learning_rate": 0.0005910387997512573,
|
451 |
+
"loss": 2.4396,
|
452 |
+
"step": 148
|
453 |
},
|
454 |
{
|
455 |
"epoch": 0.91,
|
456 |
+
"learning_rate": 0.0005815467774709313,
|
457 |
+
"loss": 2.3816,
|
458 |
+
"step": 150
|
459 |
+
},
|
460 |
+
{
|
461 |
+
"epoch": 0.92,
|
462 |
+
"learning_rate": 0.0005720244638917323,
|
463 |
+
"loss": 2.3866,
|
464 |
+
"step": 152
|
465 |
+
},
|
466 |
+
{
|
467 |
+
"epoch": 0.93,
|
468 |
+
"learning_rate": 0.0005624753961644281,
|
469 |
+
"loss": 2.4035,
|
470 |
+
"step": 154
|
471 |
},
|
472 |
{
|
473 |
"epoch": 0.94,
|
474 |
+
"learning_rate": 0.0005529031213778615,
|
475 |
+
"loss": 2.4063,
|
476 |
+
"step": 156
|
477 |
+
},
|
478 |
+
{
|
479 |
+
"epoch": 0.95,
|
480 |
+
"learning_rate": 0.0005433111952413496,
|
481 |
+
"loss": 2.3944,
|
482 |
+
"step": 158
|
483 |
+
},
|
484 |
+
{
|
485 |
+
"epoch": 0.97,
|
486 |
+
"learning_rate": 0.0005337031807638841,
|
487 |
+
"loss": 2.4192,
|
488 |
+
"step": 160
|
489 |
},
|
490 |
{
|
491 |
"epoch": 0.98,
|
492 |
+
"learning_rate": 0.0005240826469306187,
|
493 |
+
"loss": 2.3603,
|
494 |
+
"step": 162
|
495 |
+
},
|
496 |
+
{
|
497 |
+
"epoch": 0.99,
|
498 |
+
"learning_rate": 0.0005144531673771364,
|
499 |
+
"loss": 2.4041,
|
500 |
+
"step": 164
|
501 |
+
},
|
502 |
+
{
|
503 |
+
"epoch": 1.01,
|
504 |
+
"learning_rate": 0.0005048183190619903,
|
505 |
+
"loss": 2.8813,
|
506 |
+
"step": 166
|
507 |
},
|
508 |
{
|
509 |
"epoch": 1.02,
|
510 |
+
"learning_rate": 0.0004951816809380097,
|
511 |
+
"loss": 2.2786,
|
512 |
+
"step": 168
|
513 |
+
},
|
514 |
+
{
|
515 |
+
"epoch": 1.03,
|
516 |
+
"learning_rate": 0.0004855468326228638,
|
517 |
+
"loss": 2.2886,
|
518 |
+
"step": 170
|
519 |
},
|
520 |
{
|
521 |
+
"epoch": 1.04,
|
522 |
+
"learning_rate": 0.00047591735306938137,
|
523 |
+
"loss": 2.1822,
|
524 |
+
"step": 172
|
525 |
+
},
|
526 |
+
{
|
527 |
+
"epoch": 1.05,
|
528 |
+
"learning_rate": 0.00046629681923611606,
|
529 |
+
"loss": 2.2589,
|
530 |
+
"step": 174
|
531 |
+
},
|
532 |
+
{
|
533 |
+
"epoch": 1.07,
|
534 |
+
"learning_rate": 0.0004566888047586507,
|
535 |
+
"loss": 2.2625,
|
536 |
+
"step": 176
|
537 |
+
},
|
538 |
+
{
|
539 |
+
"epoch": 1.08,
|
540 |
+
"learning_rate": 0.00044709687862213866,
|
541 |
+
"loss": 2.2715,
|
542 |
+
"step": 178
|
543 |
+
},
|
544 |
+
{
|
545 |
+
"epoch": 1.09,
|
546 |
+
"learning_rate": 0.000437524603835572,
|
547 |
+
"loss": 2.1988,
|
548 |
+
"step": 180
|
549 |
},
|
550 |
{
|
551 |
"epoch": 1.1,
|
552 |
+
"learning_rate": 0.000427975536108268,
|
553 |
+
"loss": 2.3257,
|
554 |
+
"step": 182
|
555 |
+
},
|
556 |
+
{
|
557 |
+
"epoch": 1.11,
|
558 |
+
"learning_rate": 0.00041845322252906863,
|
559 |
+
"loss": 2.3026,
|
560 |
+
"step": 184
|
561 |
},
|
562 |
{
|
563 |
"epoch": 1.13,
|
564 |
+
"learning_rate": 0.00040896120024874283,
|
565 |
+
"loss": 2.2306,
|
566 |
+
"step": 186
|
567 |
},
|
568 |
{
|
569 |
+
"epoch": 1.14,
|
570 |
+
"learning_rate": 0.0003995029951660776,
|
571 |
+
"loss": 2.2269,
|
572 |
+
"step": 188
|
573 |
+
},
|
574 |
+
{
|
575 |
+
"epoch": 1.15,
|
576 |
+
"learning_rate": 0.00039008212061815206,
|
577 |
+
"loss": 2.3079,
|
578 |
+
"step": 190
|
579 |
+
},
|
580 |
+
{
|
581 |
+
"epoch": 1.16,
|
582 |
+
"learning_rate": 0.00038070207607527587,
|
583 |
+
"loss": 2.218,
|
584 |
+
"step": 192
|
585 |
+
},
|
586 |
+
{
|
587 |
+
"epoch": 1.18,
|
588 |
+
"learning_rate": 0.00037136634584107787,
|
589 |
+
"loss": 2.2667,
|
590 |
+
"step": 194
|
591 |
+
},
|
592 |
+
{
|
593 |
+
"epoch": 1.19,
|
594 |
+
"learning_rate": 0.0003620783977582305,
|
595 |
+
"loss": 2.2754,
|
596 |
+
"step": 196
|
597 |
+
},
|
598 |
+
{
|
599 |
+
"epoch": 1.2,
|
600 |
+
"learning_rate": 0.0003528416819202881,
|
601 |
+
"loss": 2.2835,
|
602 |
+
"step": 198
|
603 |
},
|
604 |
{
|
605 |
"epoch": 1.21,
|
606 |
+
"learning_rate": 0.00034365962939011697,
|
607 |
+
"loss": 2.2843,
|
608 |
+
"step": 200
|
609 |
+
},
|
610 |
+
{
|
611 |
+
"epoch": 1.22,
|
612 |
+
"learning_rate": 0.00033453565092539584,
|
613 |
+
"loss": 2.2387,
|
614 |
+
"step": 202
|
615 |
},
|
616 |
{
|
617 |
"epoch": 1.24,
|
618 |
+
"learning_rate": 0.0003254731357116597,
|
619 |
+
"loss": 2.254,
|
620 |
+
"step": 204
|
621 |
+
},
|
622 |
+
{
|
623 |
+
"epoch": 1.25,
|
624 |
+
"learning_rate": 0.000316475450103354,
|
625 |
+
"loss": 2.2686,
|
626 |
+
"step": 206
|
627 |
+
},
|
628 |
+
{
|
629 |
+
"epoch": 1.26,
|
630 |
+
"learning_rate": 0.00030754593637337277,
|
631 |
+
"loss": 2.2422,
|
632 |
+
"step": 208
|
633 |
+
},
|
634 |
+
{
|
635 |
+
"epoch": 1.27,
|
636 |
+
"learning_rate": 0.0002986879114715403,
|
637 |
+
"loss": 2.3003,
|
638 |
+
"step": 210
|
639 |
},
|
640 |
{
|
641 |
"epoch": 1.28,
|
642 |
+
"learning_rate": 0.0002899046657924992,
|
643 |
+
"loss": 2.2619,
|
644 |
+
"step": 212
|
645 |
+
},
|
646 |
+
{
|
647 |
+
"epoch": 1.3,
|
648 |
+
"learning_rate": 0.00028119946195346375,
|
649 |
+
"loss": 2.3022,
|
650 |
+
"step": 214
|
651 |
},
|
652 |
{
|
653 |
"epoch": 1.31,
|
654 |
+
"learning_rate": 0.00027257553358229033,
|
655 |
+
"loss": 2.2523,
|
656 |
+
"step": 216
|
657 |
+
},
|
658 |
+
{
|
659 |
+
"epoch": 1.32,
|
660 |
+
"learning_rate": 0.0002640360841163174,
|
661 |
+
"loss": 2.3098,
|
662 |
+
"step": 218
|
663 |
},
|
664 |
{
|
665 |
+
"epoch": 1.33,
|
666 |
+
"learning_rate": 0.0002555842856124182,
|
667 |
+
"loss": 2.235,
|
668 |
+
"step": 220
|
669 |
+
},
|
670 |
+
{
|
671 |
+
"epoch": 1.34,
|
672 |
+
"learning_rate": 0.00024722327756871186,
|
673 |
+
"loss": 2.2448,
|
674 |
+
"step": 222
|
675 |
+
},
|
676 |
+
{
|
677 |
+
"epoch": 1.36,
|
678 |
+
"learning_rate": 0.0002389561657583681,
|
679 |
+
"loss": 2.2411,
|
680 |
+
"step": 224
|
681 |
+
},
|
682 |
+
{
|
683 |
+
"epoch": 1.37,
|
684 |
+
"learning_rate": 0.00023078602107593898,
|
685 |
+
"loss": 2.2485,
|
686 |
+
"step": 226
|
687 |
+
},
|
688 |
+
{
|
689 |
+
"epoch": 1.38,
|
690 |
+
"learning_rate": 0.0002227158783966467,
|
691 |
+
"loss": 2.2261,
|
692 |
+
"step": 228
|
693 |
},
|
694 |
{
|
695 |
"epoch": 1.39,
|
696 |
+
"learning_rate": 0.00021474873544905204,
|
697 |
+
"loss": 2.2427,
|
698 |
+
"step": 230
|
699 |
+
},
|
700 |
+
{
|
701 |
+
"epoch": 1.4,
|
702 |
+
"learning_rate": 0.00020688755170151997,
|
703 |
+
"loss": 2.2961,
|
704 |
+
"step": 232
|
705 |
},
|
706 |
{
|
707 |
"epoch": 1.42,
|
708 |
+
"learning_rate": 0.00019913524726289784,
|
709 |
+
"loss": 2.2272,
|
710 |
+
"step": 234
|
711 |
},
|
712 |
{
|
713 |
+
"epoch": 1.43,
|
714 |
+
"learning_rate": 0.00019149470179781532,
|
715 |
+
"loss": 2.2368,
|
716 |
+
"step": 236
|
717 |
+
},
|
718 |
+
{
|
719 |
+
"epoch": 1.44,
|
720 |
+
"learning_rate": 0.00018396875345700497,
|
721 |
+
"loss": 2.2846,
|
722 |
+
"step": 238
|
723 |
+
},
|
724 |
+
{
|
725 |
+
"epoch": 1.45,
|
726 |
+
"learning_rate": 0.000176560197823046,
|
727 |
+
"loss": 2.1709,
|
728 |
+
"step": 240
|
729 |
+
},
|
730 |
+
{
|
731 |
+
"epoch": 1.47,
|
732 |
+
"learning_rate": 0.0001692717868719195,
|
733 |
+
"loss": 2.2659,
|
734 |
+
"step": 242
|
735 |
+
},
|
736 |
+
{
|
737 |
+
"epoch": 1.48,
|
738 |
+
"learning_rate": 0.0001621062279507617,
|
739 |
+
"loss": 2.2655,
|
740 |
+
"step": 244
|
741 |
+
},
|
742 |
+
{
|
743 |
+
"epoch": 1.49,
|
744 |
+
"learning_rate": 0.0001550661827721941,
|
745 |
+
"loss": 2.2284,
|
746 |
+
"step": 246
|
747 |
},
|
748 |
{
|
749 |
"epoch": 1.5,
|
750 |
+
"learning_rate": 0.00014815426642560752,
|
751 |
+
"loss": 2.2444,
|
752 |
+
"step": 248
|
753 |
+
},
|
754 |
+
{
|
755 |
+
"epoch": 1.51,
|
756 |
+
"learning_rate": 0.0001413730464057616,
|
757 |
+
"loss": 2.3102,
|
758 |
+
"step": 250
|
759 |
},
|
760 |
{
|
761 |
"epoch": 1.53,
|
762 |
+
"learning_rate": 0.00013472504165906613,
|
763 |
+
"loss": 2.2287,
|
764 |
+
"step": 252
|
765 |
+
},
|
766 |
+
{
|
767 |
+
"epoch": 1.54,
|
768 |
+
"learning_rate": 0.00012821272164789544,
|
769 |
+
"loss": 2.2713,
|
770 |
+
"step": 254
|
771 |
+
},
|
772 |
+
{
|
773 |
+
"epoch": 1.55,
|
774 |
+
"learning_rate": 0.00012183850543328313,
|
775 |
+
"loss": 2.2127,
|
776 |
+
"step": 256
|
777 |
+
},
|
778 |
+
{
|
779 |
+
"epoch": 1.56,
|
780 |
+
"learning_rate": 0.00011560476077634069,
|
781 |
+
"loss": 2.1682,
|
782 |
+
"step": 258
|
783 |
},
|
784 |
{
|
785 |
"epoch": 1.57,
|
786 |
+
"learning_rate": 0.00010951380325872979,
|
787 |
+
"loss": 2.2393,
|
788 |
+
"step": 260
|
789 |
+
},
|
790 |
+
{
|
791 |
+
"epoch": 1.59,
|
792 |
+
"learning_rate": 0.00010356789542251938,
|
793 |
+
"loss": 2.2259,
|
794 |
+
"step": 262
|
795 |
},
|
796 |
{
|
797 |
"epoch": 1.6,
|
798 |
+
"learning_rate": 9.776924592974257e-05,
|
799 |
+
"loss": 2.2157,
|
800 |
+
"step": 264
|
801 |
},
|
802 |
{
|
803 |
+
"epoch": 1.61,
|
804 |
+
"learning_rate": 9.212000874196952e-05,
|
805 |
+
"loss": 2.2393,
|
806 |
+
"step": 266
|
807 |
+
},
|
808 |
+
{
|
809 |
+
"epoch": 1.62,
|
810 |
+
"learning_rate": 8.662228232019875e-05,
|
811 |
+
"loss": 2.2613,
|
812 |
+
"step": 268
|
813 |
+
},
|
814 |
+
{
|
815 |
+
"epoch": 1.63,
|
816 |
+
"learning_rate": 8.127810884536401e-05,
|
817 |
+
"loss": 2.1981,
|
818 |
+
"step": 270
|
819 |
+
},
|
820 |
+
{
|
821 |
+
"epoch": 1.65,
|
822 |
+
"learning_rate": 7.60894734597476e-05,
|
823 |
+
"loss": 2.2457,
|
824 |
+
"step": 272
|
825 |
+
},
|
826 |
+
{
|
827 |
+
"epoch": 1.66,
|
828 |
+
"learning_rate": 7.105830352958143e-05,
|
829 |
+
"loss": 2.2571,
|
830 |
+
"step": 274
|
831 |
+
},
|
832 |
+
{
|
833 |
+
"epoch": 1.67,
|
834 |
+
"learning_rate": 6.618646792910893e-05,
|
835 |
+
"loss": 2.1771,
|
836 |
+
"step": 276
|
837 |
},
|
838 |
{
|
839 |
"epoch": 1.68,
|
840 |
+
"learning_rate": 6.147577634637414e-05,
|
841 |
+
"loss": 2.2243,
|
842 |
+
"step": 278
|
843 |
+
},
|
844 |
+
{
|
845 |
+
"epoch": 1.69,
|
846 |
+
"learning_rate": 5.692797861099719e-05,
|
847 |
+
"loss": 2.2427,
|
848 |
+
"step": 280
|
849 |
},
|
850 |
{
|
851 |
"epoch": 1.71,
|
852 |
+
"learning_rate": 5.25447640441834e-05,
|
853 |
+
"loss": 2.2266,
|
854 |
+
"step": 282
|
855 |
},
|
856 |
{
|
857 |
+
"epoch": 1.72,
|
858 |
+
"learning_rate": 4.832776083120982e-05,
|
859 |
+
"loss": 2.3057,
|
860 |
+
"step": 284
|
861 |
+
},
|
862 |
+
{
|
863 |
+
"epoch": 1.73,
|
864 |
+
"learning_rate": 4.4278535416620916e-05,
|
865 |
+
"loss": 2.2225,
|
866 |
+
"step": 286
|
867 |
+
},
|
868 |
+
{
|
869 |
+
"epoch": 1.74,
|
870 |
+
"learning_rate": 4.039859192235778e-05,
|
871 |
+
"loss": 2.2665,
|
872 |
+
"step": 288
|
873 |
+
},
|
874 |
+
{
|
875 |
+
"epoch": 1.76,
|
876 |
+
"learning_rate": 3.668937158903901e-05,
|
877 |
+
"loss": 2.2807,
|
878 |
+
"step": 290
|
879 |
+
},
|
880 |
+
{
|
881 |
+
"epoch": 1.77,
|
882 |
+
"learning_rate": 3.315225224059809e-05,
|
883 |
+
"loss": 2.2165,
|
884 |
+
"step": 292
|
885 |
+
},
|
886 |
+
{
|
887 |
+
"epoch": 1.78,
|
888 |
+
"learning_rate": 2.9788547772478415e-05,
|
889 |
+
"loss": 2.2651,
|
890 |
+
"step": 294
|
891 |
},
|
892 |
{
|
893 |
"epoch": 1.79,
|
894 |
+
"learning_rate": 2.6599507663574384e-05,
|
895 |
+
"loss": 2.2437,
|
896 |
+
"step": 296
|
897 |
+
},
|
898 |
+
{
|
899 |
+
"epoch": 1.8,
|
900 |
+
"learning_rate": 2.3586316512101414e-05,
|
901 |
+
"loss": 2.3066,
|
902 |
+
"step": 298
|
903 |
},
|
904 |
{
|
905 |
"epoch": 1.82,
|
906 |
+
"learning_rate": 2.0750093595565732e-05,
|
907 |
+
"loss": 2.1727,
|
908 |
+
"step": 300
|
909 |
+
},
|
910 |
+
{
|
911 |
+
"epoch": 1.83,
|
912 |
+
"learning_rate": 1.8091892454998595e-05,
|
913 |
+
"loss": 2.2409,
|
914 |
+
"step": 302
|
915 |
+
},
|
916 |
+
{
|
917 |
+
"epoch": 1.84,
|
918 |
+
"learning_rate": 1.561270050360897e-05,
|
919 |
+
"loss": 2.2908,
|
920 |
+
"step": 304
|
921 |
+
},
|
922 |
+
{
|
923 |
+
"epoch": 1.85,
|
924 |
+
"learning_rate": 1.33134386599994e-05,
|
925 |
+
"loss": 2.2925,
|
926 |
+
"step": 306
|
927 |
},
|
928 |
{
|
929 |
"epoch": 1.86,
|
930 |
+
"learning_rate": 1.1194961006082971e-05,
|
931 |
+
"loss": 2.2449,
|
932 |
+
"step": 308
|
933 |
+
},
|
934 |
+
{
|
935 |
+
"epoch": 1.88,
|
936 |
+
"learning_rate": 9.258054469825972e-06,
|
937 |
+
"loss": 2.235,
|
938 |
+
"step": 310
|
939 |
},
|
940 |
{
|
941 |
"epoch": 1.89,
|
942 |
+
"learning_rate": 7.503438532937168e-06,
|
943 |
+
"loss": 2.2216,
|
944 |
+
"step": 312
|
945 |
},
|
946 |
{
|
947 |
+
"epoch": 1.9,
|
948 |
+
"learning_rate": 5.931764963608866e-06,
|
949 |
+
"loss": 2.2884,
|
950 |
+
"step": 314
|
951 |
+
},
|
952 |
+
{
|
953 |
+
"epoch": 1.91,
|
954 |
+
"learning_rate": 4.5436175744121845e-06,
|
955 |
+
"loss": 2.2124,
|
956 |
+
"step": 316
|
957 |
+
},
|
958 |
+
{
|
959 |
+
"epoch": 1.92,
|
960 |
+
"learning_rate": 3.3395120054343087e-06,
|
961 |
+
"loss": 2.2418,
|
962 |
+
"step": 318
|
963 |
+
},
|
964 |
+
{
|
965 |
+
"epoch": 1.94,
|
966 |
+
"learning_rate": 2.319895532739369e-06,
|
967 |
+
"loss": 2.2855,
|
968 |
+
"step": 320
|
969 |
+
},
|
970 |
+
{
|
971 |
+
"epoch": 1.95,
|
972 |
+
"learning_rate": 1.4851469022234e-06,
|
973 |
+
"loss": 2.2974,
|
974 |
+
"step": 322
|
975 |
+
},
|
976 |
+
{
|
977 |
+
"epoch": 1.96,
|
978 |
+
"learning_rate": 8.35576188926046e-07,
|
979 |
+
"loss": 2.2552,
|
980 |
+
"step": 324
|
981 |
},
|
982 |
{
|
983 |
"epoch": 1.97,
|
984 |
+
"learning_rate": 3.71424681850141e-07,
|
985 |
+
"loss": 2.2209,
|
986 |
+
"step": 326
|
987 |
},
|
988 |
{
|
989 |
"epoch": 1.99,
|
990 |
+
"learning_rate": 9.286479433257e-08,
|
991 |
+
"loss": 2.1935,
|
992 |
+
"step": 328
|
993 |
+
},
|
994 |
+
{
|
995 |
+
"epoch": 2.0,
|
996 |
+
"learning_rate": 0.0,
|
997 |
+
"loss": 2.2702,
|
998 |
+
"step": 330
|
999 |
+
},
|
1000 |
+
{
|
1001 |
+
"epoch": 2.0,
|
1002 |
+
"step": 330,
|
1003 |
+
"total_flos": 4.634629374287544e+17,
|
1004 |
+
"train_loss": 2.336302039117524,
|
1005 |
+
"train_runtime": 79791.9217,
|
1006 |
+
"train_samples_per_second": 0.265,
|
1007 |
+
"train_steps_per_second": 0.004
|
1008 |
}
|
1009 |
],
|
1010 |
+
"max_steps": 330,
|
1011 |
"num_train_epochs": 2,
|
1012 |
+
"total_flos": 4.634629374287544e+17,
|
1013 |
"trial_name": null,
|
1014 |
"trial_params": null
|
1015 |
}
|
training_args.bin
CHANGED
@@ -1,3 +1,3 @@
|
|
1 |
version https://git-lfs.github.com/spec/v1
|
2 |
-
oid sha256:
|
3 |
size 4527
|
|
|
1 |
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:4526ccf2486e6fb3048af4d26eb6228cf640199b02d5c9ab46e06e3bf549ec3a
|
3 |
size 4527
|
zero_to_fp32.py
ADDED
@@ -0,0 +1,484 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
#!/usr/bin/env python
|
2 |
+
|
3 |
+
# This script extracts fp32 consolidated weights from a zero 2 and 3 DeepSpeed checkpoints. It gets
|
4 |
+
# copied into the top level checkpoint dir, so the user can easily do the conversion at any point in
|
5 |
+
# the future. Once extracted, the weights don't require DeepSpeed and can be used in any
|
6 |
+
# application.
|
7 |
+
#
|
8 |
+
# example: python zero_to_fp32.py . pytorch_model.bin
|
9 |
+
|
10 |
+
import argparse
|
11 |
+
import torch
|
12 |
+
import glob
|
13 |
+
import math
|
14 |
+
import os
|
15 |
+
import re
|
16 |
+
from collections import OrderedDict
|
17 |
+
|
18 |
+
# while this script doesn't use deepspeed to recover data, since the checkpoints are pickled with
|
19 |
+
# DeepSpeed data structures it has to be available in the current python environment.
|
20 |
+
import deepspeed
|
21 |
+
from deepspeed.utils import logger
|
22 |
+
from deepspeed.checkpoint.constants import (DS_VERSION,
|
23 |
+
OPTIMIZER_STATE_DICT,
|
24 |
+
PARAM_SHAPES,
|
25 |
+
SINGLE_PARTITION_OF_FP32_GROUPS,
|
26 |
+
FP32_FLAT_GROUPS,
|
27 |
+
ZERO_STAGE,
|
28 |
+
PARTITION_COUNT,
|
29 |
+
PARAM_SHAPES,
|
30 |
+
BUFFER_NAMES)
|
31 |
+
|
32 |
+
debug = 0
|
33 |
+
|
34 |
+
# load to cpu
|
35 |
+
device = torch.device('cpu')
|
36 |
+
|
37 |
+
|
38 |
+
def atoi(text):
|
39 |
+
return int(text) if text.isdigit() else text
|
40 |
+
|
41 |
+
|
42 |
+
def natural_keys(text):
|
43 |
+
'''
|
44 |
+
alist.sort(key=natural_keys) sorts in human order
|
45 |
+
http://nedbatchelder.com/blog/200712/human_sorting.html
|
46 |
+
(See Toothy's implementation in the comments)
|
47 |
+
'''
|
48 |
+
return [atoi(c) for c in re.split(r'(\d+)', text)]
|
49 |
+
|
50 |
+
|
51 |
+
def get_model_state_file(checkpoint_dir, zero_stage):
|
52 |
+
if not os.path.isdir(checkpoint_dir):
|
53 |
+
raise FileNotFoundError(f"Directory '{checkpoint_dir}' doesn't exist")
|
54 |
+
|
55 |
+
# there should be only one file
|
56 |
+
if zero_stage == 2:
|
57 |
+
file = os.path.join(checkpoint_dir, "mp_rank_00_model_states.pt")
|
58 |
+
elif zero_stage == 3:
|
59 |
+
file = os.path.join(checkpoint_dir, "zero_pp_rank_0_mp_rank_00_model_states.pt")
|
60 |
+
|
61 |
+
if not os.path.exists(file):
|
62 |
+
raise FileNotFoundError(f"can't find model states file at '{file}'")
|
63 |
+
|
64 |
+
return file
|
65 |
+
|
66 |
+
|
67 |
+
def get_optim_files(checkpoint_dir):
|
68 |
+
# XXX: need to test that this simple glob rule works for multi-node setup too
|
69 |
+
optim_files = sorted(glob.glob(os.path.join(checkpoint_dir,
|
70 |
+
"*_optim_states.pt")),
|
71 |
+
key=natural_keys)
|
72 |
+
|
73 |
+
if len(optim_files) == 0:
|
74 |
+
raise FileNotFoundError(
|
75 |
+
f"can't find '*_optim_states.pt' files in directory '{checkpoint_dir}'")
|
76 |
+
|
77 |
+
return optim_files
|
78 |
+
|
79 |
+
|
80 |
+
def parse_model_state(file):
|
81 |
+
state_dict = torch.load(file, map_location=device)
|
82 |
+
|
83 |
+
if BUFFER_NAMES not in state_dict:
|
84 |
+
raise ValueError(f"{file} is not a model state checkpoint")
|
85 |
+
buffer_names = state_dict[BUFFER_NAMES]
|
86 |
+
if debug:
|
87 |
+
print("Found buffers:", buffer_names)
|
88 |
+
|
89 |
+
# recover just the buffers while restoring them to fp32 if they were saved in fp16
|
90 |
+
buffers = {
|
91 |
+
k: v.float()
|
92 |
+
for k,
|
93 |
+
v in state_dict["module"].items() if k in buffer_names
|
94 |
+
}
|
95 |
+
param_shapes = state_dict[PARAM_SHAPES]
|
96 |
+
|
97 |
+
ds_version = state_dict.get(DS_VERSION, None)
|
98 |
+
|
99 |
+
return buffers, param_shapes, ds_version
|
100 |
+
|
101 |
+
|
102 |
+
def parse_optim_states(files, ds_checkpoint_dir):
|
103 |
+
|
104 |
+
total_files = len(files)
|
105 |
+
state_dicts = []
|
106 |
+
for f in files:
|
107 |
+
state_dicts.append(torch.load(f, map_location=device))
|
108 |
+
|
109 |
+
if not ZERO_STAGE in state_dicts[0][OPTIMIZER_STATE_DICT]:
|
110 |
+
raise ValueError(f"{files[0]} is not a zero checkpoint")
|
111 |
+
zero_stage = state_dicts[0][OPTIMIZER_STATE_DICT][ZERO_STAGE]
|
112 |
+
world_size = state_dicts[0][OPTIMIZER_STATE_DICT][PARTITION_COUNT]
|
113 |
+
|
114 |
+
# For ZeRO-2 each param group can have different partition_count as data parallelism for expert
|
115 |
+
# parameters can be different from data parallelism for non-expert parameters. So we can just
|
116 |
+
# use the max of the partition_count to get the dp world_size.
|
117 |
+
|
118 |
+
if type(world_size) is list:
|
119 |
+
world_size = max(world_size)
|
120 |
+
|
121 |
+
if world_size != total_files:
|
122 |
+
raise ValueError(
|
123 |
+
f"Expected {world_size} of '*_optim_states.pt' under '{ds_checkpoint_dir}' but found {total_files} files. "
|
124 |
+
"Possibly due to an overwrite of an old checkpoint, or a checkpoint didn't get saved by one or more processes."
|
125 |
+
)
|
126 |
+
|
127 |
+
# the groups are named differently in each stage
|
128 |
+
if zero_stage == 2:
|
129 |
+
fp32_groups_key = SINGLE_PARTITION_OF_FP32_GROUPS
|
130 |
+
elif zero_stage == 3:
|
131 |
+
fp32_groups_key = FP32_FLAT_GROUPS
|
132 |
+
else:
|
133 |
+
raise ValueError(f"unknown zero stage {zero_stage}")
|
134 |
+
|
135 |
+
if zero_stage == 2:
|
136 |
+
fp32_flat_groups = [
|
137 |
+
state_dicts[i][OPTIMIZER_STATE_DICT][fp32_groups_key]
|
138 |
+
for i in range(len(state_dicts))
|
139 |
+
]
|
140 |
+
elif zero_stage == 3:
|
141 |
+
# if there is more than one param group, there will be multiple flattened tensors - one
|
142 |
+
# flattened tensor per group - for simplicity merge them into a single tensor
|
143 |
+
#
|
144 |
+
# XXX: could make the script more memory efficient for when there are multiple groups - it
|
145 |
+
# will require matching the sub-lists of param_shapes for each param group flattened tensor
|
146 |
+
|
147 |
+
fp32_flat_groups = [
|
148 |
+
torch.cat(state_dicts[i][OPTIMIZER_STATE_DICT][fp32_groups_key],
|
149 |
+
0) for i in range(len(state_dicts))
|
150 |
+
]
|
151 |
+
|
152 |
+
return zero_stage, world_size, fp32_flat_groups
|
153 |
+
|
154 |
+
|
155 |
+
def _get_fp32_state_dict_from_zero_checkpoint(ds_checkpoint_dir):
|
156 |
+
"""
|
157 |
+
Returns fp32 state_dict reconstructed from ds checkpoint
|
158 |
+
|
159 |
+
Args:
|
160 |
+
- ``ds_checkpoint_dir``: path to the deepspeed checkpoint folder (where the optimizer files are)
|
161 |
+
|
162 |
+
"""
|
163 |
+
print(f"Processing zero checkpoint '{ds_checkpoint_dir}'")
|
164 |
+
|
165 |
+
optim_files = get_optim_files(ds_checkpoint_dir)
|
166 |
+
zero_stage, world_size, fp32_flat_groups = parse_optim_states(optim_files, ds_checkpoint_dir)
|
167 |
+
print(
|
168 |
+
f"Detected checkpoint of type zero stage {zero_stage}, world_size: {world_size}")
|
169 |
+
|
170 |
+
model_file = get_model_state_file(ds_checkpoint_dir, zero_stage)
|
171 |
+
buffers, param_shapes, ds_version = parse_model_state(model_file)
|
172 |
+
print(f'Parsing checkpoint created by deepspeed=={ds_version}')
|
173 |
+
|
174 |
+
if zero_stage == 2:
|
175 |
+
return _get_fp32_state_dict_from_zero2_checkpoint(world_size,
|
176 |
+
param_shapes,
|
177 |
+
fp32_flat_groups,
|
178 |
+
buffers)
|
179 |
+
elif zero_stage == 3:
|
180 |
+
return _get_fp32_state_dict_from_zero3_checkpoint(world_size,
|
181 |
+
param_shapes,
|
182 |
+
fp32_flat_groups,
|
183 |
+
buffers)
|
184 |
+
|
185 |
+
|
186 |
+
def _get_fp32_state_dict_from_zero2_checkpoint(world_size,
|
187 |
+
param_shapes,
|
188 |
+
fp32_flat_groups,
|
189 |
+
buffers):
|
190 |
+
|
191 |
+
# Reconstruction protocol:
|
192 |
+
#
|
193 |
+
# XXX: document this
|
194 |
+
|
195 |
+
if debug:
|
196 |
+
for i in range(world_size):
|
197 |
+
for j in range(len(fp32_flat_groups[0])):
|
198 |
+
print(
|
199 |
+
f"{FP32_FLAT_GROUPS}[{i}][{j}].shape={fp32_flat_groups[i][j].shape}")
|
200 |
+
|
201 |
+
# XXX: memory usage doubles here (zero2)
|
202 |
+
num_param_groups = len(fp32_flat_groups[0])
|
203 |
+
merged_single_partition_of_fp32_groups = []
|
204 |
+
for i in range(num_param_groups):
|
205 |
+
merged_partitions = [sd[i] for sd in fp32_flat_groups]
|
206 |
+
full_single_fp32_vector = torch.cat(merged_partitions, 0)
|
207 |
+
merged_single_partition_of_fp32_groups.append(full_single_fp32_vector)
|
208 |
+
avail_numel = sum([
|
209 |
+
full_single_fp32_vector.numel()
|
210 |
+
for full_single_fp32_vector in merged_single_partition_of_fp32_groups
|
211 |
+
])
|
212 |
+
|
213 |
+
if debug:
|
214 |
+
wanted_params = sum([len(shapes) for shapes in param_shapes])
|
215 |
+
wanted_numel = sum(
|
216 |
+
[sum(shape.numel() for shape in shapes.values()) for shapes in param_shapes])
|
217 |
+
# not asserting if there is a mismatch due to possible padding
|
218 |
+
print(f"Have {avail_numel} numels to process.")
|
219 |
+
print(f"Need {wanted_numel} numels in {wanted_params} params.")
|
220 |
+
|
221 |
+
state_dict = OrderedDict()
|
222 |
+
|
223 |
+
# buffers
|
224 |
+
state_dict.update(buffers)
|
225 |
+
if debug:
|
226 |
+
print(f"added {len(buffers)} buffers")
|
227 |
+
|
228 |
+
# params
|
229 |
+
# XXX: for huge models that can't fit into the host's RAM we will have to recode this to support
|
230 |
+
# out-of-core computing solution
|
231 |
+
total_numel = 0
|
232 |
+
total_params = 0
|
233 |
+
for shapes, full_single_fp32_vector in zip(param_shapes, merged_single_partition_of_fp32_groups):
|
234 |
+
offset = 0
|
235 |
+
avail_numel = full_single_fp32_vector.numel()
|
236 |
+
for name, shape in shapes.items():
|
237 |
+
|
238 |
+
unpartitioned_numel = shape.numel()
|
239 |
+
total_numel += unpartitioned_numel
|
240 |
+
total_params += 1
|
241 |
+
|
242 |
+
if debug:
|
243 |
+
print(
|
244 |
+
f"{name} full shape: {shape} unpartitioned numel {unpartitioned_numel} "
|
245 |
+
)
|
246 |
+
state_dict[name] = full_single_fp32_vector.narrow(
|
247 |
+
0,
|
248 |
+
offset,
|
249 |
+
unpartitioned_numel).view(shape)
|
250 |
+
offset += unpartitioned_numel
|
251 |
+
|
252 |
+
# Z2 started to align to 2*world_size to improve nccl performance. Therefore both offset and
|
253 |
+
# avail_numel can differ by anywhere between 0..2*world_size. Due to two unrelated complex
|
254 |
+
# paddings performed in the code it's almost impossible to predict the exact numbers w/o the
|
255 |
+
# live optimizer object, so we are checking that the numbers are within the right range
|
256 |
+
align_to = 2 * world_size
|
257 |
+
|
258 |
+
def zero2_align(x):
|
259 |
+
return align_to * math.ceil(x / align_to)
|
260 |
+
|
261 |
+
if debug:
|
262 |
+
print(f"original offset={offset}, avail_numel={avail_numel}")
|
263 |
+
|
264 |
+
offset = zero2_align(offset)
|
265 |
+
avail_numel = zero2_align(avail_numel)
|
266 |
+
|
267 |
+
if debug:
|
268 |
+
print(f"aligned offset={offset}, avail_numel={avail_numel}")
|
269 |
+
|
270 |
+
# Sanity check
|
271 |
+
if offset != avail_numel:
|
272 |
+
raise ValueError(
|
273 |
+
f"consumed {offset} numels out of {avail_numel} - something is wrong")
|
274 |
+
|
275 |
+
print(
|
276 |
+
f"Reconstructed fp32 state dict with {total_params} params {total_numel} elements"
|
277 |
+
)
|
278 |
+
|
279 |
+
return state_dict
|
280 |
+
|
281 |
+
|
282 |
+
def zero3_partitioned_param_info(unpartitioned_numel, world_size):
|
283 |
+
remainder = unpartitioned_numel % world_size
|
284 |
+
padding_numel = (world_size - remainder) if remainder else 0
|
285 |
+
partitioned_numel = math.ceil(unpartitioned_numel / world_size)
|
286 |
+
return partitioned_numel, padding_numel
|
287 |
+
|
288 |
+
|
289 |
+
def _get_fp32_state_dict_from_zero3_checkpoint(world_size,
|
290 |
+
param_shapes,
|
291 |
+
fp32_flat_groups,
|
292 |
+
buffers):
|
293 |
+
|
294 |
+
# Reconstruction protocol: For zero3 we need to zip the partitions together at boundary of each
|
295 |
+
# param, re-consolidating each param, while dealing with padding if any
|
296 |
+
|
297 |
+
avail_numel = fp32_flat_groups[0].numel() * world_size
|
298 |
+
# merge list of dicts, preserving order
|
299 |
+
param_shapes = {k: v for d in param_shapes for k, v in d.items()}
|
300 |
+
|
301 |
+
if debug:
|
302 |
+
for i in range(world_size):
|
303 |
+
print(f"{FP32_FLAT_GROUPS}[{i}].shape={fp32_flat_groups[i].shape}")
|
304 |
+
|
305 |
+
wanted_params = len(param_shapes)
|
306 |
+
wanted_numel = sum(shape.numel() for shape in param_shapes.values())
|
307 |
+
# not asserting if there is a mismatch due to possible padding
|
308 |
+
print(f"Have {avail_numel} numels to process.")
|
309 |
+
print(f"Need {wanted_numel} numels in {wanted_params} params.")
|
310 |
+
|
311 |
+
state_dict = OrderedDict()
|
312 |
+
|
313 |
+
# buffers
|
314 |
+
state_dict.update(buffers)
|
315 |
+
if debug:
|
316 |
+
print(f"added {len(buffers)} buffers")
|
317 |
+
|
318 |
+
# params
|
319 |
+
# XXX: for huge models that can't fit into the host's RAM we will have to recode this to support
|
320 |
+
# out-of-core computing solution
|
321 |
+
offset = 0
|
322 |
+
total_numel = 0
|
323 |
+
total_params = 0
|
324 |
+
for name, shape in param_shapes.items():
|
325 |
+
|
326 |
+
unpartitioned_numel = shape.numel()
|
327 |
+
total_numel += unpartitioned_numel
|
328 |
+
total_params += 1
|
329 |
+
|
330 |
+
partitioned_numel, partitioned_padding_numel = zero3_partitioned_param_info(unpartitioned_numel, world_size)
|
331 |
+
|
332 |
+
if debug:
|
333 |
+
print(
|
334 |
+
f"{total_params} {name} full shape: {shape} partition0 numel={partitioned_numel} partitioned_padding_numel={partitioned_padding_numel}"
|
335 |
+
)
|
336 |
+
|
337 |
+
# XXX: memory usage doubles here
|
338 |
+
state_dict[name] = torch.cat(
|
339 |
+
tuple(fp32_flat_groups[i].narrow(0,
|
340 |
+
offset,
|
341 |
+
partitioned_numel)
|
342 |
+
for i in range(world_size)),
|
343 |
+
0).narrow(0,
|
344 |
+
0,
|
345 |
+
unpartitioned_numel).view(shape)
|
346 |
+
offset += partitioned_numel
|
347 |
+
|
348 |
+
offset *= world_size
|
349 |
+
|
350 |
+
# Sanity check
|
351 |
+
if offset != avail_numel:
|
352 |
+
raise ValueError(
|
353 |
+
f"consumed {offset} numels out of {avail_numel} - something is wrong")
|
354 |
+
|
355 |
+
print(
|
356 |
+
f"Reconstructed fp32 state dict with {total_params} params {total_numel} elements"
|
357 |
+
)
|
358 |
+
|
359 |
+
return state_dict
|
360 |
+
|
361 |
+
|
362 |
+
def get_fp32_state_dict_from_zero_checkpoint(checkpoint_dir, tag=None):
|
363 |
+
"""
|
364 |
+
Convert ZeRO 2 or 3 checkpoint into a single fp32 consolidated state_dict that can be loaded with
|
365 |
+
``load_state_dict()`` and used for training without DeepSpeed or shared with others, for example
|
366 |
+
via a model hub.
|
367 |
+
|
368 |
+
Args:
|
369 |
+
- ``checkpoint_dir``: path to the desired checkpoint folder
|
370 |
+
- ``tag``: checkpoint tag used as a unique identifier for checkpoint. If not provided will attempt to load tag in 'latest' file. e.g., ``global_step14``
|
371 |
+
|
372 |
+
Returns:
|
373 |
+
- pytorch ``state_dict``
|
374 |
+
|
375 |
+
Note: this approach may not work if your application doesn't have sufficient free CPU memory and
|
376 |
+
you may need to use the offline approach using the ``zero_to_fp32.py`` script that is saved with
|
377 |
+
the checkpoint.
|
378 |
+
|
379 |
+
A typical usage might be ::
|
380 |
+
|
381 |
+
from deepspeed.utils.zero_to_fp32 import get_fp32_state_dict_from_zero_checkpoint
|
382 |
+
# do the training and checkpoint saving
|
383 |
+
state_dict = get_fp32_state_dict_from_zero_checkpoint(checkpoint_dir) # already on cpu
|
384 |
+
model = model.cpu() # move to cpu
|
385 |
+
model.load_state_dict(state_dict)
|
386 |
+
# submit to model hub or save the model to share with others
|
387 |
+
|
388 |
+
In this example the ``model`` will no longer be usable in the deepspeed context of the same
|
389 |
+
application. i.e. you will need to re-initialize the deepspeed engine, since
|
390 |
+
``model.load_state_dict(state_dict)`` will remove all the deepspeed magic from it.
|
391 |
+
|
392 |
+
If you want it all done for you, use ``load_state_dict_from_zero_checkpoint`` instead.
|
393 |
+
|
394 |
+
"""
|
395 |
+
if tag is None:
|
396 |
+
latest_path = os.path.join(checkpoint_dir, 'latest')
|
397 |
+
if os.path.isfile(latest_path):
|
398 |
+
with open(latest_path, 'r') as fd:
|
399 |
+
tag = fd.read().strip()
|
400 |
+
else:
|
401 |
+
raise ValueError(f"Unable to find 'latest' file at {latest_path}")
|
402 |
+
|
403 |
+
ds_checkpoint_dir = os.path.join(checkpoint_dir, tag)
|
404 |
+
|
405 |
+
if not os.path.isdir(ds_checkpoint_dir):
|
406 |
+
raise FileNotFoundError(f"Directory '{ds_checkpoint_dir}' doesn't exist")
|
407 |
+
|
408 |
+
return _get_fp32_state_dict_from_zero_checkpoint(ds_checkpoint_dir)
|
409 |
+
|
410 |
+
|
411 |
+
def convert_zero_checkpoint_to_fp32_state_dict(checkpoint_dir, output_file, tag=None):
|
412 |
+
"""
|
413 |
+
Convert ZeRO 2 or 3 checkpoint into a single fp32 consolidated ``state_dict`` file that can be
|
414 |
+
loaded with ``torch.load(file)`` + ``load_state_dict()`` and used for training without DeepSpeed.
|
415 |
+
|
416 |
+
Args:
|
417 |
+
- ``checkpoint_dir``: path to the desired checkpoint folder. (one that contains the tag-folder, like ``global_step14``)
|
418 |
+
- ``output_file``: path to the pytorch fp32 state_dict output file (e.g. path/pytorch_model.bin)
|
419 |
+
- ``tag``: checkpoint tag used as a unique identifier for checkpoint. If not provided will attempt to load tag in the file named ``latest`` in the checkpoint folder, e.g., ``global_step14``
|
420 |
+
"""
|
421 |
+
|
422 |
+
state_dict = get_fp32_state_dict_from_zero_checkpoint(checkpoint_dir, tag)
|
423 |
+
print(f"Saving fp32 state dict to {output_file}")
|
424 |
+
torch.save(state_dict, output_file)
|
425 |
+
|
426 |
+
|
427 |
+
def load_state_dict_from_zero_checkpoint(model, checkpoint_dir, tag=None):
|
428 |
+
"""
|
429 |
+
1. Put the provided model to cpu
|
430 |
+
2. Convert ZeRO 2 or 3 checkpoint into a single fp32 consolidated ``state_dict``
|
431 |
+
3. Load it into the provided model
|
432 |
+
|
433 |
+
Args:
|
434 |
+
- ``model``: the model object to update
|
435 |
+
- ``checkpoint_dir``: path to the desired checkpoint folder. (one that contains the tag-folder, like ``global_step14``)
|
436 |
+
- ``tag``: checkpoint tag used as a unique identifier for checkpoint. If not provided will attempt to load tag in the file named ``latest`` in the checkpoint folder, e.g., ``global_step14``
|
437 |
+
|
438 |
+
Returns:
|
439 |
+
- ``model`: modified model
|
440 |
+
|
441 |
+
Make sure you have plenty of CPU memory available before you call this function. If you don't
|
442 |
+
have enough use the ``zero_to_fp32.py`` utility to do the conversion. You will find it
|
443 |
+
conveniently placed for you in the checkpoint folder.
|
444 |
+
|
445 |
+
A typical usage might be ::
|
446 |
+
|
447 |
+
from deepspeed.utils.zero_to_fp32 import load_state_dict_from_zero_checkpoint
|
448 |
+
model = load_state_dict_from_zero_checkpoint(trainer.model, checkpoint_dir)
|
449 |
+
# submit to model hub or save the model to share with others
|
450 |
+
|
451 |
+
Note, that once this was run, the ``model`` will no longer be usable in the deepspeed context
|
452 |
+
of the same application. i.e. you will need to re-initialize the deepspeed engine, since
|
453 |
+
``model.load_state_dict(state_dict)`` will remove all the deepspeed magic from it.
|
454 |
+
|
455 |
+
"""
|
456 |
+
logger.info(f"Extracting fp32 weights")
|
457 |
+
state_dict = get_fp32_state_dict_from_zero_checkpoint(checkpoint_dir, tag)
|
458 |
+
|
459 |
+
logger.info(f"Overwriting model with fp32 weights")
|
460 |
+
model = model.cpu()
|
461 |
+
model.load_state_dict(state_dict, strict=False)
|
462 |
+
|
463 |
+
return model
|
464 |
+
|
465 |
+
|
466 |
+
if __name__ == "__main__":
|
467 |
+
|
468 |
+
parser = argparse.ArgumentParser()
|
469 |
+
parser.add_argument(
|
470 |
+
"checkpoint_dir",
|
471 |
+
type=str,
|
472 |
+
help="path to the desired checkpoint folder, e.g., path/checkpoint-12")
|
473 |
+
parser.add_argument(
|
474 |
+
"output_file",
|
475 |
+
type=str,
|
476 |
+
help=
|
477 |
+
"path to the pytorch fp32 state_dict output file (e.g. path/checkpoint-12/pytorch_model.bin)"
|
478 |
+
)
|
479 |
+
parser.add_argument("-d", "--debug", action='store_true', help="enable debug")
|
480 |
+
args = parser.parse_args()
|
481 |
+
|
482 |
+
debug = args.debug
|
483 |
+
|
484 |
+
convert_zero_checkpoint_to_fp32_state_dict(args.checkpoint_dir, args.output_file)
|