pszemraj commited on
Commit
b8945a6
1 Parent(s): d5a67a2

Model save

Browse files
Files changed (1) hide show
  1. README.md +95 -0
README.md ADDED
@@ -0,0 +1,95 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ license: apache-2.0
3
+ base_model: google/bigbird-roberta-base
4
+ tags:
5
+ - generated_from_trainer
6
+ model-index:
7
+ - name: bigbird-roberta-base-fineweb-edu-llama3-annotations-4096-vN
8
+ results: []
9
+ ---
10
+
11
+ <!-- This model card has been generated automatically according to the information the Trainer had access to. You
12
+ should probably proofread and complete it, then remove this comment. -->
13
+
14
+ [<img src="https://raw.githubusercontent.com/wandb/assets/main/wandb-github-badge-28.svg" alt="Visualize in Weights & Biases" width="200" height="32"/>](https://wandb.ai/pszemraj/eduscore-regression/runs/04oc07hx)
15
+ # bigbird-roberta-base-fineweb-edu-llama3-annotations-4096-vN
16
+
17
+ This model is a fine-tuned version of [google/bigbird-roberta-base](https://huggingface.co/google/bigbird-roberta-base) on an unknown dataset.
18
+ It achieves the following results on the evaluation set:
19
+ - Loss: 0.2178
20
+ - Mse: 0.2178
21
+
22
+ ## Model description
23
+
24
+ More information needed
25
+
26
+ ## Intended uses & limitations
27
+
28
+ More information needed
29
+
30
+ ## Training and evaluation data
31
+
32
+ More information needed
33
+
34
+ ## Training procedure
35
+
36
+ ### Training hyperparameters
37
+
38
+ The following hyperparameters were used during training:
39
+ - learning_rate: 1e-05
40
+ - train_batch_size: 4
41
+ - eval_batch_size: 4
42
+ - seed: 90085
43
+ - gradient_accumulation_steps: 32
44
+ - total_train_batch_size: 128
45
+ - optimizer: Adam with betas=(0.9,0.98) and epsilon=1e-09
46
+ - lr_scheduler_type: linear
47
+ - lr_scheduler_warmup_ratio: 0.05
48
+ - num_epochs: 1.0
49
+
50
+ ### Training results
51
+
52
+ | Training Loss | Epoch | Step | Validation Loss | Mse |
53
+ |:-------------:|:------:|:----:|:---------------:|:------:|
54
+ | 0.4763 | 0.0288 | 100 | 0.4468 | 0.4468 |
55
+ | 0.3078 | 0.0577 | 200 | 0.3130 | 0.3130 |
56
+ | 0.3088 | 0.0865 | 300 | 0.2695 | 0.2695 |
57
+ | 0.2379 | 0.1153 | 400 | 0.2618 | 0.2618 |
58
+ | 0.289 | 0.1441 | 500 | 0.2583 | 0.2583 |
59
+ | 0.3049 | 0.1730 | 600 | 0.2723 | 0.2723 |
60
+ | 0.2292 | 0.2018 | 700 | 0.2477 | 0.2477 |
61
+ | 0.2677 | 0.2306 | 800 | 0.2369 | 0.2369 |
62
+ | 0.3181 | 0.2594 | 900 | 0.2307 | 0.2307 |
63
+ | 0.2551 | 0.2883 | 1000 | 0.2411 | 0.2411 |
64
+ | 0.2743 | 0.3171 | 1100 | 0.2350 | 0.2350 |
65
+ | 0.2383 | 0.3459 | 1200 | 0.2424 | 0.2424 |
66
+ | 0.2191 | 0.3747 | 1300 | 0.2279 | 0.2279 |
67
+ | 0.2431 | 0.4036 | 1400 | 0.2232 | 0.2232 |
68
+ | 0.2161 | 0.4324 | 1500 | 0.2307 | 0.2307 |
69
+ | 0.2459 | 0.4612 | 1600 | 0.2246 | 0.2246 |
70
+ | 0.2403 | 0.4900 | 1700 | 0.2232 | 0.2232 |
71
+ | 0.251 | 0.5189 | 1800 | 0.2421 | 0.2421 |
72
+ | 0.2565 | 0.5477 | 1900 | 0.2207 | 0.2207 |
73
+ | 0.2274 | 0.5765 | 2000 | 0.2294 | 0.2294 |
74
+ | 0.2272 | 0.6053 | 2100 | 0.2192 | 0.2192 |
75
+ | 0.2668 | 0.6342 | 2200 | 0.2204 | 0.2204 |
76
+ | 0.2434 | 0.6630 | 2300 | 0.2196 | 0.2196 |
77
+ | 0.2464 | 0.6918 | 2400 | 0.2185 | 0.2185 |
78
+ | 0.2338 | 0.7206 | 2500 | 0.2166 | 0.2166 |
79
+ | 0.243 | 0.7495 | 2600 | 0.2165 | 0.2165 |
80
+ | 0.1891 | 0.7783 | 2700 | 0.2201 | 0.2201 |
81
+ | 0.2355 | 0.8071 | 2800 | 0.2167 | 0.2167 |
82
+ | 0.2231 | 0.8359 | 2900 | 0.2168 | 0.2168 |
83
+ | 0.2274 | 0.8648 | 3000 | 0.2243 | 0.2243 |
84
+ | 0.2287 | 0.8936 | 3100 | 0.2203 | 0.2203 |
85
+ | 0.261 | 0.9224 | 3200 | 0.2186 | 0.2186 |
86
+ | 0.2187 | 0.9512 | 3300 | 0.2176 | 0.2176 |
87
+ | 0.2069 | 0.9801 | 3400 | 0.2178 | 0.2178 |
88
+
89
+
90
+ ### Framework versions
91
+
92
+ - Transformers 4.42.3
93
+ - Pytorch 2.3.1+cu121
94
+ - Datasets 2.20.0
95
+ - Tokenizers 0.19.1