pszemraj commited on
Commit
bdc91e5
·
1 Parent(s): a4cc953

formatting

Browse files
Files changed (1) hide show
  1. README.md +22 -41
README.md CHANGED
@@ -251,65 +251,46 @@ model-index:
251
 
252
  - create the summarizer object:
253
 
254
- ```
255
  from transformers import AutoModelForSeq2SeqLM, AutoTokenizer
256
  from transformers import pipeline
257
 
258
- _model = AutoModelForSeq2SeqLM.from_pretrained(
259
- "pszemraj/bigbird-pegasus-large-K-booksum",
260
- low_cpu_mem_usage=True,
261
- )
 
 
 
 
262
 
263
- _tokenizer = AutoTokenizer.from_pretrained(
264
- "pszemraj/bigbird-pegasus-large-K-booksum",
265
- )
266
-
267
 
268
  summarizer = pipeline(
269
- "summarization",
270
- model=_model,
271
- tokenizer=_tokenizer
272
- )
273
-
274
  ```
275
 
276
  - define text to be summarized, and pass it through the pipeline. Boom done.
277
 
278
- ```
279
  wall_of_text = "your text to be summarized goes here."
280
 
281
  result = summarizer(
282
- wall_of_text,
283
- min_length=16,
284
- max_length=256,
285
- no_repeat_ngram_size=3,
286
- clean_up_tokenization_spaces=True,
287
- )
288
 
289
- print(result[0]['summary_text'])
290
  ```
291
 
292
  ## Alternate Checkpoint
293
 
294
  - if experiencing runtime/memory issues, try [this earlier checkpoint](https://huggingface.co/pszemraj/bigbird-pegasus-large-booksum-40k-K) at 40,000 steps which is almost as good at the explanatory summarization task but runs faster.
 
295
 
296
  ---
297
-
298
- # Results
299
-
300
- - note that while the dataset has three subsets (chapter, book, paragraph) - see the [paper](https://arxiv.org/abs/2105.08209). the scores below are run in aggregate. The paper has some benchmark scores listed, which this model competes with.
301
- - note that eval generations are run & computed at a length of 128 tokens.
302
-
303
-
304
- ```
305
- 'eval_gen_len': 126.9791,
306
- 'eval_loss': 4.00944709777832,
307
- 'eval_rouge1': 27.6028,
308
- 'eval_rouge2': 4.6556,
309
- 'eval_rougeL': 14.5259,
310
- 'eval_rougeLsum': 25.6632,
311
- 'eval_runtime': 29847.4812,
312
- 'eval_samples_per_second': 0.05,
313
- 'eval_steps_per_second': 0.05}
314
-
315
- ```
 
251
 
252
  - create the summarizer object:
253
 
254
+ ```python
255
  from transformers import AutoModelForSeq2SeqLM, AutoTokenizer
256
  from transformers import pipeline
257
 
258
+ model = AutoModelForSeq2SeqLM.from_pretrained(
259
+ "pszemraj/bigbird-pegasus-large-K-booksum",
260
+ low_cpu_mem_usage=True,
261
+ )
262
+
263
+ tokenizer = AutoTokenizer.from_pretrained(
264
+ "pszemraj/bigbird-pegasus-large-K-booksum",
265
+ )
266
 
 
 
 
 
267
 
268
  summarizer = pipeline(
269
+ "summarization",
270
+ model=model,
271
+ tokenizer=tokenizer,
272
+ )
 
273
  ```
274
 
275
  - define text to be summarized, and pass it through the pipeline. Boom done.
276
 
277
+ ```python
278
  wall_of_text = "your text to be summarized goes here."
279
 
280
  result = summarizer(
281
+ wall_of_text,
282
+ min_length=16,
283
+ max_length=256,
284
+ no_repeat_ngram_size=3,
285
+ clean_up_tokenization_spaces=True,
286
+ )
287
 
288
+ print(result[0]["summary_text"])
289
  ```
290
 
291
  ## Alternate Checkpoint
292
 
293
  - if experiencing runtime/memory issues, try [this earlier checkpoint](https://huggingface.co/pszemraj/bigbird-pegasus-large-booksum-40k-K) at 40,000 steps which is almost as good at the explanatory summarization task but runs faster.
294
+ - see similar summarization models fine-tuned on booksum but using different architectures: [long-t5 base](https://huggingface.co/pszemraj/long-t5-tglobal-base-16384-book-summary) and [LED-Large](https://huggingface.co/pszemraj/led-large-book-summary)
295
 
296
  ---