Update README.md
Browse files
README.md
CHANGED
|
@@ -7,13 +7,94 @@ language:
|
|
| 7 |
base_model:
|
| 8 |
- llava-hf/llava-v1.6-vicuna-13b-hf
|
| 9 |
pipeline_tag: image-text-to-text
|
|
|
|
|
|
|
|
|
|
| 10 |
---
|
| 11 |
|
| 12 |
-
# Model Card for SENTINEL:<br>
|
| 13 |
|
| 14 |
<a href='https://arxiv.org/abs/2507.12455'>
|
| 15 |
<img src='https://img.shields.io/badge/Paper-Arxiv-purple'></a>
|
| 16 |
<a href='https://github.com/pspdada/SENTINEL'>
|
| 17 |
<img src='https://img.shields.io/badge/Github-Repo-Green'></a>
|
|
|
|
|
|
|
|
|
|
|
|
|
| 18 |
|
| 19 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 7 |
base_model:
|
| 8 |
- llava-hf/llava-v1.6-vicuna-13b-hf
|
| 9 |
pipeline_tag: image-text-to-text
|
| 10 |
+
library_name: transformers
|
| 11 |
+
tags:
|
| 12 |
+
- lora
|
| 13 |
---
|
| 14 |
|
| 15 |
+
# Model Card for ``psp-dada/LLaVA-v1.6-Vicuna-13B-SENTINEL`` | ICCV2025 | SENTINEL:<br>Mitigating Object Hallucinations via Sentence-Level Early Intervention <!-- omit in toc -->
|
| 16 |
|
| 17 |
<a href='https://arxiv.org/abs/2507.12455'>
|
| 18 |
<img src='https://img.shields.io/badge/Paper-Arxiv-purple'></a>
|
| 19 |
<a href='https://github.com/pspdada/SENTINEL'>
|
| 20 |
<img src='https://img.shields.io/badge/Github-Repo-Green'></a>
|
| 21 |
+
<a href='https://huggingface.co/papers/2507.12455'>
|
| 22 |
+
<img src='https://img.shields.io/badge/Discussion-HF-blue'></a>
|
| 23 |
+
<a href='https://github.com/pspdada/SENTINEL/blob/main/LICENSE'>
|
| 24 |
+
<img src='https://img.shields.io/badge/LICENSE-Apache_2.0-yellow'></a>
|
| 25 |
|
| 26 |
+
## 🎊 News <!-- omit in toc -->
|
| 27 |
+
|
| 28 |
+
- [2025.07.21] All code, data, and models are released!
|
| 29 |
+
- [2025.06.26] 🎉 Our SENTINEL is accepted by **ICCV 2025**!
|
| 30 |
+
|
| 31 |
+
## 🚀 Overview <!-- omit in toc -->
|
| 32 |
+
|
| 33 |
+
**SENTINEL** introduces an automatic, sentence‑level early intervention strategy to prevent and mitigate object hallucinations in multimodal large language models (MLLMs). Key advantages:
|
| 34 |
+
|
| 35 |
+
- **Annotation‑free**: No human labeling required.
|
| 36 |
+
|
| 37 |
+
- **Model-agnostic**: Compatible with any MLLM architecture.
|
| 38 |
+
|
| 39 |
+
- **Efficient**: Lightweight LoRA fine‑tuning.
|
| 40 |
+
|
| 41 |
+
## 🔑 Key Features
|
| 42 |
+
|
| 43 |
+
- 🧠 **Early intervention halts hallucination propagation**. We find that hallucinations of MLLMs predominantly arise in early sentences and propagate through the rest of the output. SENTINEL interrupts this chain early to maximize mitigation.
|
| 44 |
+
<table align="center">
|
| 45 |
+
<p align="center">
|
| 46 |
+
<img src="https://github.com/pspdada/SENTINEL/raw/main/docs/figures/figure2.png" width="80%" />
|
| 47 |
+
</p>
|
| 48 |
+
</table>
|
| 49 |
+
|
| 50 |
+
- 🔍 **In-domain contextual preference learning without human labels**. SENTINEL constructs hallucinated/factual samples via detector cross-validation and builds context-aware preference data without relying on proprietary LLMs or manual annotations.
|
| 51 |
+
<table align="center">
|
| 52 |
+
<p align="center">
|
| 53 |
+
<img src="https://github.com/pspdada/SENTINEL/raw/main/docs/figures/figure3.png" width="80%" />
|
| 54 |
+
</p>
|
| 55 |
+
</table>
|
| 56 |
+
|
| 57 |
+
- 💡 **Context matters: rich coherence drives robustness**. By prioritizing context-coherent positive samples over hallucinated ones, SENTINEL significantly boosts generalization.
|
| 58 |
+
<table align="center">
|
| 59 |
+
<p align="center">
|
| 60 |
+
<img src="https://github.com/pspdada/SENTINEL/raw/main/docs/figures/figure4.png" width="80%" />
|
| 61 |
+
</p>
|
| 62 |
+
</table>
|
| 63 |
+
|
| 64 |
+
- ♻️ **Iterative contextual bootstrapping for diverse hallucination-free contexts**. Our pipeline dynamically grows non-hallucinated contexts and expands coverage across varied scenes, improving robustness across generations.
|
| 65 |
+
<table align="center">
|
| 66 |
+
<p align="center">
|
| 67 |
+
<img src="https://github.com/pspdada/SENTINEL/raw/main/docs/figures/figure5.png" width="80%" />
|
| 68 |
+
</p>
|
| 69 |
+
</table>
|
| 70 |
+
|
| 71 |
+
- 📊 **State-of-the-art results across benchmarks**.
|
| 72 |
+
SENTINEL achieves **up to 92% reduction** in hallucinations and outperforms prior SOTA methods across Object HalBench, AMBER, and HallusionBench, while maintaining or improving general task performance.
|
| 73 |
+
<table align="center">
|
| 74 |
+
<p align="center">
|
| 75 |
+
<img src="https://github.com/pspdada/SENTINEL/raw/main/docs/figures/table1.png" width="80%" />
|
| 76 |
+
</p>
|
| 77 |
+
</table>
|
| 78 |
+
|
| 79 |
+
## How to use
|
| 80 |
+
|
| 81 |
+
This model is a PEFT (LoRA) adapter. You first need to load the base model (`llava-hf/llava-v1.6-vicuna-13b-hf`) and then load this adapter on top of it.
|
| 82 |
+
|
| 83 |
+
**For the details of this model, please refer to the [documentation](https://github.com/pspdada/SENTINEL?tab=readme-ov-file#-model-weights) of the GitHub repo.**
|
| 84 |
+
|
| 85 |
+
## 📝 Citation
|
| 86 |
+
|
| 87 |
+
If you find our model/code/data/paper helpful, please consider citing our papers 📝 and starring us ⭐️!
|
| 88 |
+
|
| 89 |
+
```bibtex
|
| 90 |
+
@article{peng2025mitigating,
|
| 91 |
+
title={Mitigating Object Hallucinations via Sentence-Level Early Intervention},
|
| 92 |
+
author={Peng, Shangpin and Yang, Senqiao and Jiang, Li and Tian, Zhuotao},
|
| 93 |
+
journal={arXiv preprint arXiv:2507.12455},
|
| 94 |
+
year={2025}
|
| 95 |
+
}
|
| 96 |
+
```
|
| 97 |
+
|
| 98 |
+
## 📧 Contact us <!-- omit in toc -->
|
| 99 |
+
|
| 100 |
+
If you have any questions, comments, or suggestions, please do not hesitate to submit an issue or PR to help advance research in this area.
|