ppo-LunarLander-base / config.json
psetinek's picture
first try of lunar lander
495722b
{"policy_class": {":type:": "<class 'abc.ABCMeta'>", ":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==", "__module__": "stable_baselines3.common.policies", "__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ", "__init__": "<function ActorCriticPolicy.__init__ at 0x7f47e1fb4790>", "_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x7f47e1fb4820>", "reset_noise": "<function ActorCriticPolicy.reset_noise at 0x7f47e1fb48b0>", "_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x7f47e1fb4940>", "_build": "<function ActorCriticPolicy._build at 0x7f47e1fb49d0>", "forward": "<function ActorCriticPolicy.forward at 0x7f47e1fb4a60>", "extract_features": "<function ActorCriticPolicy.extract_features at 0x7f47e1fb4af0>", "_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x7f47e1fb4b80>", "_predict": "<function ActorCriticPolicy._predict at 0x7f47e1fb4c10>", "evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x7f47e1fb4ca0>", "get_distribution": "<function ActorCriticPolicy.get_distribution at 0x7f47e1fb4d30>", "predict_values": "<function ActorCriticPolicy.predict_values at 0x7f47e1fb4dc0>", "__abstractmethods__": "frozenset()", "_abc_impl": "<_abc._abc_data object at 0x7f47e1fa2500>"}, "verbose": 1, "policy_kwargs": {}, "num_timesteps": 1015808, "_total_timesteps": 1000000, "_num_timesteps_at_start": 0, "seed": null, "action_noise": null, "start_time": 1685874419735784773, "learning_rate": 0.0003, "tensorboard_log": null, "_last_obs": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVdQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYAAgAAAAAAADNs+bwblbM/VYDfvXNfhr5KW9e83smLvQAAAAAAAAAAABkOvaQQDbnxPIG5L8CJs2UKfruGIZg4AACAPwAAgD/m6Za9BTKHu+69Lbw+C3g8e5PNvCvBVT0AAIA/AACAPwZ2Az6vkgA/0+zYve9Xpr7UuFs9TXIdvgAAAAAAAAAAmsWbvaW3Az6oaZG8nus5vvTtIL2unKM8AAAAAAAAAABzHpo9kvqTP7p/ED3HFMW+/yMDPlZcl7sAAAAAAAAAADN4w7zaJLw/7rARvq0JUrwzSj+9NT/vvQAAAAAAAAAAwD0EvmzatT9APXW+BwuHvslOiL7FxQi+AAAAAAAAAADAtoO9km4rPzjhCDzqk6e+EBUlvch15DwAAAAAAAAAAI0wj71eVMw+IEzEPQOLlb7m3TA970TEPQAAAAAAAAAAZuuZveokhT5SDne7K4tTvt8bXzyMlxW9AAAAAAAAAAAzj7q7KVxFumeSIbnKrNK0olgaOx7ZOjgAAIA/AACAP80kZLzsSp4/GLfvvF8R075nHKA7YBDQPAAAAAAAAAAAANH3PQVsnj8ypZE+ukj0vgdKcj4bWBY+AAAAAAAAAAC6PSq+tCeBP+q+ZL7wn8u+RNO5vjaLqbwAAAAAAAAAACYZBj4cY6Q/BE4aP+wVz77S/CA+WAzbPgAAAAAAAAAAlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksQSwiGlIwBQ5R0lFKULg=="}, "_last_episode_starts": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVgwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSxCFlIwBQ5R0lFKULg=="}, "_last_original_obs": null, "_episode_num": 0, "use_sde": false, "sde_sample_freq": -1, "_current_progress_remaining": -0.015808000000000044, "_stats_window_size": 100, "ep_info_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVPwwAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpRHQHC30Vi4J/qMAWyUTS0BjAF0lEdAkmOht52Qn3V9lChoBkdAbM/jBEa2nmgHTcwBaAhHQJJku3UhFE11fZQoaAZHQG/odOZb6gxoB00dAWgIR0CSZTaG5+YudX2UKGgGR0Bt+aVdHDrJaAdNgQFoCEdAkmX1Z9uxbHV9lChoBkdAcVP9fkWAPWgHTYwBaAhHQJJnWEf1Yhd1fZQoaAZHQHPLWitaIN5oB001AWgIR0CSfRvStvGZdX2UKGgGR0BwAJHiFTNuaAdNJgFoCEdAkn05ckdFOXV9lChoBkdAcEM+t8uzyGgHTR4BaAhHQJKAW1qnFYN1fZQoaAZHQG+pMKCxu89oB01EAWgIR0CSgHnqmj0udX2UKGgGR0Bxi6508vEkaAdNMQJoCEdAkoDakAPuonV9lChoBkdAcE8IOH31z2gHTUEBaAhHQJKBNc/t6X11fZQoaAZHQHBFiTUy57RoB03vAWgIR0CSgfIoVmBfdX2UKGgGR0Bx3a5I6KceaAdNQAFoCEdAkoNig5BC2XV9lChoBkdAcKWxb0OEumgHTRQBaAhHQJKFCWqtHQR1fZQoaAZHQG08qZ+hGpdoB00MAWgIR0CShSmpEQXidX2UKGgGR0BurOUB4lhPaAdNtAFoCEdAkoVMlb/wRXV9lChoBkdAcsmCYCyQgmgHTTUBaAhHQJKFTVDrqt51fZQoaAZHQHJ6yDVYp2FoB01gA2gIR0CShYEB8x9HdX2UKGgGR0AirxZuAI6baAdL6WgIR0CSiGv+fh/BdX2UKGgGR0Bxd0Es8PnTaAdNbQFoCEdAkouUILPUrnV9lChoBkdAcKlmnO0LMWgHTR0BaAhHQJKLovf0mMR1fZQoaAZHQHGzU+PikwhoB003AWgIR0CSi7yRSxZ/dX2UKGgGR0ByjB2W6bvxaAdNjwFoCEdAkowh/NJOFnV9lChoBkdAbS2D+zdDY2gHTbsBaAhHQJKMoP1+RYB1fZQoaAZHQG1PNh3JPqNoB01EAWgIR0CSjMc81XNkdX2UKGgGR0Bw0qv4dp7DaAdNAgFoCEdAko8DASFoMHV9lChoBkdAckXYL9deIGgHTRYBaAhHQJKPpoJzDGd1fZQoaAZHQG/HlUhmoR9oB00cAWgIR0CSkCcFQl8gdX2UKGgGR0BsbPOB19v1aAdNMwFoCEdAkpELIHTqjnV9lChoBkdAccIc7hegMGgHTbIBaAhHQJKSQ/KQq7R1fZQoaAZHQFOEYVZcLShoB03oA2gIR0CSkmE9+w1SdX2UKGgGR0BwPCnBLwnZaAdNcwFoCEdAkpOz0cwQDnV9lChoBkdAbOII/qxC6mgHTd0BaAhHQJKVZlyzXz11fZQoaAZHQHA2ZSNwR5FoB00jAWgIR0CSlsEd/8VIdX2UKGgGR0Bu3jPjXFtLaAdNXwFoCEdAkplMNpdrwnV9lChoBkdAcca7FKkEcWgHTVkBaAhHQJKZlp/PPcB1fZQoaAZHQHF0n+VC5VhoB01TAWgIR0CSmeBDXvphdX2UKGgGR0Bv63Rw6ySnaAdNQQFoCEdAkpvsmShaknV9lChoBkdAccOdCE6DG2gHTZ4BaAhHQJKcPlkpZwJ1fZQoaAZHQHCZ6Hbh3q1oB02gAWgIR0CSnWVYZEUkdX2UKGgGR0Bs91hCtzS1aAdNMwFoCEdAkp2RBAv+O3V9lChoBkdAci9zOX3QD2gHTQsCaAhHQJKdpu4wyqN1fZQoaAZHQG5QcZk078xoB01oAWgIR0CSnpm78Nx3dX2UKGgGR0BsPIuuieunaAdNPwFoCEdAkp8AR9PUKHV9lChoBkdAblTGJemelWgHTbQBaAhHQJKgv0yxiXp1fZQoaAZHQGuMQRPGhmJoB02BAWgIR0CSoarilzltdX2UKGgGR0BtLah37k4naAdNRgFoCEdAkqLKISDh+HV9lChoBkdAcvo5/9YOlWgHS/VoCEdAkqPuNxVAA3V9lChoBkdAcwOolD4QBmgHTUYBaAhHQJKkVydWhh91fZQoaAZHQFN99QGfPHFoB03oA2gIR0CSpPZmI0qIdX2UKGgGR0BwGWoFV1fWaAdNxgFoCEdAkrp9VWCEpXV9lChoBkdAcbT7VJ+UhWgHTUQBaAhHQJK69j4Hoox1fZQoaAZHQHKtFa8pTddoB01FAWgIR0CSvN2/i5uqdX2UKGgGR0Bz0QgwGnn/aAdNBwFoCEdAkr0cFEAo5XV9lChoBkdAcIhrIo3JgmgHTZEBaAhHQJK9d6PbO/t1fZQoaAZHQHGOBQrMC91oB01tAWgIR0CSv7Yc/+sHdX2UKGgGR0Buy1bgTAWSaAdNagFoCEdAkr/FsP8Q7XV9lChoBkdAcA5vQnhKlGgHTVABaAhHQJLAcVwgkkd1fZQoaAZHQEUb2xIJ7cBoB0vVaAhHQJLAlTzd1uB1fZQoaAZHQG7VTV2A5JdoB021AWgIR0CSwWfgrH2idX2UKGgGR0Bx2ZyYG+sYaAdNkwFoCEdAksFok7fYSXV9lChoBkdAcAVwBo24u2gHTT4BaAhHQJLCK8jAzpJ1fZQoaAZHQG4i3qRlpXZoB00xAWgIR0CSwnzaK1ohdX2UKGgGR0Bvbu0PYnOTaAdNMAFoCEdAksMyxu89OnV9lChoBkdAb0vgsK9f1GgHTSUBaAhHQJLDiIj4YaZ1fZQoaAZHQHIwUoWpIc1oB02kAWgIR0CSxJekHlfadX2UKGgGR0BwN/V2A5JcaAdNPwFoCEdAksXHo9s7+3V9lChoBkdAb+s+tbLU1GgHTQQBaAhHQJLF1AbADaJ1fZQoaAZHQHIL/SH/LkloB01WAWgIR0CSxgaTwDvFdX2UKGgGR0BxxCIoE0SAaAdNIQFoCEdAkskV1B+nZXV9lChoBkdAcKv5oGpuM2gHTVwBaAhHQJLJH5HmRvF1fZQoaAZHQHBOrJCBwuNoB00cAWgIR0CSyauMdcSodX2UKGgGR0BySACwKSgXaAdNGwFoCEdAksp9x2jfvXV9lChoBkdAbZvlXA/LT2gHTSIBaAhHQJLKvt7a7Ep1fZQoaAZHQHAqSiVSn+BoB01FAWgIR0CSywS1maphdX2UKGgGR0BTewxWT5fuaAdLwmgIR0CSyyM+/xlQdX2UKGgGR0BrhuzposZpaAdNFwFoCEdAkssxXwLE1nV9lChoBkdAcx7PBi1Aq2gHTRUBaAhHQJLLb4j8k2R1fZQoaAZHQGy9da2WpqBoB03LAWgIR0CSzD6i0v4/dX2UKGgGR0Bv2JF1B+nZaAdNLwFoCEdAkszs0pEx7HV9lChoBkdAb5tlp48lomgHTaUBaAhHQJLNXsyBTXJ1fZQoaAZHQG99PM8ox59oB004AWgIR0CSz+TH80k4dX2UKGgGR0Bw1XsNUfgaaAdNRQFoCEdAktBKu8scyXV9lChoBkdAchPc8DB/JGgHTVEBaAhHQJLRAKkVN6B1fZQoaAZHQHGBbqt5le5oB00XAWgIR0CS0rJAt4A0dX2UKGgGR0BwRu8VYZEVaAdN8QFoCEdAktO6ebutwXV9lChoBkdAceXRw6ySm2gHTUUBaAhHQJLTzklu3tt1fZQoaAZHQHDIINiH6/JoB01+AWgIR0CS1gO/tY0VdX2UKGgGR0BubHSa3I+4aAdNZAFoCEdAkta4xtYSx3V9lChoBkdAcS+spobn5mgHTTIBaAhHQJLWuVTrE+B1fZQoaAZHQHDkzkp7TlVoB016AWgIR0CS2AWUbDMvdX2UKGgGR0BwjS1iONo8aAdNlgFoCEdAkthbDye7MHV9lChoBkdAcBBA3kxREWgHTb8BaAhHQJLankLhJiB1fZQoaAZHQG8tpgCwKShoB02AAWgIR0CS2yc94eLfdX2UKGgGR0Bu9OWldkauaAdNJgFoCEdAkttMRL9MsnV9lChoBkdABjkRSP2f02gHS+ZoCEdAktuJ80DU3HV9lChoBkdAc6SzmwJPZmgHTTkBaAhHQJLbr0lJHy51fZQoaAZHQG68eHaews5oB02lAWgIR0CS3CIczZYgdX2UKGgGR0BzDIDSw4bTaAdN3QFoCEdAktxcJlar3nV9lChoBkdAcPWs7uDzy2gHTS4BaAhHQJLciP91loV1ZS4="}, "ep_success_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="}, "_n_updates": 248, "observation_space": {":type:": "<class 'gymnasium.spaces.box.Box'>", ":serialized:": "gAWVcAIAAAAAAACMFGd5bW5hc2l1bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMDWJvdW5kZWRfYmVsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWCAAAAAAAAAABAQEBAQEBAZRoB4wCYjGUiYiHlFKUKEsDjAF8lE5OTkr/////Sv////9LAHSUYksIhZSMAUOUdJRSlIwNYm91bmRlZF9hYm92ZZRoECiWCAAAAAAAAAABAQEBAQEBAZRoFEsIhZRoGHSUUpSMBl9zaGFwZZRLCIWUjANsb3eUaBAoliAAAAAAAAAAAAC0wgAAtMIAAKDAAACgwNsPScAAAKDAAAAAgAAAAICUaApLCIWUaBh0lFKUjARoaWdolGgQKJYgAAAAAAAAAAAAtEIAALRCAACgQAAAoEDbD0lAAACgQAAAgD8AAIA/lGgKSwiFlGgYdJRSlIwIbG93X3JlcHKUjFtbLTkwLiAgICAgICAgLTkwLiAgICAgICAgIC01LiAgICAgICAgIC01LiAgICAgICAgIC0zLjE0MTU5MjcgIC01LgogIC0wLiAgICAgICAgIC0wLiAgICAgICBdlIwJaGlnaF9yZXBylIxTWzkwLiAgICAgICAgOTAuICAgICAgICAgNS4gICAgICAgICA1LiAgICAgICAgIDMuMTQxNTkyNyAgNS4KICAxLiAgICAgICAgIDEuICAgICAgIF2UjApfbnBfcmFuZG9tlE51Yi4=", "dtype": "float32", "bounded_below": "[ True True True True True True True True]", "bounded_above": "[ True True True True True True True True]", "_shape": [8], "low": "[-90. -90. -5. -5. -3.1415927 -5.\n -0. -0. ]", "high": "[90. 90. 5. 5. 3.1415927 5.\n 1. 1. ]", "low_repr": "[-90. -90. -5. -5. -3.1415927 -5.\n -0. -0. ]", "high_repr": "[90. 90. 5. 5. 3.1415927 5.\n 1. 1. ]", "_np_random": null}, "action_space": {":type:": "<class 'gymnasium.spaces.discrete.Discrete'>", ":serialized:": "gAWV1QAAAAAAAACMGWd5bW5hc2l1bS5zcGFjZXMuZGlzY3JldGWUjAhEaXNjcmV0ZZSTlCmBlH2UKIwBbpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCaTiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMIBAAAAAAAAACUhpRSlIwFc3RhcnSUaAhoDkMIAAAAAAAAAACUhpRSlIwGX3NoYXBllCloCmgOjApfbnBfcmFuZG9tlE51Yi4=", "n": "4", "start": "0", "_shape": [], "dtype": "int64", "_np_random": null}, "n_envs": 16, "n_steps": 1024, "gamma": 0.999, "gae_lambda": 0.98, "ent_coef": 0.01, "vf_coef": 0.5, "max_grad_norm": 0.5, "batch_size": 64, "n_epochs": 4, "clip_range": {":type:": "<class 'function'>", ":serialized:": "gAWVxQIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSS91c3IvbG9jYWwvbGliL3B5dGhvbjMuMTAvZGlzdC1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUjARmdW5jlEuEQwIEAZSMA3ZhbJSFlCl0lFKUfZQojAtfX3BhY2thZ2VfX5SMGHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbpSMCF9fbmFtZV9flIwec3RhYmxlX2Jhc2VsaW5lczMuY29tbW9uLnV0aWxzlIwIX19maWxlX1+UjEkvdXNyL2xvY2FsL2xpYi9weXRob24zLjEwL2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaB99lH2UKGgWaA2MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgXjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz/JmZmZmZmahZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"}, "clip_range_vf": null, "normalize_advantage": true, "target_kl": null, "lr_schedule": {":type:": "<class 'function'>", ":serialized:": "gAWVxQIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSS91c3IvbG9jYWwvbGliL3B5dGhvbjMuMTAvZGlzdC1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUjARmdW5jlEuEQwIEAZSMA3ZhbJSFlCl0lFKUfZQojAtfX3BhY2thZ2VfX5SMGHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbpSMCF9fbmFtZV9flIwec3RhYmxlX2Jhc2VsaW5lczMuY29tbW9uLnV0aWxzlIwIX19maWxlX1+UjEkvdXNyL2xvY2FsL2xpYi9weXRob24zLjEwL2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaB99lH2UKGgWaA2MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgXjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz8zqSowVTJhhZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"}, "system_info": {"OS": "Linux-5.15.107+-x86_64-with-glibc2.31 # 1 SMP Sat Apr 29 09:15:28 UTC 2023", "Python": "3.10.11", "Stable-Baselines3": "2.0.0a5", "PyTorch": "2.0.1+cu118", "GPU Enabled": "True", "Numpy": "1.22.4", "Cloudpickle": "2.2.1", "Gymnasium": "0.28.1", "OpenAI Gym": "0.25.2"}}