asofter commited on
Commit
c3ee135
1 Parent(s): efa3e9f

Create README.md

Browse files
Files changed (1) hide show
  1. README.md +41 -0
README.md ADDED
@@ -0,0 +1,41 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ pipeline_tag: text-classification
3
+ language: en
4
+ datasets:
5
+ - valurank/wikirev-bias
6
+ inference: false
7
+ tags:
8
+ - bias
9
+ - distilroberta
10
+ ---
11
+
12
+ # ONNX version of valurank/distilroberta-bias
13
+
14
+ **This model is a conversion of [valurank/distilroberta-bias](https://huggingface.co/valurank/distilroberta-bias) to ONNX** format. It is designed to detect biases in text using the distilled version of the RoBERTa model. The model was converted to ONNX using the [🤗 Optimum](https://huggingface.co/docs/optimum/index) library.
15
+
16
+ ## Model Architecture
17
+
18
+ **Base Model**: DistilRoBERTa, a distilled version of the RoBERTa model that is optimized for faster performance while maintaining similar accuracy.
19
+
20
+ **Modifications**: The model is converted to ONNX format with no additional changes.
21
+
22
+ ## Usage
23
+
24
+ Loading the model requires the [🤗 Optimum](https://huggingface.co/docs/optimum/index) library installed.
25
+
26
+ ```python
27
+ from optimum.onnxruntime import ORTModelForSequenceClassification
28
+ from transformers import AutoTokenizer, pipeline
29
+
30
+
31
+ tokenizer = AutoTokenizer.from_pretrained("laiyer/distilroberta-bias-onnx")
32
+ model = ORTModelForSequenceClassification.from_pretrained("laiyer/distilroberta-bias-onnx")
33
+ classifier = pipeline(
34
+ task="text-classification",
35
+ model=model,
36
+ tokenizer=tokenizer,
37
+ )
38
+
39
+ classifier_output = classifier("Your text to analyze for bias.")
40
+ score = (classifier_output[0]["score"] if classifier_output[0]["label"] == "BIASED" else 1 - classifier_output[0]["score"])
41
+ ```