ziansu commited on
Commit
ea60782
·
verified ·
1 Parent(s): d249edf

Training in progress, step 1000, checkpoint

Browse files
Files changed (28) hide show
  1. checkpoint-1000/README.md +202 -0
  2. checkpoint-1000/adapter_config.json +34 -0
  3. checkpoint-1000/adapter_model.safetensors +3 -0
  4. checkpoint-1000/global_step1000/bf16_zero_pp_rank_0_mp_rank_00_optim_states.pt +3 -0
  5. checkpoint-1000/global_step1000/bf16_zero_pp_rank_1_mp_rank_00_optim_states.pt +3 -0
  6. checkpoint-1000/global_step1000/bf16_zero_pp_rank_2_mp_rank_00_optim_states.pt +3 -0
  7. checkpoint-1000/global_step1000/bf16_zero_pp_rank_3_mp_rank_00_optim_states.pt +3 -0
  8. checkpoint-1000/global_step1000/bf16_zero_pp_rank_4_mp_rank_00_optim_states.pt +3 -0
  9. checkpoint-1000/global_step1000/bf16_zero_pp_rank_5_mp_rank_00_optim_states.pt +3 -0
  10. checkpoint-1000/global_step1000/bf16_zero_pp_rank_6_mp_rank_00_optim_states.pt +3 -0
  11. checkpoint-1000/global_step1000/bf16_zero_pp_rank_7_mp_rank_00_optim_states.pt +3 -0
  12. checkpoint-1000/global_step1000/mp_rank_00_model_states.pt +3 -0
  13. checkpoint-1000/latest +1 -0
  14. checkpoint-1000/rng_state_0.pth +3 -0
  15. checkpoint-1000/rng_state_1.pth +3 -0
  16. checkpoint-1000/rng_state_2.pth +3 -0
  17. checkpoint-1000/rng_state_3.pth +3 -0
  18. checkpoint-1000/rng_state_4.pth +3 -0
  19. checkpoint-1000/rng_state_5.pth +3 -0
  20. checkpoint-1000/rng_state_6.pth +3 -0
  21. checkpoint-1000/rng_state_7.pth +3 -0
  22. checkpoint-1000/scheduler.pt +3 -0
  23. checkpoint-1000/special_tokens_map.json +30 -0
  24. checkpoint-1000/tokenizer.json +0 -0
  25. checkpoint-1000/tokenizer_config.json +133 -0
  26. checkpoint-1000/trainer_state.json +1853 -0
  27. checkpoint-1000/training_args.bin +3 -0
  28. checkpoint-1000/zero_to_fp32.py +674 -0
checkpoint-1000/README.md ADDED
@@ -0,0 +1,202 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ base_model: microsoft/Phi-3-mini-4k-instruct
3
+ library_name: peft
4
+ ---
5
+
6
+ # Model Card for Model ID
7
+
8
+ <!-- Provide a quick summary of what the model is/does. -->
9
+
10
+
11
+
12
+ ## Model Details
13
+
14
+ ### Model Description
15
+
16
+ <!-- Provide a longer summary of what this model is. -->
17
+
18
+
19
+
20
+ - **Developed by:** [More Information Needed]
21
+ - **Funded by [optional]:** [More Information Needed]
22
+ - **Shared by [optional]:** [More Information Needed]
23
+ - **Model type:** [More Information Needed]
24
+ - **Language(s) (NLP):** [More Information Needed]
25
+ - **License:** [More Information Needed]
26
+ - **Finetuned from model [optional]:** [More Information Needed]
27
+
28
+ ### Model Sources [optional]
29
+
30
+ <!-- Provide the basic links for the model. -->
31
+
32
+ - **Repository:** [More Information Needed]
33
+ - **Paper [optional]:** [More Information Needed]
34
+ - **Demo [optional]:** [More Information Needed]
35
+
36
+ ## Uses
37
+
38
+ <!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. -->
39
+
40
+ ### Direct Use
41
+
42
+ <!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. -->
43
+
44
+ [More Information Needed]
45
+
46
+ ### Downstream Use [optional]
47
+
48
+ <!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app -->
49
+
50
+ [More Information Needed]
51
+
52
+ ### Out-of-Scope Use
53
+
54
+ <!-- This section addresses misuse, malicious use, and uses that the model will not work well for. -->
55
+
56
+ [More Information Needed]
57
+
58
+ ## Bias, Risks, and Limitations
59
+
60
+ <!-- This section is meant to convey both technical and sociotechnical limitations. -->
61
+
62
+ [More Information Needed]
63
+
64
+ ### Recommendations
65
+
66
+ <!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. -->
67
+
68
+ Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations.
69
+
70
+ ## How to Get Started with the Model
71
+
72
+ Use the code below to get started with the model.
73
+
74
+ [More Information Needed]
75
+
76
+ ## Training Details
77
+
78
+ ### Training Data
79
+
80
+ <!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. -->
81
+
82
+ [More Information Needed]
83
+
84
+ ### Training Procedure
85
+
86
+ <!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. -->
87
+
88
+ #### Preprocessing [optional]
89
+
90
+ [More Information Needed]
91
+
92
+
93
+ #### Training Hyperparameters
94
+
95
+ - **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision -->
96
+
97
+ #### Speeds, Sizes, Times [optional]
98
+
99
+ <!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. -->
100
+
101
+ [More Information Needed]
102
+
103
+ ## Evaluation
104
+
105
+ <!-- This section describes the evaluation protocols and provides the results. -->
106
+
107
+ ### Testing Data, Factors & Metrics
108
+
109
+ #### Testing Data
110
+
111
+ <!-- This should link to a Dataset Card if possible. -->
112
+
113
+ [More Information Needed]
114
+
115
+ #### Factors
116
+
117
+ <!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. -->
118
+
119
+ [More Information Needed]
120
+
121
+ #### Metrics
122
+
123
+ <!-- These are the evaluation metrics being used, ideally with a description of why. -->
124
+
125
+ [More Information Needed]
126
+
127
+ ### Results
128
+
129
+ [More Information Needed]
130
+
131
+ #### Summary
132
+
133
+
134
+
135
+ ## Model Examination [optional]
136
+
137
+ <!-- Relevant interpretability work for the model goes here -->
138
+
139
+ [More Information Needed]
140
+
141
+ ## Environmental Impact
142
+
143
+ <!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly -->
144
+
145
+ Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700).
146
+
147
+ - **Hardware Type:** [More Information Needed]
148
+ - **Hours used:** [More Information Needed]
149
+ - **Cloud Provider:** [More Information Needed]
150
+ - **Compute Region:** [More Information Needed]
151
+ - **Carbon Emitted:** [More Information Needed]
152
+
153
+ ## Technical Specifications [optional]
154
+
155
+ ### Model Architecture and Objective
156
+
157
+ [More Information Needed]
158
+
159
+ ### Compute Infrastructure
160
+
161
+ [More Information Needed]
162
+
163
+ #### Hardware
164
+
165
+ [More Information Needed]
166
+
167
+ #### Software
168
+
169
+ [More Information Needed]
170
+
171
+ ## Citation [optional]
172
+
173
+ <!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. -->
174
+
175
+ **BibTeX:**
176
+
177
+ [More Information Needed]
178
+
179
+ **APA:**
180
+
181
+ [More Information Needed]
182
+
183
+ ## Glossary [optional]
184
+
185
+ <!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. -->
186
+
187
+ [More Information Needed]
188
+
189
+ ## More Information [optional]
190
+
191
+ [More Information Needed]
192
+
193
+ ## Model Card Authors [optional]
194
+
195
+ [More Information Needed]
196
+
197
+ ## Model Card Contact
198
+
199
+ [More Information Needed]
200
+ ### Framework versions
201
+
202
+ - PEFT 0.14.0
checkpoint-1000/adapter_config.json ADDED
@@ -0,0 +1,34 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "alpha_pattern": {},
3
+ "auto_mapping": null,
4
+ "base_model_name_or_path": "microsoft/Phi-3-mini-4k-instruct",
5
+ "bias": "none",
6
+ "eva_config": null,
7
+ "exclude_modules": null,
8
+ "fan_in_fan_out": false,
9
+ "inference_mode": true,
10
+ "init_lora_weights": true,
11
+ "layer_replication": null,
12
+ "layers_pattern": null,
13
+ "layers_to_transform": null,
14
+ "loftq_config": {},
15
+ "lora_alpha": 16,
16
+ "lora_bias": false,
17
+ "lora_dropout": 0.0,
18
+ "megatron_config": null,
19
+ "megatron_core": "megatron.core",
20
+ "modules_to_save": null,
21
+ "peft_type": "LORA",
22
+ "r": 8,
23
+ "rank_pattern": {},
24
+ "revision": null,
25
+ "target_modules": [
26
+ "qkv_proj",
27
+ "o_proj",
28
+ "down_proj",
29
+ "gate_up_proj"
30
+ ],
31
+ "task_type": "CAUSAL_LM",
32
+ "use_dora": false,
33
+ "use_rslora": false
34
+ }
checkpoint-1000/adapter_model.safetensors ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:4153273255a8a0e426daccb16f830c060478b9de8a217a2af0c679ca5a8f342f
3
+ size 25200088
checkpoint-1000/global_step1000/bf16_zero_pp_rank_0_mp_rank_00_optim_states.pt ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:fd338fd934eee0344f73eb0d0b21feb2a10235433e68d688e0f30e2b609753ee
3
+ size 18881328
checkpoint-1000/global_step1000/bf16_zero_pp_rank_1_mp_rank_00_optim_states.pt ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:fe76616707322b07568be3aa9f13ba37887de170138dbabec94f2e3e6c6d2c32
3
+ size 18881328
checkpoint-1000/global_step1000/bf16_zero_pp_rank_2_mp_rank_00_optim_states.pt ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:645d7c0304196b9c26e9bcff687d422c7e3456d0527d4c1d067b4894f59d9b1b
3
+ size 18881328
checkpoint-1000/global_step1000/bf16_zero_pp_rank_3_mp_rank_00_optim_states.pt ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:394296165f8175d773fdd45bbe8c1276fbf49f0f14ab76c70ffd4a500b495aa4
3
+ size 18881392
checkpoint-1000/global_step1000/bf16_zero_pp_rank_4_mp_rank_00_optim_states.pt ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:4a11b860e495f00f82c8402d4c37f1906239ed59fef257c99f653c62006235e7
3
+ size 18881392
checkpoint-1000/global_step1000/bf16_zero_pp_rank_5_mp_rank_00_optim_states.pt ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:0f5e5b9473971fba5f87bb38a3af603b7e208ff65893015f6b1df5c2d08102d5
3
+ size 18881392
checkpoint-1000/global_step1000/bf16_zero_pp_rank_6_mp_rank_00_optim_states.pt ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:7d69ba154799ee255a0169755f7423e32f8ed58e9e267e9680ed77795d4c41fb
3
+ size 18881392
checkpoint-1000/global_step1000/bf16_zero_pp_rank_7_mp_rank_00_optim_states.pt ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:14bc4e7dee9d20bf4fc0b2d84db2c2579b3b66e2dc4b27ecba3644ebb150a988
3
+ size 18881392
checkpoint-1000/global_step1000/mp_rank_00_model_states.pt ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:bca09e0131c0e1f68caf2b4831c751b434ae6a75c3336426bd838e427cba0fac
3
+ size 25379244
checkpoint-1000/latest ADDED
@@ -0,0 +1 @@
 
 
1
+ global_step1000
checkpoint-1000/rng_state_0.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:7a711ae47907423581a85380ad2222bf6eaf1af9c9ec45797d4f1a9fb127db2c
3
+ size 15984
checkpoint-1000/rng_state_1.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:1e8c873ca3f378713a8a07acffb82e5be966b4efb3815b7ddf04ac4a39c37a73
3
+ size 15984
checkpoint-1000/rng_state_2.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:b0fcb54b765d5b0c806961a1b8bdc3214f4fc0489fbe2c720c7312b23d2db5cf
3
+ size 15984
checkpoint-1000/rng_state_3.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:b2a30b2ad9b3632b41b5d2a70ad5aabce34a6f7a76a9e1e270a22f600a05ec22
3
+ size 15984
checkpoint-1000/rng_state_4.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:4ee9cd8fd6ff53fdc84fbb7925a1d22d7707021b0e4b45ae16328680d2405512
3
+ size 15984
checkpoint-1000/rng_state_5.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:2b60c5d4b71ffd198beb51d796fd8e27c367782bb1efc7c5f1065d3ed20df402
3
+ size 15984
checkpoint-1000/rng_state_6.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:87c6f1afcb23fc820bb3d68d94d047f124b182adf1d874dcd0fa3a260a51bb2b
3
+ size 15984
checkpoint-1000/rng_state_7.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:7ebfc4481eb53675078ccf162293df1d6b7500f8ba0b2d00cad430e67f4a70a3
3
+ size 15984
checkpoint-1000/scheduler.pt ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:a498704a8ad8218099b8320e4fe5be9e58fb53a12149a5b34663802705d52163
3
+ size 1064
checkpoint-1000/special_tokens_map.json ADDED
@@ -0,0 +1,30 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "bos_token": {
3
+ "content": "<s>",
4
+ "lstrip": false,
5
+ "normalized": false,
6
+ "rstrip": false,
7
+ "single_word": false
8
+ },
9
+ "eos_token": {
10
+ "content": "<|end|>",
11
+ "lstrip": false,
12
+ "normalized": false,
13
+ "rstrip": false,
14
+ "single_word": false
15
+ },
16
+ "pad_token": {
17
+ "content": "<|endoftext|>",
18
+ "lstrip": false,
19
+ "normalized": false,
20
+ "rstrip": false,
21
+ "single_word": false
22
+ },
23
+ "unk_token": {
24
+ "content": "<unk>",
25
+ "lstrip": false,
26
+ "normalized": false,
27
+ "rstrip": false,
28
+ "single_word": false
29
+ }
30
+ }
checkpoint-1000/tokenizer.json ADDED
The diff for this file is too large to render. See raw diff
 
checkpoint-1000/tokenizer_config.json ADDED
@@ -0,0 +1,133 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "add_bos_token": false,
3
+ "add_eos_token": false,
4
+ "add_prefix_space": null,
5
+ "added_tokens_decoder": {
6
+ "0": {
7
+ "content": "<unk>",
8
+ "lstrip": false,
9
+ "normalized": false,
10
+ "rstrip": false,
11
+ "single_word": false,
12
+ "special": true
13
+ },
14
+ "1": {
15
+ "content": "<s>",
16
+ "lstrip": false,
17
+ "normalized": false,
18
+ "rstrip": false,
19
+ "single_word": false,
20
+ "special": true
21
+ },
22
+ "2": {
23
+ "content": "</s>",
24
+ "lstrip": false,
25
+ "normalized": false,
26
+ "rstrip": true,
27
+ "single_word": false,
28
+ "special": false
29
+ },
30
+ "32000": {
31
+ "content": "<|endoftext|>",
32
+ "lstrip": false,
33
+ "normalized": false,
34
+ "rstrip": false,
35
+ "single_word": false,
36
+ "special": true
37
+ },
38
+ "32001": {
39
+ "content": "<|assistant|>",
40
+ "lstrip": false,
41
+ "normalized": false,
42
+ "rstrip": true,
43
+ "single_word": false,
44
+ "special": true
45
+ },
46
+ "32002": {
47
+ "content": "<|placeholder1|>",
48
+ "lstrip": false,
49
+ "normalized": false,
50
+ "rstrip": true,
51
+ "single_word": false,
52
+ "special": true
53
+ },
54
+ "32003": {
55
+ "content": "<|placeholder2|>",
56
+ "lstrip": false,
57
+ "normalized": false,
58
+ "rstrip": true,
59
+ "single_word": false,
60
+ "special": true
61
+ },
62
+ "32004": {
63
+ "content": "<|placeholder3|>",
64
+ "lstrip": false,
65
+ "normalized": false,
66
+ "rstrip": true,
67
+ "single_word": false,
68
+ "special": true
69
+ },
70
+ "32005": {
71
+ "content": "<|placeholder4|>",
72
+ "lstrip": false,
73
+ "normalized": false,
74
+ "rstrip": true,
75
+ "single_word": false,
76
+ "special": true
77
+ },
78
+ "32006": {
79
+ "content": "<|system|>",
80
+ "lstrip": false,
81
+ "normalized": false,
82
+ "rstrip": true,
83
+ "single_word": false,
84
+ "special": true
85
+ },
86
+ "32007": {
87
+ "content": "<|end|>",
88
+ "lstrip": false,
89
+ "normalized": false,
90
+ "rstrip": false,
91
+ "single_word": false,
92
+ "special": true
93
+ },
94
+ "32008": {
95
+ "content": "<|placeholder5|>",
96
+ "lstrip": false,
97
+ "normalized": false,
98
+ "rstrip": true,
99
+ "single_word": false,
100
+ "special": true
101
+ },
102
+ "32009": {
103
+ "content": "<|placeholder6|>",
104
+ "lstrip": false,
105
+ "normalized": false,
106
+ "rstrip": true,
107
+ "single_word": false,
108
+ "special": true
109
+ },
110
+ "32010": {
111
+ "content": "<|user|>",
112
+ "lstrip": false,
113
+ "normalized": false,
114
+ "rstrip": true,
115
+ "single_word": false,
116
+ "special": true
117
+ }
118
+ },
119
+ "bos_token": "<s>",
120
+ "chat_template": "{% set system_message = 'You are a helpful AI assistant.' %}{% if messages[0]['role'] == 'system' %}{% set system_message = messages[0]['content'] %}{% endif %}{% if system_message is defined %}{{ '<s>' + '<|system|>\n' + system_message + '<|end|>\n' }}{% endif %}{% for message in messages %}{% set content = message['content'] %}{% if message['role'] == 'user' %}{{ '<|user|>\n' + content + '<|end|>\n<|assistant|>\n' }}{% elif message['role'] == 'assistant' %}{{ content + '<|end|>' + '\n' }}{% endif %}{% endfor %}",
121
+ "clean_up_tokenization_spaces": false,
122
+ "eos_token": "<|end|>",
123
+ "extra_special_tokens": {},
124
+ "legacy": false,
125
+ "model_max_length": 4096,
126
+ "pad_token": "<|endoftext|>",
127
+ "padding_side": "right",
128
+ "sp_model_kwargs": {},
129
+ "split_special_tokens": false,
130
+ "tokenizer_class": "LlamaTokenizer",
131
+ "unk_token": "<unk>",
132
+ "use_default_system_prompt": false
133
+ }
checkpoint-1000/trainer_state.json ADDED
@@ -0,0 +1,1853 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "best_metric": null,
3
+ "best_model_checkpoint": null,
4
+ "epoch": 0.8594757198109153,
5
+ "eval_steps": 50,
6
+ "global_step": 1000,
7
+ "is_hyper_param_search": false,
8
+ "is_local_process_zero": true,
9
+ "is_world_process_zero": true,
10
+ "log_history": [
11
+ {
12
+ "epoch": 0.008594757198109154,
13
+ "grad_norm": 0.05167795345187187,
14
+ "learning_rate": 4.999451708687114e-06,
15
+ "logits/chosen": 15.084823608398438,
16
+ "logits/rejected": 15.218259811401367,
17
+ "logps/chosen": -0.3124043345451355,
18
+ "logps/rejected": -0.31854626536369324,
19
+ "loss": 0.9405,
20
+ "rewards/accuracies": 0.4375,
21
+ "rewards/chosen": -0.46860653162002563,
22
+ "rewards/margins": 0.009212849661707878,
23
+ "rewards/rejected": -0.47781938314437866,
24
+ "step": 10
25
+ },
26
+ {
27
+ "epoch": 0.017189514396218308,
28
+ "grad_norm": 0.06444549560546875,
29
+ "learning_rate": 4.997807075247147e-06,
30
+ "logits/chosen": 14.565855026245117,
31
+ "logits/rejected": 14.914319038391113,
32
+ "logps/chosen": -0.28220412135124207,
33
+ "logps/rejected": -0.3605547249317169,
34
+ "loss": 0.9294,
35
+ "rewards/accuracies": 0.6000000238418579,
36
+ "rewards/chosen": -0.4233061671257019,
37
+ "rewards/margins": 0.11752591282129288,
38
+ "rewards/rejected": -0.5408320426940918,
39
+ "step": 20
40
+ },
41
+ {
42
+ "epoch": 0.02578427159432746,
43
+ "grad_norm": 0.059900399297475815,
44
+ "learning_rate": 4.9950668210706795e-06,
45
+ "logits/chosen": 14.878230094909668,
46
+ "logits/rejected": 15.334558486938477,
47
+ "logps/chosen": -0.2837519347667694,
48
+ "logps/rejected": -0.320808470249176,
49
+ "loss": 0.9338,
50
+ "rewards/accuracies": 0.4625000059604645,
51
+ "rewards/chosen": -0.4256278872489929,
52
+ "rewards/margins": 0.05558476969599724,
53
+ "rewards/rejected": -0.48121267557144165,
54
+ "step": 30
55
+ },
56
+ {
57
+ "epoch": 0.034379028792436615,
58
+ "grad_norm": 0.05459418520331383,
59
+ "learning_rate": 4.9912321481237616e-06,
60
+ "logits/chosen": 14.800946235656738,
61
+ "logits/rejected": 15.134121894836426,
62
+ "logps/chosen": -0.2971518635749817,
63
+ "logps/rejected": -0.3476788401603699,
64
+ "loss": 0.9202,
65
+ "rewards/accuracies": 0.4625000059604645,
66
+ "rewards/chosen": -0.4457278251647949,
67
+ "rewards/margins": 0.07579050213098526,
68
+ "rewards/rejected": -0.521518349647522,
69
+ "step": 40
70
+ },
71
+ {
72
+ "epoch": 0.042973785990545764,
73
+ "grad_norm": 0.05792691186070442,
74
+ "learning_rate": 4.986304738420684e-06,
75
+ "logits/chosen": 14.62980842590332,
76
+ "logits/rejected": 14.848493576049805,
77
+ "logps/chosen": -0.27511823177337646,
78
+ "logps/rejected": -0.32557612657546997,
79
+ "loss": 0.9213,
80
+ "rewards/accuracies": 0.550000011920929,
81
+ "rewards/chosen": -0.4126773774623871,
82
+ "rewards/margins": 0.07568677514791489,
83
+ "rewards/rejected": -0.48836421966552734,
84
+ "step": 50
85
+ },
86
+ {
87
+ "epoch": 0.042973785990545764,
88
+ "eval_logits/chosen": 14.195974349975586,
89
+ "eval_logits/rejected": 15.046167373657227,
90
+ "eval_logps/chosen": -0.27934810519218445,
91
+ "eval_logps/rejected": -0.3643363118171692,
92
+ "eval_loss": 0.9250189065933228,
93
+ "eval_rewards/accuracies": 0.557894766330719,
94
+ "eval_rewards/chosen": -0.4190221428871155,
95
+ "eval_rewards/margins": 0.1274823397397995,
96
+ "eval_rewards/rejected": -0.5465044379234314,
97
+ "eval_runtime": 26.0506,
98
+ "eval_samples_per_second": 28.905,
99
+ "eval_steps_per_second": 3.647,
100
+ "step": 50
101
+ },
102
+ {
103
+ "epoch": 0.05156854318865492,
104
+ "grad_norm": 0.08806851506233215,
105
+ "learning_rate": 4.980286753286196e-06,
106
+ "logits/chosen": 14.311370849609375,
107
+ "logits/rejected": 15.19476318359375,
108
+ "logps/chosen": -0.26153135299682617,
109
+ "logps/rejected": -0.34108471870422363,
110
+ "loss": 0.9255,
111
+ "rewards/accuracies": 0.512499988079071,
112
+ "rewards/chosen": -0.39229699969291687,
113
+ "rewards/margins": 0.11933007091283798,
114
+ "rewards/rejected": -0.5116270780563354,
115
+ "step": 60
116
+ },
117
+ {
118
+ "epoch": 0.060163300386764075,
119
+ "grad_norm": 0.10536951571702957,
120
+ "learning_rate": 4.973180832407471e-06,
121
+ "logits/chosen": 14.646909713745117,
122
+ "logits/rejected": 15.134190559387207,
123
+ "logps/chosen": -0.2928832173347473,
124
+ "logps/rejected": -0.37275972962379456,
125
+ "loss": 0.9155,
126
+ "rewards/accuracies": 0.512499988079071,
127
+ "rewards/chosen": -0.4393247961997986,
128
+ "rewards/margins": 0.11981481313705444,
129
+ "rewards/rejected": -0.559139609336853,
130
+ "step": 70
131
+ },
132
+ {
133
+ "epoch": 0.06875805758487323,
134
+ "grad_norm": 0.07452531903982162,
135
+ "learning_rate": 4.964990092676263e-06,
136
+ "logits/chosen": 14.383807182312012,
137
+ "logits/rejected": 14.806958198547363,
138
+ "logps/chosen": -0.2724239230155945,
139
+ "logps/rejected": -0.33048146963119507,
140
+ "loss": 0.9191,
141
+ "rewards/accuracies": 0.48750001192092896,
142
+ "rewards/chosen": -0.4086359143257141,
143
+ "rewards/margins": 0.08708634227514267,
144
+ "rewards/rejected": -0.495722234249115,
145
+ "step": 80
146
+ },
147
+ {
148
+ "epoch": 0.07735281478298238,
149
+ "grad_norm": 0.06996195018291473,
150
+ "learning_rate": 4.9557181268217225e-06,
151
+ "logits/chosen": 14.557902336120605,
152
+ "logits/rejected": 15.043550491333008,
153
+ "logps/chosen": -0.3053165078163147,
154
+ "logps/rejected": -0.36941051483154297,
155
+ "loss": 0.9255,
156
+ "rewards/accuracies": 0.5249999761581421,
157
+ "rewards/chosen": -0.45797473192214966,
158
+ "rewards/margins": 0.0961410254240036,
159
+ "rewards/rejected": -0.5541157126426697,
160
+ "step": 90
161
+ },
162
+ {
163
+ "epoch": 0.08594757198109153,
164
+ "grad_norm": 0.09053988754749298,
165
+ "learning_rate": 4.9453690018345144e-06,
166
+ "logits/chosen": 13.747509956359863,
167
+ "logits/rejected": 14.678106307983398,
168
+ "logps/chosen": -0.2453141212463379,
169
+ "logps/rejected": -0.36430835723876953,
170
+ "loss": 0.9022,
171
+ "rewards/accuracies": 0.625,
172
+ "rewards/chosen": -0.36797118186950684,
173
+ "rewards/margins": 0.17849135398864746,
174
+ "rewards/rejected": -0.5464625358581543,
175
+ "step": 100
176
+ },
177
+ {
178
+ "epoch": 0.08594757198109153,
179
+ "eval_logits/chosen": 14.017444610595703,
180
+ "eval_logits/rejected": 14.885564804077148,
181
+ "eval_logps/chosen": -0.2685285806655884,
182
+ "eval_logps/rejected": -0.3654690384864807,
183
+ "eval_loss": 0.9166209697723389,
184
+ "eval_rewards/accuracies": 0.557894766330719,
185
+ "eval_rewards/chosen": -0.4027928411960602,
186
+ "eval_rewards/margins": 0.14541073143482208,
187
+ "eval_rewards/rejected": -0.5482036471366882,
188
+ "eval_runtime": 26.0431,
189
+ "eval_samples_per_second": 28.914,
190
+ "eval_steps_per_second": 3.648,
191
+ "step": 100
192
+ },
193
+ {
194
+ "epoch": 0.09454232917920069,
195
+ "grad_norm": 0.07788874208927155,
196
+ "learning_rate": 4.933947257182901e-06,
197
+ "logits/chosen": 14.805160522460938,
198
+ "logits/rejected": 14.767298698425293,
199
+ "logps/chosen": -0.30586495995521545,
200
+ "logps/rejected": -0.3159794211387634,
201
+ "loss": 0.9128,
202
+ "rewards/accuracies": 0.42500001192092896,
203
+ "rewards/chosen": -0.45879751443862915,
204
+ "rewards/margins": 0.015171671286225319,
205
+ "rewards/rejected": -0.47396916151046753,
206
+ "step": 110
207
+ },
208
+ {
209
+ "epoch": 0.10313708637730984,
210
+ "grad_norm": 0.07691823691129684,
211
+ "learning_rate": 4.921457902821578e-06,
212
+ "logits/chosen": 13.761972427368164,
213
+ "logits/rejected": 14.64726448059082,
214
+ "logps/chosen": -0.2784760296344757,
215
+ "logps/rejected": -0.34076255559921265,
216
+ "loss": 0.9179,
217
+ "rewards/accuracies": 0.5249999761581421,
218
+ "rewards/chosen": -0.41771402955055237,
219
+ "rewards/margins": 0.09342982620000839,
220
+ "rewards/rejected": -0.5111438632011414,
221
+ "step": 120
222
+ },
223
+ {
224
+ "epoch": 0.11173184357541899,
225
+ "grad_norm": 0.08534488826990128,
226
+ "learning_rate": 4.907906416994146e-06,
227
+ "logits/chosen": 13.837780952453613,
228
+ "logits/rejected": 14.767657279968262,
229
+ "logps/chosen": -0.26367664337158203,
230
+ "logps/rejected": -0.3845904469490051,
231
+ "loss": 0.8978,
232
+ "rewards/accuracies": 0.550000011920929,
233
+ "rewards/chosen": -0.39551490545272827,
234
+ "rewards/margins": 0.18137072026729584,
235
+ "rewards/rejected": -0.5768855810165405,
236
+ "step": 130
237
+ },
238
+ {
239
+ "epoch": 0.12032660077352815,
240
+ "grad_norm": 0.08117899298667908,
241
+ "learning_rate": 4.893298743830168e-06,
242
+ "logits/chosen": 13.270025253295898,
243
+ "logits/rejected": 14.128207206726074,
244
+ "logps/chosen": -0.24728116393089294,
245
+ "logps/rejected": -0.3510771095752716,
246
+ "loss": 0.9117,
247
+ "rewards/accuracies": 0.5874999761581421,
248
+ "rewards/chosen": -0.370921790599823,
249
+ "rewards/margins": 0.1556939035654068,
250
+ "rewards/rejected": -0.5266156196594238,
251
+ "step": 140
252
+ },
253
+ {
254
+ "epoch": 0.1289213579716373,
255
+ "grad_norm": 0.1263500601053238,
256
+ "learning_rate": 4.8776412907378845e-06,
257
+ "logits/chosen": 13.525009155273438,
258
+ "logits/rejected": 14.163309097290039,
259
+ "logps/chosen": -0.24874648451805115,
260
+ "logps/rejected": -0.38132259249687195,
261
+ "loss": 0.9007,
262
+ "rewards/accuracies": 0.625,
263
+ "rewards/chosen": -0.3731197714805603,
264
+ "rewards/margins": 0.1988641768693924,
265
+ "rewards/rejected": -0.5719839334487915,
266
+ "step": 150
267
+ },
268
+ {
269
+ "epoch": 0.1289213579716373,
270
+ "eval_logits/chosen": 12.438652992248535,
271
+ "eval_logits/rejected": 13.519843101501465,
272
+ "eval_logps/chosen": -0.2689361274242401,
273
+ "eval_logps/rejected": -0.3897271454334259,
274
+ "eval_loss": 0.8991575241088867,
275
+ "eval_rewards/accuracies": 0.5894736647605896,
276
+ "eval_rewards/chosen": -0.40340420603752136,
277
+ "eval_rewards/margins": 0.1811865121126175,
278
+ "eval_rewards/rejected": -0.5845907330513,
279
+ "eval_runtime": 26.0482,
280
+ "eval_samples_per_second": 28.908,
281
+ "eval_steps_per_second": 3.647,
282
+ "step": 150
283
+ },
284
+ {
285
+ "epoch": 0.13751611516974646,
286
+ "grad_norm": 0.11390316486358643,
287
+ "learning_rate": 4.860940925593703e-06,
288
+ "logits/chosen": 12.494891166687012,
289
+ "logits/rejected": 13.346384048461914,
290
+ "logps/chosen": -0.26858460903167725,
291
+ "logps/rejected": -0.4170496463775635,
292
+ "loss": 0.8854,
293
+ "rewards/accuracies": 0.5625,
294
+ "rewards/chosen": -0.4028768539428711,
295
+ "rewards/margins": 0.22269758582115173,
296
+ "rewards/rejected": -0.6255744695663452,
297
+ "step": 160
298
+ },
299
+ {
300
+ "epoch": 0.1461108723678556,
301
+ "grad_norm": 0.14250700175762177,
302
+ "learning_rate": 4.84320497372973e-06,
303
+ "logits/chosen": 11.637483596801758,
304
+ "logits/rejected": 12.72177505493164,
305
+ "logps/chosen": -0.2967775762081146,
306
+ "logps/rejected": -0.440357506275177,
307
+ "loss": 0.8884,
308
+ "rewards/accuracies": 0.625,
309
+ "rewards/chosen": -0.4451664090156555,
310
+ "rewards/margins": 0.21536986529827118,
311
+ "rewards/rejected": -0.6605362892150879,
312
+ "step": 170
313
+ },
314
+ {
315
+ "epoch": 0.15470562956596476,
316
+ "grad_norm": 0.174351766705513,
317
+ "learning_rate": 4.824441214720629e-06,
318
+ "logits/chosen": 11.577589988708496,
319
+ "logits/rejected": 12.179681777954102,
320
+ "logps/chosen": -0.29397666454315186,
321
+ "logps/rejected": -0.4009665548801422,
322
+ "loss": 0.8756,
323
+ "rewards/accuracies": 0.574999988079071,
324
+ "rewards/chosen": -0.44096502661705017,
325
+ "rewards/margins": 0.16048480570316315,
326
+ "rewards/rejected": -0.6014498472213745,
327
+ "step": 180
328
+ },
329
+ {
330
+ "epoch": 0.1633003867640739,
331
+ "grad_norm": 0.22877676784992218,
332
+ "learning_rate": 4.804657878971252e-06,
333
+ "logits/chosen": 9.352752685546875,
334
+ "logits/rejected": 10.27645206451416,
335
+ "logps/chosen": -0.30452457070350647,
336
+ "logps/rejected": -0.4765443205833435,
337
+ "loss": 0.8781,
338
+ "rewards/accuracies": 0.612500011920929,
339
+ "rewards/chosen": -0.4567868113517761,
340
+ "rewards/margins": 0.25802966952323914,
341
+ "rewards/rejected": -0.7148164510726929,
342
+ "step": 190
343
+ },
344
+ {
345
+ "epoch": 0.17189514396218306,
346
+ "grad_norm": 0.2517675459384918,
347
+ "learning_rate": 4.783863644106502e-06,
348
+ "logits/chosen": 8.136419296264648,
349
+ "logits/rejected": 9.26432991027832,
350
+ "logps/chosen": -0.3416380286216736,
351
+ "logps/rejected": -0.4680122435092926,
352
+ "loss": 0.8531,
353
+ "rewards/accuracies": 0.6000000238418579,
354
+ "rewards/chosen": -0.5124570727348328,
355
+ "rewards/margins": 0.18956127762794495,
356
+ "rewards/rejected": -0.7020183801651001,
357
+ "step": 200
358
+ },
359
+ {
360
+ "epoch": 0.17189514396218306,
361
+ "eval_logits/chosen": 7.26609992980957,
362
+ "eval_logits/rejected": 8.391904830932617,
363
+ "eval_logps/chosen": -0.31862083077430725,
364
+ "eval_logps/rejected": -0.5189473032951355,
365
+ "eval_loss": 0.8484573364257812,
366
+ "eval_rewards/accuracies": 0.6315789222717285,
367
+ "eval_rewards/chosen": -0.47793126106262207,
368
+ "eval_rewards/margins": 0.30048972368240356,
369
+ "eval_rewards/rejected": -0.7784210443496704,
370
+ "eval_runtime": 26.0496,
371
+ "eval_samples_per_second": 28.906,
372
+ "eval_steps_per_second": 3.647,
373
+ "step": 200
374
+ },
375
+ {
376
+ "epoch": 0.18048990116029223,
377
+ "grad_norm": 0.28971683979034424,
378
+ "learning_rate": 4.762067631165049e-06,
379
+ "logits/chosen": 7.321592807769775,
380
+ "logits/rejected": 7.871228218078613,
381
+ "logps/chosen": -0.3311695158481598,
382
+ "logps/rejected": -0.4879254400730133,
383
+ "loss": 0.8211,
384
+ "rewards/accuracies": 0.612500011920929,
385
+ "rewards/chosen": -0.4967542588710785,
386
+ "rewards/margins": 0.23513388633728027,
387
+ "rewards/rejected": -0.7318881750106812,
388
+ "step": 210
389
+ },
390
+ {
391
+ "epoch": 0.18908465835840138,
392
+ "grad_norm": 0.568050742149353,
393
+ "learning_rate": 4.7392794005985324e-06,
394
+ "logits/chosen": 5.077876091003418,
395
+ "logits/rejected": 5.706583499908447,
396
+ "logps/chosen": -0.3127230405807495,
397
+ "logps/rejected": -0.5744297504425049,
398
+ "loss": 0.8331,
399
+ "rewards/accuracies": 0.675000011920929,
400
+ "rewards/chosen": -0.46908459067344666,
401
+ "rewards/margins": 0.39256006479263306,
402
+ "rewards/rejected": -0.8616446256637573,
403
+ "step": 220
404
+ },
405
+ {
406
+ "epoch": 0.19767941555651053,
407
+ "grad_norm": 0.32453760504722595,
408
+ "learning_rate": 4.715508948078037e-06,
409
+ "logits/chosen": 4.265925407409668,
410
+ "logits/rejected": 4.2006964683532715,
411
+ "logps/chosen": -0.4032830595970154,
412
+ "logps/rejected": -0.6459742784500122,
413
+ "loss": 0.7986,
414
+ "rewards/accuracies": 0.6625000238418579,
415
+ "rewards/chosen": -0.6049246191978455,
416
+ "rewards/margins": 0.3640367388725281,
417
+ "rewards/rejected": -0.9689614176750183,
418
+ "step": 230
419
+ },
420
+ {
421
+ "epoch": 0.20627417275461968,
422
+ "grad_norm": 0.448809951543808,
423
+ "learning_rate": 4.690766700109659e-06,
424
+ "logits/chosen": 3.3534884452819824,
425
+ "logits/rejected": 3.4250903129577637,
426
+ "logps/chosen": -0.3817242383956909,
427
+ "logps/rejected": -0.7190496921539307,
428
+ "loss": 0.7708,
429
+ "rewards/accuracies": 0.675000011920929,
430
+ "rewards/chosen": -0.5725863575935364,
431
+ "rewards/margins": 0.5059882402420044,
432
+ "rewards/rejected": -1.078574538230896,
433
+ "step": 240
434
+ },
435
+ {
436
+ "epoch": 0.21486892995272883,
437
+ "grad_norm": 0.4277574419975281,
438
+ "learning_rate": 4.665063509461098e-06,
439
+ "logits/chosen": 3.151397228240967,
440
+ "logits/rejected": 2.8183228969573975,
441
+ "logps/chosen": -0.44173598289489746,
442
+ "logps/rejected": -0.8323748707771301,
443
+ "loss": 0.7722,
444
+ "rewards/accuracies": 0.625,
445
+ "rewards/chosen": -0.6626039743423462,
446
+ "rewards/margins": 0.5859583616256714,
447
+ "rewards/rejected": -1.248562216758728,
448
+ "step": 250
449
+ },
450
+ {
451
+ "epoch": 0.21486892995272883,
452
+ "eval_logits/chosen": 2.520007848739624,
453
+ "eval_logits/rejected": 1.9197090864181519,
454
+ "eval_logps/chosen": -0.4703753888607025,
455
+ "eval_logps/rejected": -0.90553879737854,
456
+ "eval_loss": 0.7410055994987488,
457
+ "eval_rewards/accuracies": 0.6631578803062439,
458
+ "eval_rewards/chosen": -0.7055630087852478,
459
+ "eval_rewards/margins": 0.6527453064918518,
460
+ "eval_rewards/rejected": -1.3583083152770996,
461
+ "eval_runtime": 26.0441,
462
+ "eval_samples_per_second": 28.912,
463
+ "eval_steps_per_second": 3.648,
464
+ "step": 250
465
+ },
466
+ {
467
+ "epoch": 0.22346368715083798,
468
+ "grad_norm": 0.5626497268676758,
469
+ "learning_rate": 4.638410650401267e-06,
470
+ "logits/chosen": 1.2351257801055908,
471
+ "logits/rejected": 0.5925868153572083,
472
+ "logps/chosen": -0.46581563353538513,
473
+ "logps/rejected": -0.9673674702644348,
474
+ "loss": 0.6933,
475
+ "rewards/accuracies": 0.75,
476
+ "rewards/chosen": -0.6987233757972717,
477
+ "rewards/margins": 0.7523276209831238,
478
+ "rewards/rejected": -1.451051115989685,
479
+ "step": 260
480
+ },
481
+ {
482
+ "epoch": 0.23205844434894715,
483
+ "grad_norm": 0.7433231472969055,
484
+ "learning_rate": 4.610819813755038e-06,
485
+ "logits/chosen": 3.1690659523010254,
486
+ "logits/rejected": 2.0423803329467773,
487
+ "logps/chosen": -0.506645679473877,
488
+ "logps/rejected": -1.0180162191390991,
489
+ "loss": 0.7265,
490
+ "rewards/accuracies": 0.699999988079071,
491
+ "rewards/chosen": -0.7599684596061707,
492
+ "rewards/margins": 0.767055869102478,
493
+ "rewards/rejected": -1.527024507522583,
494
+ "step": 270
495
+ },
496
+ {
497
+ "epoch": 0.2406532015470563,
498
+ "grad_norm": 1.4220589399337769,
499
+ "learning_rate": 4.582303101775249e-06,
500
+ "logits/chosen": 2.8173985481262207,
501
+ "logits/rejected": 1.5537467002868652,
502
+ "logps/chosen": -0.5869659185409546,
503
+ "logps/rejected": -1.1085975170135498,
504
+ "loss": 0.6725,
505
+ "rewards/accuracies": 0.6625000238418579,
506
+ "rewards/chosen": -0.8804486989974976,
507
+ "rewards/margins": 0.7824474573135376,
508
+ "rewards/rejected": -1.6628963947296143,
509
+ "step": 280
510
+ },
511
+ {
512
+ "epoch": 0.24924795874516545,
513
+ "grad_norm": 0.6397098898887634,
514
+ "learning_rate": 4.55287302283426e-06,
515
+ "logits/chosen": 2.734229564666748,
516
+ "logits/rejected": 1.9948323965072632,
517
+ "logps/chosen": -0.6540845036506653,
518
+ "logps/rejected": -1.451608419418335,
519
+ "loss": 0.571,
520
+ "rewards/accuracies": 0.6000000238418579,
521
+ "rewards/chosen": -0.9811266660690308,
522
+ "rewards/margins": 1.1962860822677612,
523
+ "rewards/rejected": -2.177412748336792,
524
+ "step": 290
525
+ },
526
+ {
527
+ "epoch": 0.2578427159432746,
528
+ "grad_norm": 0.4591177701950073,
529
+ "learning_rate": 4.522542485937369e-06,
530
+ "logits/chosen": 2.2491040229797363,
531
+ "logits/rejected": 1.345014214515686,
532
+ "logps/chosen": -0.6877793073654175,
533
+ "logps/rejected": -1.6054528951644897,
534
+ "loss": 0.5782,
535
+ "rewards/accuracies": 0.612500011920929,
536
+ "rewards/chosen": -1.0316689014434814,
537
+ "rewards/margins": 1.3765103816986084,
538
+ "rewards/rejected": -2.408179521560669,
539
+ "step": 300
540
+ },
541
+ {
542
+ "epoch": 0.2578427159432746,
543
+ "eval_logits/chosen": 1.661840796470642,
544
+ "eval_logits/rejected": 0.6246702671051025,
545
+ "eval_logps/chosen": -0.7322248816490173,
546
+ "eval_logps/rejected": -2.272771120071411,
547
+ "eval_loss": 0.563686728477478,
548
+ "eval_rewards/accuracies": 0.7157894968986511,
549
+ "eval_rewards/chosen": -1.0983372926712036,
550
+ "eval_rewards/margins": 2.310819387435913,
551
+ "eval_rewards/rejected": -3.409156560897827,
552
+ "eval_runtime": 26.0455,
553
+ "eval_samples_per_second": 28.911,
554
+ "eval_steps_per_second": 3.647,
555
+ "step": 300
556
+ },
557
+ {
558
+ "epoch": 0.2664374731413838,
559
+ "grad_norm": 0.786809504032135,
560
+ "learning_rate": 4.491324795060491e-06,
561
+ "logits/chosen": 1.3445788621902466,
562
+ "logits/rejected": 0.4989510178565979,
563
+ "logps/chosen": -0.7276264429092407,
564
+ "logps/rejected": -2.3235878944396973,
565
+ "loss": 0.5253,
566
+ "rewards/accuracies": 0.75,
567
+ "rewards/chosen": -1.0914397239685059,
568
+ "rewards/margins": 2.393942356109619,
569
+ "rewards/rejected": -3.485382080078125,
570
+ "step": 310
571
+ },
572
+ {
573
+ "epoch": 0.2750322303394929,
574
+ "grad_norm": 0.3913320004940033,
575
+ "learning_rate": 4.4592336433146e-06,
576
+ "logits/chosen": 2.61965012550354,
577
+ "logits/rejected": 1.9477211236953735,
578
+ "logps/chosen": -0.7146936655044556,
579
+ "logps/rejected": -1.9647115468978882,
580
+ "loss": 0.5294,
581
+ "rewards/accuracies": 0.675000011920929,
582
+ "rewards/chosen": -1.0720404386520386,
583
+ "rewards/margins": 1.8750267028808594,
584
+ "rewards/rejected": -2.9470672607421875,
585
+ "step": 320
586
+ },
587
+ {
588
+ "epoch": 0.28362698753760207,
589
+ "grad_norm": 0.4867005944252014,
590
+ "learning_rate": 4.426283106939474e-06,
591
+ "logits/chosen": 2.500439167022705,
592
+ "logits/rejected": 1.6413562297821045,
593
+ "logps/chosen": -0.8710287809371948,
594
+ "logps/rejected": -2.36894154548645,
595
+ "loss": 0.548,
596
+ "rewards/accuracies": 0.625,
597
+ "rewards/chosen": -1.306543231010437,
598
+ "rewards/margins": 2.246868848800659,
599
+ "rewards/rejected": -3.5534119606018066,
600
+ "step": 330
601
+ },
602
+ {
603
+ "epoch": 0.2922217447357112,
604
+ "grad_norm": 0.8009849786758423,
605
+ "learning_rate": 4.3924876391293915e-06,
606
+ "logits/chosen": 1.3847177028656006,
607
+ "logits/rejected": 0.8994542360305786,
608
+ "logps/chosen": -0.8447234034538269,
609
+ "logps/rejected": -2.800283908843994,
610
+ "loss": 0.4797,
611
+ "rewards/accuracies": 0.699999988079071,
612
+ "rewards/chosen": -1.2670851945877075,
613
+ "rewards/margins": 2.9333412647247314,
614
+ "rewards/rejected": -4.2004265785217285,
615
+ "step": 340
616
+ },
617
+ {
618
+ "epoch": 0.30081650193382037,
619
+ "grad_norm": 2.0202796459198,
620
+ "learning_rate": 4.357862063693486e-06,
621
+ "logits/chosen": 2.3197357654571533,
622
+ "logits/rejected": 1.37326180934906,
623
+ "logps/chosen": -0.8590717315673828,
624
+ "logps/rejected": -2.1532845497131348,
625
+ "loss": 0.5126,
626
+ "rewards/accuracies": 0.574999988079071,
627
+ "rewards/chosen": -1.2886077165603638,
628
+ "rewards/margins": 1.941319465637207,
629
+ "rewards/rejected": -3.2299270629882812,
630
+ "step": 350
631
+ },
632
+ {
633
+ "epoch": 0.30081650193382037,
634
+ "eval_logits/chosen": 2.0864102840423584,
635
+ "eval_logits/rejected": 1.2036340236663818,
636
+ "eval_logps/chosen": -0.9554746150970459,
637
+ "eval_logps/rejected": -3.0601954460144043,
638
+ "eval_loss": 0.5108997821807861,
639
+ "eval_rewards/accuracies": 0.7368420958518982,
640
+ "eval_rewards/chosen": -1.4332119226455688,
641
+ "eval_rewards/margins": 3.15708065032959,
642
+ "eval_rewards/rejected": -4.590292930603027,
643
+ "eval_runtime": 26.0503,
644
+ "eval_samples_per_second": 28.906,
645
+ "eval_steps_per_second": 3.647,
646
+ "step": 350
647
+ },
648
+ {
649
+ "epoch": 0.3094112591319295,
650
+ "grad_norm": 1.0668681859970093,
651
+ "learning_rate": 4.322421568553529e-06,
652
+ "logits/chosen": 1.6770871877670288,
653
+ "logits/rejected": 1.073407530784607,
654
+ "logps/chosen": -1.1393296718597412,
655
+ "logps/rejected": -2.886169910430908,
656
+ "loss": 0.5031,
657
+ "rewards/accuracies": 0.6625000238418579,
658
+ "rewards/chosen": -1.7089945077896118,
659
+ "rewards/margins": 2.620260238647461,
660
+ "rewards/rejected": -4.329255104064941,
661
+ "step": 360
662
+ },
663
+ {
664
+ "epoch": 0.31800601633003867,
665
+ "grad_norm": 0.5015287399291992,
666
+ "learning_rate": 4.286181699082008e-06,
667
+ "logits/chosen": 2.156587600708008,
668
+ "logits/rejected": 1.371209979057312,
669
+ "logps/chosen": -0.9851818084716797,
670
+ "logps/rejected": -3.2286324501037598,
671
+ "loss": 0.4662,
672
+ "rewards/accuracies": 0.7875000238418579,
673
+ "rewards/chosen": -1.47777259349823,
674
+ "rewards/margins": 3.3651764392852783,
675
+ "rewards/rejected": -4.842948913574219,
676
+ "step": 370
677
+ },
678
+ {
679
+ "epoch": 0.3266007735281478,
680
+ "grad_norm": 0.9893808960914612,
681
+ "learning_rate": 4.249158351283414e-06,
682
+ "logits/chosen": 2.6184191703796387,
683
+ "logits/rejected": 2.212998390197754,
684
+ "logps/chosen": -0.9414733052253723,
685
+ "logps/rejected": -2.940886974334717,
686
+ "loss": 0.4829,
687
+ "rewards/accuracies": 0.6625000238418579,
688
+ "rewards/chosen": -1.4122098684310913,
689
+ "rewards/margins": 2.9991202354431152,
690
+ "rewards/rejected": -4.411330223083496,
691
+ "step": 380
692
+ },
693
+ {
694
+ "epoch": 0.33519553072625696,
695
+ "grad_norm": 0.7588702440261841,
696
+ "learning_rate": 4.211367764821722e-06,
697
+ "logits/chosen": 3.257941484451294,
698
+ "logits/rejected": 2.5362088680267334,
699
+ "logps/chosen": -1.182255744934082,
700
+ "logps/rejected": -2.8621151447296143,
701
+ "loss": 0.4538,
702
+ "rewards/accuracies": 0.637499988079071,
703
+ "rewards/chosen": -1.7733834981918335,
704
+ "rewards/margins": 2.5197887420654297,
705
+ "rewards/rejected": -4.293172359466553,
706
+ "step": 390
707
+ },
708
+ {
709
+ "epoch": 0.3437902879243661,
710
+ "grad_norm": 0.6317985653877258,
711
+ "learning_rate": 4.172826515897146e-06,
712
+ "logits/chosen": 3.057791233062744,
713
+ "logits/rejected": 2.4121367931365967,
714
+ "logps/chosen": -1.0847463607788086,
715
+ "logps/rejected": -3.3152599334716797,
716
+ "loss": 0.4847,
717
+ "rewards/accuracies": 0.699999988079071,
718
+ "rewards/chosen": -1.6271196603775024,
719
+ "rewards/margins": 3.3457705974578857,
720
+ "rewards/rejected": -4.9728899002075195,
721
+ "step": 400
722
+ },
723
+ {
724
+ "epoch": 0.3437902879243661,
725
+ "eval_logits/chosen": 2.9584426879882812,
726
+ "eval_logits/rejected": 2.292771577835083,
727
+ "eval_logps/chosen": -1.202886939048767,
728
+ "eval_logps/rejected": -3.6770312786102295,
729
+ "eval_loss": 0.47303518652915955,
730
+ "eval_rewards/accuracies": 0.7473683953285217,
731
+ "eval_rewards/chosen": -1.8043304681777954,
732
+ "eval_rewards/margins": 3.711216688156128,
733
+ "eval_rewards/rejected": -5.515547275543213,
734
+ "eval_runtime": 26.0247,
735
+ "eval_samples_per_second": 28.934,
736
+ "eval_steps_per_second": 3.65,
737
+ "step": 400
738
+ },
739
+ {
740
+ "epoch": 0.3523850451224753,
741
+ "grad_norm": 1.0523916482925415,
742
+ "learning_rate": 4.133551509975264e-06,
743
+ "logits/chosen": 2.9360365867614746,
744
+ "logits/rejected": 2.330521583557129,
745
+ "logps/chosen": -1.3002166748046875,
746
+ "logps/rejected": -3.2887542247772217,
747
+ "loss": 0.4398,
748
+ "rewards/accuracies": 0.675000011920929,
749
+ "rewards/chosen": -1.9503250122070312,
750
+ "rewards/margins": 2.9828057289123535,
751
+ "rewards/rejected": -4.933130741119385,
752
+ "step": 410
753
+ },
754
+ {
755
+ "epoch": 0.36097980232058446,
756
+ "grad_norm": 0.6079875826835632,
757
+ "learning_rate": 4.093559974371725e-06,
758
+ "logits/chosen": 3.1500794887542725,
759
+ "logits/rejected": 2.329282283782959,
760
+ "logps/chosen": -1.23466157913208,
761
+ "logps/rejected": -3.291548252105713,
762
+ "loss": 0.4774,
763
+ "rewards/accuracies": 0.7124999761581421,
764
+ "rewards/chosen": -1.8519923686981201,
765
+ "rewards/margins": 3.085329532623291,
766
+ "rewards/rejected": -4.93732213973999,
767
+ "step": 420
768
+ },
769
+ {
770
+ "epoch": 0.3695745595186936,
771
+ "grad_norm": 1.3175437450408936,
772
+ "learning_rate": 4.052869450695776e-06,
773
+ "logits/chosen": 3.4488296508789062,
774
+ "logits/rejected": 2.6282899379730225,
775
+ "logps/chosen": -1.380877137184143,
776
+ "logps/rejected": -4.005017280578613,
777
+ "loss": 0.4158,
778
+ "rewards/accuracies": 0.7749999761581421,
779
+ "rewards/chosen": -2.0713157653808594,
780
+ "rewards/margins": 3.9362099170684814,
781
+ "rewards/rejected": -6.007525444030762,
782
+ "step": 430
783
+ },
784
+ {
785
+ "epoch": 0.37816931671680276,
786
+ "grad_norm": 3.7249863147735596,
787
+ "learning_rate": 4.011497787155938e-06,
788
+ "logits/chosen": 2.5173678398132324,
789
+ "logits/rejected": 1.943926215171814,
790
+ "logps/chosen": -1.7800304889678955,
791
+ "logps/rejected": -4.422289848327637,
792
+ "loss": 0.3916,
793
+ "rewards/accuracies": 0.862500011920929,
794
+ "rewards/chosen": -2.6700453758239746,
795
+ "rewards/margins": 3.9633898735046387,
796
+ "rewards/rejected": -6.633435249328613,
797
+ "step": 440
798
+ },
799
+ {
800
+ "epoch": 0.3867640739149119,
801
+ "grad_norm": 2.9776103496551514,
802
+ "learning_rate": 3.969463130731183e-06,
803
+ "logits/chosen": 3.2318034172058105,
804
+ "logits/rejected": 2.5253517627716064,
805
+ "logps/chosen": -2.309701442718506,
806
+ "logps/rejected": -4.725776672363281,
807
+ "loss": 0.368,
808
+ "rewards/accuracies": 0.887499988079071,
809
+ "rewards/chosen": -3.464552640914917,
810
+ "rewards/margins": 3.624112606048584,
811
+ "rewards/rejected": -7.0886640548706055,
812
+ "step": 450
813
+ },
814
+ {
815
+ "epoch": 0.3867640739149119,
816
+ "eval_logits/chosen": 2.397157907485962,
817
+ "eval_logits/rejected": 2.0492196083068848,
818
+ "eval_logps/chosen": -2.6244213581085205,
819
+ "eval_logps/rejected": -5.247391700744629,
820
+ "eval_loss": 0.3982011079788208,
821
+ "eval_rewards/accuracies": 0.8842105269432068,
822
+ "eval_rewards/chosen": -3.936631917953491,
823
+ "eval_rewards/margins": 3.934455633163452,
824
+ "eval_rewards/rejected": -7.87108850479126,
825
+ "eval_runtime": 26.0501,
826
+ "eval_samples_per_second": 28.906,
827
+ "eval_steps_per_second": 3.647,
828
+ "step": 450
829
+ },
830
+ {
831
+ "epoch": 0.39535883111302106,
832
+ "grad_norm": 2.3925623893737793,
833
+ "learning_rate": 3.92678391921108e-06,
834
+ "logits/chosen": 3.0329971313476562,
835
+ "logits/rejected": 2.67683482170105,
836
+ "logps/chosen": -2.4644994735717773,
837
+ "logps/rejected": -4.755246162414551,
838
+ "loss": 0.3584,
839
+ "rewards/accuracies": 0.8125,
840
+ "rewards/chosen": -3.696749210357666,
841
+ "rewards/margins": 3.436119794845581,
842
+ "rewards/rejected": -7.132868766784668,
843
+ "step": 460
844
+ },
845
+ {
846
+ "epoch": 0.4039535883111302,
847
+ "grad_norm": 3.1981327533721924,
848
+ "learning_rate": 3.88347887310836e-06,
849
+ "logits/chosen": 2.219741106033325,
850
+ "logits/rejected": 1.8649622201919556,
851
+ "logps/chosen": -2.2890329360961914,
852
+ "logps/rejected": -5.124932289123535,
853
+ "loss": 0.3709,
854
+ "rewards/accuracies": 0.8500000238418579,
855
+ "rewards/chosen": -3.433549404144287,
856
+ "rewards/margins": 4.253849029541016,
857
+ "rewards/rejected": -7.687398433685303,
858
+ "step": 470
859
+ },
860
+ {
861
+ "epoch": 0.41254834550923936,
862
+ "grad_norm": 2.0272741317749023,
863
+ "learning_rate": 3.839566987447492e-06,
864
+ "logits/chosen": 3.6659038066864014,
865
+ "logits/rejected": 3.202749252319336,
866
+ "logps/chosen": -2.5729193687438965,
867
+ "logps/rejected": -4.992354393005371,
868
+ "loss": 0.3837,
869
+ "rewards/accuracies": 0.8374999761581421,
870
+ "rewards/chosen": -3.859379529953003,
871
+ "rewards/margins": 3.629152297973633,
872
+ "rewards/rejected": -7.488531589508057,
873
+ "step": 480
874
+ },
875
+ {
876
+ "epoch": 0.4211431027073485,
877
+ "grad_norm": 2.5182268619537354,
878
+ "learning_rate": 3.795067523432826e-06,
879
+ "logits/chosen": 3.327012538909912,
880
+ "logits/rejected": 3.1205530166625977,
881
+ "logps/chosen": -3.016247510910034,
882
+ "logps/rejected": -5.566779136657715,
883
+ "loss": 0.3112,
884
+ "rewards/accuracies": 0.875,
885
+ "rewards/chosen": -4.524371147155762,
886
+ "rewards/margins": 3.8257980346679688,
887
+ "rewards/rejected": -8.35016918182373,
888
+ "step": 490
889
+ },
890
+ {
891
+ "epoch": 0.42973785990545765,
892
+ "grad_norm": 2.990694046020508,
893
+ "learning_rate": 3.7500000000000005e-06,
894
+ "logits/chosen": 2.7793381214141846,
895
+ "logits/rejected": 2.7330098152160645,
896
+ "logps/chosen": -2.7836732864379883,
897
+ "logps/rejected": -5.60109806060791,
898
+ "loss": 0.3069,
899
+ "rewards/accuracies": 0.875,
900
+ "rewards/chosen": -4.175509929656982,
901
+ "rewards/margins": 4.226136684417725,
902
+ "rewards/rejected": -8.401647567749023,
903
+ "step": 500
904
+ },
905
+ {
906
+ "epoch": 0.42973785990545765,
907
+ "eval_logits/chosen": 2.5767242908477783,
908
+ "eval_logits/rejected": 2.1918540000915527,
909
+ "eval_logps/chosen": -3.1751770973205566,
910
+ "eval_logps/rejected": -6.361191749572754,
911
+ "eval_loss": 0.35469338297843933,
912
+ "eval_rewards/accuracies": 0.9157894849777222,
913
+ "eval_rewards/chosen": -4.762764930725098,
914
+ "eval_rewards/margins": 4.779022693634033,
915
+ "eval_rewards/rejected": -9.541787147521973,
916
+ "eval_runtime": 26.0483,
917
+ "eval_samples_per_second": 28.908,
918
+ "eval_steps_per_second": 3.647,
919
+ "step": 500
920
+ },
921
+ {
922
+ "epoch": 0.4383326171035668,
923
+ "grad_norm": 3.1177096366882324,
924
+ "learning_rate": 3.7043841852542884e-06,
925
+ "logits/chosen": 3.4840216636657715,
926
+ "logits/rejected": 2.871774196624756,
927
+ "logps/chosen": -2.739344596862793,
928
+ "logps/rejected": -5.363945960998535,
929
+ "loss": 0.3468,
930
+ "rewards/accuracies": 0.887499988079071,
931
+ "rewards/chosen": -4.1090168952941895,
932
+ "rewards/margins": 3.9369025230407715,
933
+ "rewards/rejected": -8.045918464660645,
934
+ "step": 510
935
+ },
936
+ {
937
+ "epoch": 0.44692737430167595,
938
+ "grad_norm": 2.212597131729126,
939
+ "learning_rate": 3.658240087799655e-06,
940
+ "logits/chosen": 2.8667449951171875,
941
+ "logits/rejected": 2.463776111602783,
942
+ "logps/chosen": -3.17940092086792,
943
+ "logps/rejected": -6.375420570373535,
944
+ "loss": 0.3092,
945
+ "rewards/accuracies": 0.8999999761581421,
946
+ "rewards/chosen": -4.769101619720459,
947
+ "rewards/margins": 4.794029235839844,
948
+ "rewards/rejected": -9.563131332397461,
949
+ "step": 520
950
+ },
951
+ {
952
+ "epoch": 0.45552213149978515,
953
+ "grad_norm": 4.475163459777832,
954
+ "learning_rate": 3.611587947962319e-06,
955
+ "logits/chosen": 3.234764814376831,
956
+ "logits/rejected": 2.6656813621520996,
957
+ "logps/chosen": -3.0503814220428467,
958
+ "logps/rejected": -5.525468826293945,
959
+ "loss": 0.3044,
960
+ "rewards/accuracies": 0.862500011920929,
961
+ "rewards/chosen": -4.5755720138549805,
962
+ "rewards/margins": 3.7126305103302,
963
+ "rewards/rejected": -8.288202285766602,
964
+ "step": 530
965
+ },
966
+ {
967
+ "epoch": 0.4641168886978943,
968
+ "grad_norm": 1.8678548336029053,
969
+ "learning_rate": 3.564448228912682e-06,
970
+ "logits/chosen": 2.1433145999908447,
971
+ "logits/rejected": 2.1412692070007324,
972
+ "logps/chosen": -2.6177189350128174,
973
+ "logps/rejected": -5.8179192543029785,
974
+ "loss": 0.3376,
975
+ "rewards/accuracies": 0.9125000238418579,
976
+ "rewards/chosen": -3.9265785217285156,
977
+ "rewards/margins": 4.800299644470215,
978
+ "rewards/rejected": -8.72687816619873,
979
+ "step": 540
980
+ },
981
+ {
982
+ "epoch": 0.47271164589600345,
983
+ "grad_norm": 2.3289716243743896,
984
+ "learning_rate": 3.516841607689501e-06,
985
+ "logits/chosen": 2.7216885089874268,
986
+ "logits/rejected": 2.549870729446411,
987
+ "logps/chosen": -2.7370285987854004,
988
+ "logps/rejected": -5.929703712463379,
989
+ "loss": 0.2937,
990
+ "rewards/accuracies": 0.887499988079071,
991
+ "rewards/chosen": -4.1055426597595215,
992
+ "rewards/margins": 4.7890119552612305,
993
+ "rewards/rejected": -8.894556045532227,
994
+ "step": 550
995
+ },
996
+ {
997
+ "epoch": 0.47271164589600345,
998
+ "eval_logits/chosen": 2.7431576251983643,
999
+ "eval_logits/rejected": 2.386326789855957,
1000
+ "eval_logps/chosen": -3.3791866302490234,
1001
+ "eval_logps/rejected": -6.955687999725342,
1002
+ "eval_loss": 0.33076339960098267,
1003
+ "eval_rewards/accuracies": 0.9157894849777222,
1004
+ "eval_rewards/chosen": -5.068779945373535,
1005
+ "eval_rewards/margins": 5.364751815795898,
1006
+ "eval_rewards/rejected": -10.433531761169434,
1007
+ "eval_runtime": 26.0558,
1008
+ "eval_samples_per_second": 28.899,
1009
+ "eval_steps_per_second": 3.646,
1010
+ "step": 550
1011
+ },
1012
+ {
1013
+ "epoch": 0.4813064030941126,
1014
+ "grad_norm": 2.7705740928649902,
1015
+ "learning_rate": 3.4687889661302577e-06,
1016
+ "logits/chosen": 2.2392983436584473,
1017
+ "logits/rejected": 1.9859422445297241,
1018
+ "logps/chosen": -3.14917254447937,
1019
+ "logps/rejected": -6.809067726135254,
1020
+ "loss": 0.2983,
1021
+ "rewards/accuracies": 0.925000011920929,
1022
+ "rewards/chosen": -4.723758697509766,
1023
+ "rewards/margins": 5.489841938018799,
1024
+ "rewards/rejected": -10.213602066040039,
1025
+ "step": 560
1026
+ },
1027
+ {
1028
+ "epoch": 0.48990116029222175,
1029
+ "grad_norm": 2.1203205585479736,
1030
+ "learning_rate": 3.4203113817116955e-06,
1031
+ "logits/chosen": 2.5817489624023438,
1032
+ "logits/rejected": 2.54498291015625,
1033
+ "logps/chosen": -3.4195308685302734,
1034
+ "logps/rejected": -7.411266326904297,
1035
+ "loss": 0.3014,
1036
+ "rewards/accuracies": 0.987500011920929,
1037
+ "rewards/chosen": -5.129295349121094,
1038
+ "rewards/margins": 5.987602710723877,
1039
+ "rewards/rejected": -11.116899490356445,
1040
+ "step": 570
1041
+ },
1042
+ {
1043
+ "epoch": 0.4984959174903309,
1044
+ "grad_norm": 1.7489718198776245,
1045
+ "learning_rate": 3.3714301183045382e-06,
1046
+ "logits/chosen": 2.1257646083831787,
1047
+ "logits/rejected": 2.1210994720458984,
1048
+ "logps/chosen": -2.9680445194244385,
1049
+ "logps/rejected": -6.824588775634766,
1050
+ "loss": 0.2752,
1051
+ "rewards/accuracies": 0.9375,
1052
+ "rewards/chosen": -4.452066898345947,
1053
+ "rewards/margins": 5.784815788269043,
1054
+ "rewards/rejected": -10.236883163452148,
1055
+ "step": 580
1056
+ },
1057
+ {
1058
+ "epoch": 0.50709067468844,
1059
+ "grad_norm": 2.1680099964141846,
1060
+ "learning_rate": 3.3221666168464584e-06,
1061
+ "logits/chosen": 2.5764970779418945,
1062
+ "logits/rejected": 2.2523038387298584,
1063
+ "logps/chosen": -3.667435884475708,
1064
+ "logps/rejected": -7.162708282470703,
1065
+ "loss": 0.2968,
1066
+ "rewards/accuracies": 0.9375,
1067
+ "rewards/chosen": -5.501153945922852,
1068
+ "rewards/margins": 5.242908954620361,
1069
+ "rewards/rejected": -10.744061470031738,
1070
+ "step": 590
1071
+ },
1072
+ {
1073
+ "epoch": 0.5156854318865493,
1074
+ "grad_norm": 1.7536494731903076,
1075
+ "learning_rate": 3.272542485937369e-06,
1076
+ "logits/chosen": 2.2658116817474365,
1077
+ "logits/rejected": 1.980126142501831,
1078
+ "logps/chosen": -3.5995922088623047,
1079
+ "logps/rejected": -7.158552646636963,
1080
+ "loss": 0.2971,
1081
+ "rewards/accuracies": 0.925000011920929,
1082
+ "rewards/chosen": -5.399388313293457,
1083
+ "rewards/margins": 5.338440418243408,
1084
+ "rewards/rejected": -10.737829208374023,
1085
+ "step": 600
1086
+ },
1087
+ {
1088
+ "epoch": 0.5156854318865493,
1089
+ "eval_logits/chosen": 2.6781415939331055,
1090
+ "eval_logits/rejected": 2.508939027786255,
1091
+ "eval_logps/chosen": -3.80741548538208,
1092
+ "eval_logps/rejected": -7.577634334564209,
1093
+ "eval_loss": 0.3210188150405884,
1094
+ "eval_rewards/accuracies": 0.9368420839309692,
1095
+ "eval_rewards/chosen": -5.711122989654541,
1096
+ "eval_rewards/margins": 5.655328273773193,
1097
+ "eval_rewards/rejected": -11.366451263427734,
1098
+ "eval_runtime": 26.0494,
1099
+ "eval_samples_per_second": 28.907,
1100
+ "eval_steps_per_second": 3.647,
1101
+ "step": 600
1102
+ },
1103
+ {
1104
+ "epoch": 0.5242801890846583,
1105
+ "grad_norm": 2.856853485107422,
1106
+ "learning_rate": 3.222579492361179e-06,
1107
+ "logits/chosen": 2.6607539653778076,
1108
+ "logits/rejected": 2.6158082485198975,
1109
+ "logps/chosen": -3.489922285079956,
1110
+ "logps/rejected": -7.035357475280762,
1111
+ "loss": 0.2508,
1112
+ "rewards/accuracies": 0.9125000238418579,
1113
+ "rewards/chosen": -5.2348833084106445,
1114
+ "rewards/margins": 5.318153381347656,
1115
+ "rewards/rejected": -10.553037643432617,
1116
+ "step": 610
1117
+ },
1118
+ {
1119
+ "epoch": 0.5328749462827675,
1120
+ "grad_norm": 4.409074783325195,
1121
+ "learning_rate": 3.1722995515381644e-06,
1122
+ "logits/chosen": 3.0015037059783936,
1123
+ "logits/rejected": 2.8305137157440186,
1124
+ "logps/chosen": -3.5414748191833496,
1125
+ "logps/rejected": -7.11874532699585,
1126
+ "loss": 0.3102,
1127
+ "rewards/accuracies": 0.925000011920929,
1128
+ "rewards/chosen": -5.312211990356445,
1129
+ "rewards/margins": 5.365906715393066,
1130
+ "rewards/rejected": -10.678118705749512,
1131
+ "step": 620
1132
+ },
1133
+ {
1134
+ "epoch": 0.5414697034808766,
1135
+ "grad_norm": 2.839806079864502,
1136
+ "learning_rate": 3.121724717912138e-06,
1137
+ "logits/chosen": 2.3477985858917236,
1138
+ "logits/rejected": 2.3716092109680176,
1139
+ "logps/chosen": -3.313047409057617,
1140
+ "logps/rejected": -6.408308506011963,
1141
+ "loss": 0.2967,
1142
+ "rewards/accuracies": 0.925000011920929,
1143
+ "rewards/chosen": -4.969571590423584,
1144
+ "rewards/margins": 4.642891883850098,
1145
+ "rewards/rejected": -9.612462997436523,
1146
+ "step": 630
1147
+ },
1148
+ {
1149
+ "epoch": 0.5500644606789858,
1150
+ "grad_norm": 2.654181957244873,
1151
+ "learning_rate": 3.0708771752766397e-06,
1152
+ "logits/chosen": 3.0838463306427,
1153
+ "logits/rejected": 2.7085671424865723,
1154
+ "logps/chosen": -3.0019986629486084,
1155
+ "logps/rejected": -6.516921043395996,
1156
+ "loss": 0.2949,
1157
+ "rewards/accuracies": 0.925000011920929,
1158
+ "rewards/chosen": -4.502998352050781,
1159
+ "rewards/margins": 5.272383689880371,
1160
+ "rewards/rejected": -9.775381088256836,
1161
+ "step": 640
1162
+ },
1163
+ {
1164
+ "epoch": 0.5586592178770949,
1165
+ "grad_norm": 4.577066898345947,
1166
+ "learning_rate": 3.019779227044398e-06,
1167
+ "logits/chosen": 2.633059501647949,
1168
+ "logits/rejected": 2.3362865447998047,
1169
+ "logps/chosen": -3.0310661792755127,
1170
+ "logps/rejected": -6.479100227355957,
1171
+ "loss": 0.2591,
1172
+ "rewards/accuracies": 0.949999988079071,
1173
+ "rewards/chosen": -4.5465989112854,
1174
+ "rewards/margins": 5.172050476074219,
1175
+ "rewards/rejected": -9.718649864196777,
1176
+ "step": 650
1177
+ },
1178
+ {
1179
+ "epoch": 0.5586592178770949,
1180
+ "eval_logits/chosen": 2.7705864906311035,
1181
+ "eval_logits/rejected": 2.544156312942505,
1182
+ "eval_logps/chosen": -3.3805298805236816,
1183
+ "eval_logps/rejected": -7.496833324432373,
1184
+ "eval_loss": 0.2849542498588562,
1185
+ "eval_rewards/accuracies": 0.9263157844543457,
1186
+ "eval_rewards/chosen": -5.070794582366943,
1187
+ "eval_rewards/margins": 6.174455642700195,
1188
+ "eval_rewards/rejected": -11.24524974822998,
1189
+ "eval_runtime": 26.0431,
1190
+ "eval_samples_per_second": 28.914,
1191
+ "eval_steps_per_second": 3.648,
1192
+ "step": 650
1193
+ },
1194
+ {
1195
+ "epoch": 0.5672539750752041,
1196
+ "grad_norm": 2.702881097793579,
1197
+ "learning_rate": 2.9684532864643123e-06,
1198
+ "logits/chosen": 3.2417023181915283,
1199
+ "logits/rejected": 3.033658504486084,
1200
+ "logps/chosen": -3.447977066040039,
1201
+ "logps/rejected": -6.834619045257568,
1202
+ "loss": 0.2769,
1203
+ "rewards/accuracies": 0.8999999761581421,
1204
+ "rewards/chosen": -5.171965599060059,
1205
+ "rewards/margins": 5.079962253570557,
1206
+ "rewards/rejected": -10.251927375793457,
1207
+ "step": 660
1208
+ },
1209
+ {
1210
+ "epoch": 0.5758487322733132,
1211
+ "grad_norm": 3.4991097450256348,
1212
+ "learning_rate": 2.9169218667902562e-06,
1213
+ "logits/chosen": 2.873870372772217,
1214
+ "logits/rejected": 3.067615032196045,
1215
+ "logps/chosen": -2.999001979827881,
1216
+ "logps/rejected": -6.282449245452881,
1217
+ "loss": 0.2768,
1218
+ "rewards/accuracies": 0.9125000238418579,
1219
+ "rewards/chosen": -4.498503684997559,
1220
+ "rewards/margins": 4.9251708984375,
1221
+ "rewards/rejected": -9.423673629760742,
1222
+ "step": 670
1223
+ },
1224
+ {
1225
+ "epoch": 0.5844434894714224,
1226
+ "grad_norm": 2.037074565887451,
1227
+ "learning_rate": 2.8652075714060296e-06,
1228
+ "logits/chosen": 2.6497623920440674,
1229
+ "logits/rejected": 2.6266252994537354,
1230
+ "logps/chosen": -3.240567445755005,
1231
+ "logps/rejected": -7.337438106536865,
1232
+ "loss": 0.2279,
1233
+ "rewards/accuracies": 0.9750000238418579,
1234
+ "rewards/chosen": -4.860850811004639,
1235
+ "rewards/margins": 6.14530611038208,
1236
+ "rewards/rejected": -11.006157875061035,
1237
+ "step": 680
1238
+ },
1239
+ {
1240
+ "epoch": 0.5930382466695315,
1241
+ "grad_norm": 3.344770908355713,
1242
+ "learning_rate": 2.813333083910761e-06,
1243
+ "logits/chosen": 3.0279605388641357,
1244
+ "logits/rejected": 3.087311029434204,
1245
+ "logps/chosen": -3.819802761077881,
1246
+ "logps/rejected": -7.53275203704834,
1247
+ "loss": 0.2303,
1248
+ "rewards/accuracies": 0.925000011920929,
1249
+ "rewards/chosen": -5.729703903198242,
1250
+ "rewards/margins": 5.569423675537109,
1251
+ "rewards/rejected": -11.299127578735352,
1252
+ "step": 690
1253
+ },
1254
+ {
1255
+ "epoch": 0.6016330038676407,
1256
+ "grad_norm": 3.2010765075683594,
1257
+ "learning_rate": 2.761321158169134e-06,
1258
+ "logits/chosen": 2.4958834648132324,
1259
+ "logits/rejected": 2.5570173263549805,
1260
+ "logps/chosen": -3.407851457595825,
1261
+ "logps/rejected": -7.984216213226318,
1262
+ "loss": 0.2378,
1263
+ "rewards/accuracies": 0.9624999761581421,
1264
+ "rewards/chosen": -5.111776828765869,
1265
+ "rewards/margins": 6.8645477294921875,
1266
+ "rewards/rejected": -11.976324081420898,
1267
+ "step": 700
1268
+ },
1269
+ {
1270
+ "epoch": 0.6016330038676407,
1271
+ "eval_logits/chosen": 2.612185001373291,
1272
+ "eval_logits/rejected": 2.496657609939575,
1273
+ "eval_logps/chosen": -3.7988975048065186,
1274
+ "eval_logps/rejected": -8.164173126220703,
1275
+ "eval_loss": 0.2825009524822235,
1276
+ "eval_rewards/accuracies": 0.9368420839309692,
1277
+ "eval_rewards/chosen": -5.698346138000488,
1278
+ "eval_rewards/margins": 6.547913074493408,
1279
+ "eval_rewards/rejected": -12.246257781982422,
1280
+ "eval_runtime": 26.0516,
1281
+ "eval_samples_per_second": 28.904,
1282
+ "eval_steps_per_second": 3.647,
1283
+ "step": 700
1284
+ },
1285
+ {
1286
+ "epoch": 0.6102277610657499,
1287
+ "grad_norm": 5.041301250457764,
1288
+ "learning_rate": 2.70919460833079e-06,
1289
+ "logits/chosen": 3.299370527267456,
1290
+ "logits/rejected": 3.0894174575805664,
1291
+ "logps/chosen": -3.194427728652954,
1292
+ "logps/rejected": -7.703743934631348,
1293
+ "loss": 0.2785,
1294
+ "rewards/accuracies": 0.925000011920929,
1295
+ "rewards/chosen": -4.791642189025879,
1296
+ "rewards/margins": 6.763974666595459,
1297
+ "rewards/rejected": -11.55561637878418,
1298
+ "step": 710
1299
+ },
1300
+ {
1301
+ "epoch": 0.618822518263859,
1302
+ "grad_norm": 2.529698133468628,
1303
+ "learning_rate": 2.6569762988232838e-06,
1304
+ "logits/chosen": 2.993044853210449,
1305
+ "logits/rejected": 2.8644943237304688,
1306
+ "logps/chosen": -3.544390916824341,
1307
+ "logps/rejected": -7.395848274230957,
1308
+ "loss": 0.2601,
1309
+ "rewards/accuracies": 0.8999999761581421,
1310
+ "rewards/chosen": -5.316585540771484,
1311
+ "rewards/margins": 5.777185916900635,
1312
+ "rewards/rejected": -11.093771934509277,
1313
+ "step": 720
1314
+ },
1315
+ {
1316
+ "epoch": 0.6274172754619682,
1317
+ "grad_norm": 7.421131610870361,
1318
+ "learning_rate": 2.604689134322999e-06,
1319
+ "logits/chosen": 2.8646786212921143,
1320
+ "logits/rejected": 2.6174604892730713,
1321
+ "logps/chosen": -3.453138828277588,
1322
+ "logps/rejected": -7.3844780921936035,
1323
+ "loss": 0.2575,
1324
+ "rewards/accuracies": 0.9125000238418579,
1325
+ "rewards/chosen": -5.1797075271606445,
1326
+ "rewards/margins": 5.897009372711182,
1327
+ "rewards/rejected": -11.076717376708984,
1328
+ "step": 730
1329
+ },
1330
+ {
1331
+ "epoch": 0.6360120326600773,
1332
+ "grad_norm": 2.1014463901519775,
1333
+ "learning_rate": 2.5523560497083927e-06,
1334
+ "logits/chosen": 2.8302714824676514,
1335
+ "logits/rejected": 2.8019368648529053,
1336
+ "logps/chosen": -3.5820255279541016,
1337
+ "logps/rejected": -7.563794136047363,
1338
+ "loss": 0.1993,
1339
+ "rewards/accuracies": 0.9375,
1340
+ "rewards/chosen": -5.373038291931152,
1341
+ "rewards/margins": 5.972653388977051,
1342
+ "rewards/rejected": -11.345690727233887,
1343
+ "step": 740
1344
+ },
1345
+ {
1346
+ "epoch": 0.6446067898581865,
1347
+ "grad_norm": 5.518689155578613,
1348
+ "learning_rate": 2.5e-06,
1349
+ "logits/chosen": 3.2593605518341064,
1350
+ "logits/rejected": 3.0433804988861084,
1351
+ "logps/chosen": -3.267456531524658,
1352
+ "logps/rejected": -7.076251983642578,
1353
+ "loss": 0.232,
1354
+ "rewards/accuracies": 0.9375,
1355
+ "rewards/chosen": -4.901184558868408,
1356
+ "rewards/margins": 5.713194370269775,
1357
+ "rewards/rejected": -10.6143798828125,
1358
+ "step": 750
1359
+ },
1360
+ {
1361
+ "epoch": 0.6446067898581865,
1362
+ "eval_logits/chosen": 2.7629785537719727,
1363
+ "eval_logits/rejected": 2.6254494190216064,
1364
+ "eval_logps/chosen": -3.9823832511901855,
1365
+ "eval_logps/rejected": -8.553824424743652,
1366
+ "eval_loss": 0.2789475917816162,
1367
+ "eval_rewards/accuracies": 0.9368420839309692,
1368
+ "eval_rewards/chosen": -5.973575115203857,
1369
+ "eval_rewards/margins": 6.857161521911621,
1370
+ "eval_rewards/rejected": -12.830737113952637,
1371
+ "eval_runtime": 26.0463,
1372
+ "eval_samples_per_second": 28.91,
1373
+ "eval_steps_per_second": 3.647,
1374
+ "step": 750
1375
+ },
1376
+ {
1377
+ "epoch": 0.6532015470562956,
1378
+ "grad_norm": 2.6179347038269043,
1379
+ "learning_rate": 2.447643950291608e-06,
1380
+ "logits/chosen": 2.6019458770751953,
1381
+ "logits/rejected": 2.424398422241211,
1382
+ "logps/chosen": -4.219740867614746,
1383
+ "logps/rejected": -8.018190383911133,
1384
+ "loss": 0.2308,
1385
+ "rewards/accuracies": 0.9375,
1386
+ "rewards/chosen": -6.329610347747803,
1387
+ "rewards/margins": 5.697674751281738,
1388
+ "rewards/rejected": -12.0272855758667,
1389
+ "step": 760
1390
+ },
1391
+ {
1392
+ "epoch": 0.6617963042544048,
1393
+ "grad_norm": 4.589828968048096,
1394
+ "learning_rate": 2.3953108656770018e-06,
1395
+ "logits/chosen": 3.2706522941589355,
1396
+ "logits/rejected": 3.175826072692871,
1397
+ "logps/chosen": -3.878615617752075,
1398
+ "logps/rejected": -7.1606879234313965,
1399
+ "loss": 0.2568,
1400
+ "rewards/accuracies": 0.887499988079071,
1401
+ "rewards/chosen": -5.817923069000244,
1402
+ "rewards/margins": 4.9231085777282715,
1403
+ "rewards/rejected": -10.741032600402832,
1404
+ "step": 770
1405
+ },
1406
+ {
1407
+ "epoch": 0.6703910614525139,
1408
+ "grad_norm": 2.977869987487793,
1409
+ "learning_rate": 2.3430237011767166e-06,
1410
+ "logits/chosen": 2.5545144081115723,
1411
+ "logits/rejected": 2.5734703540802,
1412
+ "logps/chosen": -4.024557590484619,
1413
+ "logps/rejected": -8.60046672821045,
1414
+ "loss": 0.2412,
1415
+ "rewards/accuracies": 0.9750000238418579,
1416
+ "rewards/chosen": -6.036835670471191,
1417
+ "rewards/margins": 6.863864898681641,
1418
+ "rewards/rejected": -12.900700569152832,
1419
+ "step": 780
1420
+ },
1421
+ {
1422
+ "epoch": 0.6789858186506231,
1423
+ "grad_norm": 3.6560606956481934,
1424
+ "learning_rate": 2.290805391669212e-06,
1425
+ "logits/chosen": 2.492705821990967,
1426
+ "logits/rejected": 2.3359062671661377,
1427
+ "logps/chosen": -3.947359561920166,
1428
+ "logps/rejected": -8.342267990112305,
1429
+ "loss": 0.2296,
1430
+ "rewards/accuracies": 0.925000011920929,
1431
+ "rewards/chosen": -5.921038627624512,
1432
+ "rewards/margins": 6.592364311218262,
1433
+ "rewards/rejected": -12.51340389251709,
1434
+ "step": 790
1435
+ },
1436
+ {
1437
+ "epoch": 0.6875805758487322,
1438
+ "grad_norm": 3.9279472827911377,
1439
+ "learning_rate": 2.238678841830867e-06,
1440
+ "logits/chosen": 2.8240795135498047,
1441
+ "logits/rejected": 3.1099812984466553,
1442
+ "logps/chosen": -3.8079333305358887,
1443
+ "logps/rejected": -8.205657958984375,
1444
+ "loss": 0.2168,
1445
+ "rewards/accuracies": 0.887499988079071,
1446
+ "rewards/chosen": -5.711899757385254,
1447
+ "rewards/margins": 6.596588134765625,
1448
+ "rewards/rejected": -12.308488845825195,
1449
+ "step": 800
1450
+ },
1451
+ {
1452
+ "epoch": 0.6875805758487322,
1453
+ "eval_logits/chosen": 2.7551891803741455,
1454
+ "eval_logits/rejected": 2.601799488067627,
1455
+ "eval_logps/chosen": -3.887099027633667,
1456
+ "eval_logps/rejected": -8.64702320098877,
1457
+ "eval_loss": 0.2762486934661865,
1458
+ "eval_rewards/accuracies": 0.9368420839309692,
1459
+ "eval_rewards/chosen": -5.830648422241211,
1460
+ "eval_rewards/margins": 7.139886856079102,
1461
+ "eval_rewards/rejected": -12.970536231994629,
1462
+ "eval_runtime": 26.0484,
1463
+ "eval_samples_per_second": 28.908,
1464
+ "eval_steps_per_second": 3.647,
1465
+ "step": 800
1466
+ },
1467
+ {
1468
+ "epoch": 0.6961753330468414,
1469
+ "grad_norm": 8.265795707702637,
1470
+ "learning_rate": 2.186666916089239e-06,
1471
+ "logits/chosen": 2.428936719894409,
1472
+ "logits/rejected": 2.250732183456421,
1473
+ "logps/chosen": -3.8794636726379395,
1474
+ "logps/rejected": -8.740089416503906,
1475
+ "loss": 0.2642,
1476
+ "rewards/accuracies": 0.925000011920929,
1477
+ "rewards/chosen": -5.819195747375488,
1478
+ "rewards/margins": 7.290940284729004,
1479
+ "rewards/rejected": -13.110135078430176,
1480
+ "step": 810
1481
+ },
1482
+ {
1483
+ "epoch": 0.7047700902449506,
1484
+ "grad_norm": 2.2785184383392334,
1485
+ "learning_rate": 2.134792428593971e-06,
1486
+ "logits/chosen": 3.366255283355713,
1487
+ "logits/rejected": 3.3257839679718018,
1488
+ "logps/chosen": -3.8746776580810547,
1489
+ "logps/rejected": -8.137792587280273,
1490
+ "loss": 0.1911,
1491
+ "rewards/accuracies": 0.8999999761581421,
1492
+ "rewards/chosen": -5.812016487121582,
1493
+ "rewards/margins": 6.394671440124512,
1494
+ "rewards/rejected": -12.206687927246094,
1495
+ "step": 820
1496
+ },
1497
+ {
1498
+ "epoch": 0.7133648474430597,
1499
+ "grad_norm": 3.9450490474700928,
1500
+ "learning_rate": 2.0830781332097446e-06,
1501
+ "logits/chosen": 2.4217989444732666,
1502
+ "logits/rejected": 2.4092135429382324,
1503
+ "logps/chosen": -3.6179535388946533,
1504
+ "logps/rejected": -8.20048713684082,
1505
+ "loss": 0.2169,
1506
+ "rewards/accuracies": 0.949999988079071,
1507
+ "rewards/chosen": -5.426929950714111,
1508
+ "rewards/margins": 6.873800754547119,
1509
+ "rewards/rejected": -12.300729751586914,
1510
+ "step": 830
1511
+ },
1512
+ {
1513
+ "epoch": 0.7219596046411689,
1514
+ "grad_norm": 4.863241672515869,
1515
+ "learning_rate": 2.031546713535688e-06,
1516
+ "logits/chosen": 2.8715851306915283,
1517
+ "logits/rejected": 2.6674141883850098,
1518
+ "logps/chosen": -3.812260150909424,
1519
+ "logps/rejected": -8.3114013671875,
1520
+ "loss": 0.2036,
1521
+ "rewards/accuracies": 0.9375,
1522
+ "rewards/chosen": -5.718389987945557,
1523
+ "rewards/margins": 6.748712062835693,
1524
+ "rewards/rejected": -12.46710205078125,
1525
+ "step": 840
1526
+ },
1527
+ {
1528
+ "epoch": 0.730554361839278,
1529
+ "grad_norm": 2.593899726867676,
1530
+ "learning_rate": 1.9802207729556023e-06,
1531
+ "logits/chosen": 3.424074172973633,
1532
+ "logits/rejected": 3.024358034133911,
1533
+ "logps/chosen": -3.8419318199157715,
1534
+ "logps/rejected": -7.625539302825928,
1535
+ "loss": 0.2401,
1536
+ "rewards/accuracies": 0.8999999761581421,
1537
+ "rewards/chosen": -5.762897968292236,
1538
+ "rewards/margins": 5.675411701202393,
1539
+ "rewards/rejected": -11.438309669494629,
1540
+ "step": 850
1541
+ },
1542
+ {
1543
+ "epoch": 0.730554361839278,
1544
+ "eval_logits/chosen": 2.7013235092163086,
1545
+ "eval_logits/rejected": 2.5711612701416016,
1546
+ "eval_logps/chosen": -3.905956983566284,
1547
+ "eval_logps/rejected": -8.749403953552246,
1548
+ "eval_loss": 0.25881054997444153,
1549
+ "eval_rewards/accuracies": 0.9368420839309692,
1550
+ "eval_rewards/chosen": -5.858935356140137,
1551
+ "eval_rewards/margins": 7.265170097351074,
1552
+ "eval_rewards/rejected": -13.124105453491211,
1553
+ "eval_runtime": 26.1338,
1554
+ "eval_samples_per_second": 28.813,
1555
+ "eval_steps_per_second": 3.635,
1556
+ "step": 850
1557
+ },
1558
+ {
1559
+ "epoch": 0.7391491190373872,
1560
+ "grad_norm": 2.430412769317627,
1561
+ "learning_rate": 1.9291228247233607e-06,
1562
+ "logits/chosen": 2.6950340270996094,
1563
+ "logits/rejected": 2.8298139572143555,
1564
+ "logps/chosen": -3.6957314014434814,
1565
+ "logps/rejected": -8.42276382446289,
1566
+ "loss": 0.236,
1567
+ "rewards/accuracies": 0.9125000238418579,
1568
+ "rewards/chosen": -5.543597221374512,
1569
+ "rewards/margins": 7.090548038482666,
1570
+ "rewards/rejected": -12.63414478302002,
1571
+ "step": 860
1572
+ },
1573
+ {
1574
+ "epoch": 0.7477438762354963,
1575
+ "grad_norm": 3.259122610092163,
1576
+ "learning_rate": 1.8782752820878636e-06,
1577
+ "logits/chosen": 3.0335607528686523,
1578
+ "logits/rejected": 2.6622061729431152,
1579
+ "logps/chosen": -3.5311496257781982,
1580
+ "logps/rejected": -8.468803405761719,
1581
+ "loss": 0.2133,
1582
+ "rewards/accuracies": 0.9624999761581421,
1583
+ "rewards/chosen": -5.296724796295166,
1584
+ "rewards/margins": 7.406480312347412,
1585
+ "rewards/rejected": -12.703205108642578,
1586
+ "step": 870
1587
+ },
1588
+ {
1589
+ "epoch": 0.7563386334336055,
1590
+ "grad_norm": 4.110405445098877,
1591
+ "learning_rate": 1.827700448461836e-06,
1592
+ "logits/chosen": 3.1867451667785645,
1593
+ "logits/rejected": 3.188183307647705,
1594
+ "logps/chosen": -3.9485092163085938,
1595
+ "logps/rejected": -8.32574462890625,
1596
+ "loss": 0.225,
1597
+ "rewards/accuracies": 0.925000011920929,
1598
+ "rewards/chosen": -5.922764778137207,
1599
+ "rewards/margins": 6.56585168838501,
1600
+ "rewards/rejected": -12.488615036010742,
1601
+ "step": 880
1602
+ },
1603
+ {
1604
+ "epoch": 0.7649333906317146,
1605
+ "grad_norm": 2.139331817626953,
1606
+ "learning_rate": 1.7774205076388207e-06,
1607
+ "logits/chosen": 3.1500871181488037,
1608
+ "logits/rejected": 3.003722906112671,
1609
+ "logps/chosen": -3.997753143310547,
1610
+ "logps/rejected": -8.36584186553955,
1611
+ "loss": 0.2081,
1612
+ "rewards/accuracies": 0.925000011920929,
1613
+ "rewards/chosen": -5.99662971496582,
1614
+ "rewards/margins": 6.552132606506348,
1615
+ "rewards/rejected": -12.548762321472168,
1616
+ "step": 890
1617
+ },
1618
+ {
1619
+ "epoch": 0.7735281478298238,
1620
+ "grad_norm": 3.141416072845459,
1621
+ "learning_rate": 1.7274575140626318e-06,
1622
+ "logits/chosen": 2.8322606086730957,
1623
+ "logits/rejected": 2.7169883251190186,
1624
+ "logps/chosen": -3.7250099182128906,
1625
+ "logps/rejected": -7.989205837249756,
1626
+ "loss": 0.2286,
1627
+ "rewards/accuracies": 0.949999988079071,
1628
+ "rewards/chosen": -5.587515354156494,
1629
+ "rewards/margins": 6.396294593811035,
1630
+ "rewards/rejected": -11.983808517456055,
1631
+ "step": 900
1632
+ },
1633
+ {
1634
+ "epoch": 0.7735281478298238,
1635
+ "eval_logits/chosen": 2.6913206577301025,
1636
+ "eval_logits/rejected": 2.585991144180298,
1637
+ "eval_logps/chosen": -3.8541626930236816,
1638
+ "eval_logps/rejected": -8.840813636779785,
1639
+ "eval_loss": 0.24709106981754303,
1640
+ "eval_rewards/accuracies": 0.9473684430122375,
1641
+ "eval_rewards/chosen": -5.781244277954102,
1642
+ "eval_rewards/margins": 7.479976177215576,
1643
+ "eval_rewards/rejected": -13.261219024658203,
1644
+ "eval_runtime": 26.0437,
1645
+ "eval_samples_per_second": 28.913,
1646
+ "eval_steps_per_second": 3.648,
1647
+ "step": 900
1648
+ },
1649
+ {
1650
+ "epoch": 0.7821229050279329,
1651
+ "grad_norm": 2.6290950775146484,
1652
+ "learning_rate": 1.677833383153542e-06,
1653
+ "logits/chosen": 2.428351402282715,
1654
+ "logits/rejected": 2.203674077987671,
1655
+ "logps/chosen": -3.5989551544189453,
1656
+ "logps/rejected": -7.524004936218262,
1657
+ "loss": 0.2157,
1658
+ "rewards/accuracies": 0.925000011920929,
1659
+ "rewards/chosen": -5.398432731628418,
1660
+ "rewards/margins": 5.887574195861816,
1661
+ "rewards/rejected": -11.286008834838867,
1662
+ "step": 910
1663
+ },
1664
+ {
1665
+ "epoch": 0.7907176622260421,
1666
+ "grad_norm": 5.0300140380859375,
1667
+ "learning_rate": 1.6285698816954626e-06,
1668
+ "logits/chosen": 3.045369863510132,
1669
+ "logits/rejected": 2.8783938884735107,
1670
+ "logps/chosen": -3.6674282550811768,
1671
+ "logps/rejected": -8.223487854003906,
1672
+ "loss": 0.1969,
1673
+ "rewards/accuracies": 0.949999988079071,
1674
+ "rewards/chosen": -5.501142978668213,
1675
+ "rewards/margins": 6.834088325500488,
1676
+ "rewards/rejected": -12.335230827331543,
1677
+ "step": 920
1678
+ },
1679
+ {
1680
+ "epoch": 0.7993124194241513,
1681
+ "grad_norm": 1.3160176277160645,
1682
+ "learning_rate": 1.5796886182883053e-06,
1683
+ "logits/chosen": 3.5735950469970703,
1684
+ "logits/rejected": 3.1306614875793457,
1685
+ "logps/chosen": -3.6068572998046875,
1686
+ "logps/rejected": -8.208158493041992,
1687
+ "loss": 0.2309,
1688
+ "rewards/accuracies": 0.949999988079071,
1689
+ "rewards/chosen": -5.410286903381348,
1690
+ "rewards/margins": 6.901950836181641,
1691
+ "rewards/rejected": -12.312235832214355,
1692
+ "step": 930
1693
+ },
1694
+ {
1695
+ "epoch": 0.8079071766222604,
1696
+ "grad_norm": 2.0629019737243652,
1697
+ "learning_rate": 1.5312110338697427e-06,
1698
+ "logits/chosen": 2.279042959213257,
1699
+ "logits/rejected": 2.363171100616455,
1700
+ "logps/chosen": -3.690843105316162,
1701
+ "logps/rejected": -8.440999984741211,
1702
+ "loss": 0.2452,
1703
+ "rewards/accuracies": 0.9125000238418579,
1704
+ "rewards/chosen": -5.5362653732299805,
1705
+ "rewards/margins": 7.125234127044678,
1706
+ "rewards/rejected": -12.661499977111816,
1707
+ "step": 940
1708
+ },
1709
+ {
1710
+ "epoch": 0.8165019338203696,
1711
+ "grad_norm": 4.996740341186523,
1712
+ "learning_rate": 1.4831583923105e-06,
1713
+ "logits/chosen": 2.4931206703186035,
1714
+ "logits/rejected": 2.4499409198760986,
1715
+ "logps/chosen": -3.706071376800537,
1716
+ "logps/rejected": -8.696928977966309,
1717
+ "loss": 0.2346,
1718
+ "rewards/accuracies": 0.9624999761581421,
1719
+ "rewards/chosen": -5.559107780456543,
1720
+ "rewards/margins": 7.4862871170043945,
1721
+ "rewards/rejected": -13.045394897460938,
1722
+ "step": 950
1723
+ },
1724
+ {
1725
+ "epoch": 0.8165019338203696,
1726
+ "eval_logits/chosen": 2.8512210845947266,
1727
+ "eval_logits/rejected": 2.7410287857055664,
1728
+ "eval_logps/chosen": -3.736178159713745,
1729
+ "eval_logps/rejected": -8.9002046585083,
1730
+ "eval_loss": 0.2422085404396057,
1731
+ "eval_rewards/accuracies": 0.9473684430122375,
1732
+ "eval_rewards/chosen": -5.60426664352417,
1733
+ "eval_rewards/margins": 7.746040344238281,
1734
+ "eval_rewards/rejected": -13.350308418273926,
1735
+ "eval_runtime": 26.0516,
1736
+ "eval_samples_per_second": 28.904,
1737
+ "eval_steps_per_second": 3.647,
1738
+ "step": 950
1739
+ },
1740
+ {
1741
+ "epoch": 0.8250966910184787,
1742
+ "grad_norm": 3.8007683753967285,
1743
+ "learning_rate": 1.4355517710873184e-06,
1744
+ "logits/chosen": 3.1055569648742676,
1745
+ "logits/rejected": 2.932234525680542,
1746
+ "logps/chosen": -4.287350654602051,
1747
+ "logps/rejected": -8.713033676147461,
1748
+ "loss": 0.2177,
1749
+ "rewards/accuracies": 0.925000011920929,
1750
+ "rewards/chosen": -6.431025505065918,
1751
+ "rewards/margins": 6.63852596282959,
1752
+ "rewards/rejected": -13.069552421569824,
1753
+ "step": 960
1754
+ },
1755
+ {
1756
+ "epoch": 0.8336914482165879,
1757
+ "grad_norm": 8.133325576782227,
1758
+ "learning_rate": 1.388412052037682e-06,
1759
+ "logits/chosen": 2.822788715362549,
1760
+ "logits/rejected": 2.5713553428649902,
1761
+ "logps/chosen": -3.4133121967315674,
1762
+ "logps/rejected": -8.351690292358398,
1763
+ "loss": 0.2371,
1764
+ "rewards/accuracies": 0.949999988079071,
1765
+ "rewards/chosen": -5.119967460632324,
1766
+ "rewards/margins": 7.407568454742432,
1767
+ "rewards/rejected": -12.527536392211914,
1768
+ "step": 970
1769
+ },
1770
+ {
1771
+ "epoch": 0.842286205414697,
1772
+ "grad_norm": 5.39262056350708,
1773
+ "learning_rate": 1.3417599122003464e-06,
1774
+ "logits/chosen": 2.888523578643799,
1775
+ "logits/rejected": 2.752549409866333,
1776
+ "logps/chosen": -3.9895386695861816,
1777
+ "logps/rejected": -9.032824516296387,
1778
+ "loss": 0.1649,
1779
+ "rewards/accuracies": 0.9624999761581421,
1780
+ "rewards/chosen": -5.98430871963501,
1781
+ "rewards/margins": 7.564929008483887,
1782
+ "rewards/rejected": -13.549237251281738,
1783
+ "step": 980
1784
+ },
1785
+ {
1786
+ "epoch": 0.8508809626128062,
1787
+ "grad_norm": 4.744167327880859,
1788
+ "learning_rate": 1.2956158147457116e-06,
1789
+ "logits/chosen": 2.5370802879333496,
1790
+ "logits/rejected": 2.594423532485962,
1791
+ "logps/chosen": -3.6753451824188232,
1792
+ "logps/rejected": -8.043670654296875,
1793
+ "loss": 0.2277,
1794
+ "rewards/accuracies": 0.9375,
1795
+ "rewards/chosen": -5.513017654418945,
1796
+ "rewards/margins": 6.552487850189209,
1797
+ "rewards/rejected": -12.065505981445312,
1798
+ "step": 990
1799
+ },
1800
+ {
1801
+ "epoch": 0.8594757198109153,
1802
+ "grad_norm": 2.8420608043670654,
1803
+ "learning_rate": 1.2500000000000007e-06,
1804
+ "logits/chosen": 3.2587478160858154,
1805
+ "logits/rejected": 3.0482611656188965,
1806
+ "logps/chosen": -3.5280063152313232,
1807
+ "logps/rejected": -7.709681510925293,
1808
+ "loss": 0.196,
1809
+ "rewards/accuracies": 0.8999999761581421,
1810
+ "rewards/chosen": -5.292008876800537,
1811
+ "rewards/margins": 6.272514343261719,
1812
+ "rewards/rejected": -11.564523696899414,
1813
+ "step": 1000
1814
+ },
1815
+ {
1816
+ "epoch": 0.8594757198109153,
1817
+ "eval_logits/chosen": 2.8420093059539795,
1818
+ "eval_logits/rejected": 2.7762162685394287,
1819
+ "eval_logps/chosen": -3.8901867866516113,
1820
+ "eval_logps/rejected": -9.151087760925293,
1821
+ "eval_loss": 0.23557204008102417,
1822
+ "eval_rewards/accuracies": 0.9473684430122375,
1823
+ "eval_rewards/chosen": -5.83527946472168,
1824
+ "eval_rewards/margins": 7.891351699829102,
1825
+ "eval_rewards/rejected": -13.726632118225098,
1826
+ "eval_runtime": 26.0484,
1827
+ "eval_samples_per_second": 28.908,
1828
+ "eval_steps_per_second": 3.647,
1829
+ "step": 1000
1830
+ }
1831
+ ],
1832
+ "logging_steps": 10,
1833
+ "max_steps": 1500,
1834
+ "num_input_tokens_seen": 0,
1835
+ "num_train_epochs": 2,
1836
+ "save_steps": 50,
1837
+ "stateful_callbacks": {
1838
+ "TrainerControl": {
1839
+ "args": {
1840
+ "should_epoch_stop": false,
1841
+ "should_evaluate": false,
1842
+ "should_log": false,
1843
+ "should_save": true,
1844
+ "should_training_stop": false
1845
+ },
1846
+ "attributes": {}
1847
+ }
1848
+ },
1849
+ "total_flos": 2.344938790839124e+18,
1850
+ "train_batch_size": 1,
1851
+ "trial_name": null,
1852
+ "trial_params": null
1853
+ }
checkpoint-1000/training_args.bin ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:624389fbed538b0a4a7a9ca58a805f090753eb489b444df41f15a2c23b6a1270
3
+ size 7224
checkpoint-1000/zero_to_fp32.py ADDED
@@ -0,0 +1,674 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ #!/usr/bin/env python
2
+
3
+ # Copyright (c) Microsoft Corporation.
4
+ # SPDX-License-Identifier: Apache-2.0
5
+
6
+ # DeepSpeed Team
7
+
8
+ # This script extracts fp32 consolidated weights from a zero 1, 2 and 3 DeepSpeed checkpoints. It gets
9
+ # copied into the top level checkpoint dir, so the user can easily do the conversion at any point in
10
+ # the future. Once extracted, the weights don't require DeepSpeed and can be used in any
11
+ # application.
12
+ #
13
+ # example:
14
+ # python zero_to_fp32.py . output_dir/
15
+ # or
16
+ # python zero_to_fp32.py . output_dir/ --safe_serialization
17
+
18
+ import argparse
19
+ import torch
20
+ import glob
21
+ import math
22
+ import os
23
+ import re
24
+ import json
25
+ from tqdm import tqdm
26
+ from collections import OrderedDict
27
+ from dataclasses import dataclass
28
+
29
+ # while this script doesn't use deepspeed to recover data, since the checkpoints are pickled with
30
+ # DeepSpeed data structures it has to be available in the current python environment.
31
+ from deepspeed.utils import logger
32
+ from deepspeed.checkpoint.constants import (DS_VERSION, OPTIMIZER_STATE_DICT, SINGLE_PARTITION_OF_FP32_GROUPS,
33
+ FP32_FLAT_GROUPS, ZERO_STAGE, PARTITION_COUNT, PARAM_SHAPES, BUFFER_NAMES,
34
+ FROZEN_PARAM_SHAPES, FROZEN_PARAM_FRAGMENTS)
35
+
36
+
37
+ @dataclass
38
+ class zero_model_state:
39
+ buffers: dict()
40
+ param_shapes: dict()
41
+ shared_params: list
42
+ ds_version: int
43
+ frozen_param_shapes: dict()
44
+ frozen_param_fragments: dict()
45
+
46
+
47
+ debug = 0
48
+
49
+ # load to cpu
50
+ device = torch.device('cpu')
51
+
52
+
53
+ def atoi(text):
54
+ return int(text) if text.isdigit() else text
55
+
56
+
57
+ def natural_keys(text):
58
+ '''
59
+ alist.sort(key=natural_keys) sorts in human order
60
+ http://nedbatchelder.com/blog/200712/human_sorting.html
61
+ (See Toothy's implementation in the comments)
62
+ '''
63
+ return [atoi(c) for c in re.split(r'(\d+)', text)]
64
+
65
+
66
+ def get_model_state_file(checkpoint_dir, zero_stage):
67
+ if not os.path.isdir(checkpoint_dir):
68
+ raise FileNotFoundError(f"Directory '{checkpoint_dir}' doesn't exist")
69
+
70
+ # there should be only one file
71
+ if zero_stage <= 2:
72
+ file = os.path.join(checkpoint_dir, "mp_rank_00_model_states.pt")
73
+ elif zero_stage == 3:
74
+ file = os.path.join(checkpoint_dir, "zero_pp_rank_0_mp_rank_00_model_states.pt")
75
+
76
+ if not os.path.exists(file):
77
+ raise FileNotFoundError(f"can't find model states file at '{file}'")
78
+
79
+ return file
80
+
81
+
82
+ def get_checkpoint_files(checkpoint_dir, glob_pattern):
83
+ # XXX: need to test that this simple glob rule works for multi-node setup too
84
+ ckpt_files = sorted(glob.glob(os.path.join(checkpoint_dir, glob_pattern)), key=natural_keys)
85
+
86
+ if len(ckpt_files) == 0:
87
+ raise FileNotFoundError(f"can't find {glob_pattern} files in directory '{checkpoint_dir}'")
88
+
89
+ return ckpt_files
90
+
91
+
92
+ def get_optim_files(checkpoint_dir):
93
+ return get_checkpoint_files(checkpoint_dir, "*_optim_states.pt")
94
+
95
+
96
+ def get_model_state_files(checkpoint_dir):
97
+ return get_checkpoint_files(checkpoint_dir, "*_model_states.pt")
98
+
99
+
100
+ def parse_model_states(files):
101
+ zero_model_states = []
102
+ for file in files:
103
+ state_dict = torch.load(file, map_location=device)
104
+
105
+ if BUFFER_NAMES not in state_dict:
106
+ raise ValueError(f"{file} is not a model state checkpoint")
107
+ buffer_names = state_dict[BUFFER_NAMES]
108
+ if debug:
109
+ print("Found buffers:", buffer_names)
110
+
111
+ # recover just the buffers while restoring them to fp32 if they were saved in fp16
112
+ buffers = {k: v.float() for k, v in state_dict["module"].items() if k in buffer_names}
113
+ param_shapes = state_dict[PARAM_SHAPES]
114
+
115
+ # collect parameters that are included in param_shapes
116
+ param_names = []
117
+ for s in param_shapes:
118
+ for name in s.keys():
119
+ param_names.append(name)
120
+
121
+ # update with frozen parameters
122
+ frozen_param_shapes = state_dict.get(FROZEN_PARAM_SHAPES, None)
123
+ if frozen_param_shapes is not None:
124
+ if debug:
125
+ print(f"Found frozen_param_shapes: {frozen_param_shapes}")
126
+ param_names += list(frozen_param_shapes.keys())
127
+
128
+ # handle shared params
129
+ shared_params = [[k, v] for k, v in state_dict["shared_params"].items()]
130
+
131
+ ds_version = state_dict.get(DS_VERSION, None)
132
+
133
+ frozen_param_fragments = state_dict.get(FROZEN_PARAM_FRAGMENTS, None)
134
+
135
+ z_model_state = zero_model_state(buffers=buffers,
136
+ param_shapes=param_shapes,
137
+ shared_params=shared_params,
138
+ ds_version=ds_version,
139
+ frozen_param_shapes=frozen_param_shapes,
140
+ frozen_param_fragments=frozen_param_fragments)
141
+ zero_model_states.append(z_model_state)
142
+
143
+ return zero_model_states
144
+
145
+
146
+ def parse_optim_states(files, ds_checkpoint_dir):
147
+ total_files = len(files)
148
+ state_dicts = []
149
+ for f in files:
150
+ state_dict = torch.load(f, map_location=device)
151
+ # immediately discard the potentially huge 2 optimizer states as we only care for fp32 master weights
152
+ # and also handle the case where it was already removed by another helper script
153
+ state_dict["optimizer_state_dict"].pop("optimizer_state_dict", None)
154
+ state_dicts.append(state_dict)
155
+
156
+ if not ZERO_STAGE in state_dicts[0][OPTIMIZER_STATE_DICT]:
157
+ raise ValueError(f"{files[0]} is not a zero checkpoint")
158
+ zero_stage = state_dicts[0][OPTIMIZER_STATE_DICT][ZERO_STAGE]
159
+ world_size = state_dicts[0][OPTIMIZER_STATE_DICT][PARTITION_COUNT]
160
+
161
+ # For ZeRO-2 each param group can have different partition_count as data parallelism for expert
162
+ # parameters can be different from data parallelism for non-expert parameters. So we can just
163
+ # use the max of the partition_count to get the dp world_size.
164
+
165
+ if type(world_size) is list:
166
+ world_size = max(world_size)
167
+
168
+ if world_size != total_files:
169
+ raise ValueError(
170
+ f"Expected {world_size} of '*_optim_states.pt' under '{ds_checkpoint_dir}' but found {total_files} files. "
171
+ "Possibly due to an overwrite of an old checkpoint, or a checkpoint didn't get saved by one or more processes."
172
+ )
173
+
174
+ # the groups are named differently in each stage
175
+ if zero_stage <= 2:
176
+ fp32_groups_key = SINGLE_PARTITION_OF_FP32_GROUPS
177
+ elif zero_stage == 3:
178
+ fp32_groups_key = FP32_FLAT_GROUPS
179
+ else:
180
+ raise ValueError(f"unknown zero stage {zero_stage}")
181
+
182
+ if zero_stage <= 2:
183
+ fp32_flat_groups = [state_dicts[i][OPTIMIZER_STATE_DICT][fp32_groups_key] for i in range(len(state_dicts))]
184
+ elif zero_stage == 3:
185
+ # if there is more than one param group, there will be multiple flattened tensors - one
186
+ # flattened tensor per group - for simplicity merge them into a single tensor
187
+ #
188
+ # XXX: could make the script more memory efficient for when there are multiple groups - it
189
+ # will require matching the sub-lists of param_shapes for each param group flattened tensor
190
+
191
+ fp32_flat_groups = [
192
+ torch.cat(state_dicts[i][OPTIMIZER_STATE_DICT][fp32_groups_key], 0) for i in range(len(state_dicts))
193
+ ]
194
+
195
+ return zero_stage, world_size, fp32_flat_groups
196
+
197
+
198
+ def _get_fp32_state_dict_from_zero_checkpoint(ds_checkpoint_dir, exclude_frozen_parameters):
199
+ """
200
+ Returns fp32 state_dict reconstructed from ds checkpoint
201
+
202
+ Args:
203
+ - ``ds_checkpoint_dir``: path to the deepspeed checkpoint folder (where the optimizer files are)
204
+
205
+ """
206
+ print(f"Processing zero checkpoint '{ds_checkpoint_dir}'")
207
+
208
+ optim_files = get_optim_files(ds_checkpoint_dir)
209
+ zero_stage, world_size, fp32_flat_groups = parse_optim_states(optim_files, ds_checkpoint_dir)
210
+ print(f"Detected checkpoint of type zero stage {zero_stage}, world_size: {world_size}")
211
+
212
+ model_files = get_model_state_files(ds_checkpoint_dir)
213
+
214
+ zero_model_states = parse_model_states(model_files)
215
+ print(f'Parsing checkpoint created by deepspeed=={zero_model_states[0].ds_version}')
216
+
217
+ if zero_stage <= 2:
218
+ return _get_fp32_state_dict_from_zero2_checkpoint(world_size, fp32_flat_groups, zero_model_states,
219
+ exclude_frozen_parameters)
220
+ elif zero_stage == 3:
221
+ return _get_fp32_state_dict_from_zero3_checkpoint(world_size, fp32_flat_groups, zero_model_states,
222
+ exclude_frozen_parameters)
223
+
224
+
225
+ def _zero2_merge_frozen_params(state_dict, zero_model_states):
226
+ if zero_model_states[0].frozen_param_shapes is None or len(zero_model_states[0].frozen_param_shapes) == 0:
227
+ return
228
+
229
+ frozen_param_shapes = zero_model_states[0].frozen_param_shapes
230
+ frozen_param_fragments = zero_model_states[0].frozen_param_fragments
231
+
232
+ if debug:
233
+ num_elem = sum(s.numel() for s in frozen_param_shapes.values())
234
+ print(f'rank 0: {FROZEN_PARAM_SHAPES}.numel = {num_elem}')
235
+
236
+ wanted_params = len(frozen_param_shapes)
237
+ wanted_numel = sum(s.numel() for s in frozen_param_shapes.values())
238
+ avail_numel = sum([p.numel() for p in frozen_param_fragments.values()])
239
+ print(f'Frozen params: Have {avail_numel} numels to process.')
240
+ print(f'Frozen params: Need {wanted_numel} numels in {wanted_params} params')
241
+
242
+ total_params = 0
243
+ total_numel = 0
244
+ for name, shape in frozen_param_shapes.items():
245
+ total_params += 1
246
+ unpartitioned_numel = shape.numel()
247
+ total_numel += unpartitioned_numel
248
+
249
+ state_dict[name] = frozen_param_fragments[name]
250
+
251
+ if debug:
252
+ print(f"{name} full shape: {shape} unpartitioned numel {unpartitioned_numel} ")
253
+
254
+ print(f"Reconstructed Frozen fp32 state dict with {total_params} params {total_numel} elements")
255
+
256
+
257
+ def _has_callable(obj, fn):
258
+ attr = getattr(obj, fn, None)
259
+ return callable(attr)
260
+
261
+
262
+ def _zero2_merge_trainable_params(state_dict, world_size, fp32_flat_groups, zero_model_states):
263
+ param_shapes = zero_model_states[0].param_shapes
264
+
265
+ # Reconstruction protocol:
266
+ #
267
+ # XXX: document this
268
+
269
+ if debug:
270
+ for i in range(world_size):
271
+ for j in range(len(fp32_flat_groups[0])):
272
+ print(f"{FP32_FLAT_GROUPS}[{i}][{j}].shape={fp32_flat_groups[i][j].shape}")
273
+
274
+ # XXX: memory usage doubles here (zero2)
275
+ num_param_groups = len(fp32_flat_groups[0])
276
+ merged_single_partition_of_fp32_groups = []
277
+ for i in range(num_param_groups):
278
+ merged_partitions = [sd[i] for sd in fp32_flat_groups]
279
+ full_single_fp32_vector = torch.cat(merged_partitions, 0)
280
+ merged_single_partition_of_fp32_groups.append(full_single_fp32_vector)
281
+ avail_numel = sum(
282
+ [full_single_fp32_vector.numel() for full_single_fp32_vector in merged_single_partition_of_fp32_groups])
283
+
284
+ if debug:
285
+ wanted_params = sum([len(shapes) for shapes in param_shapes])
286
+ wanted_numel = sum([sum(shape.numel() for shape in shapes.values()) for shapes in param_shapes])
287
+ # not asserting if there is a mismatch due to possible padding
288
+ print(f"Have {avail_numel} numels to process.")
289
+ print(f"Need {wanted_numel} numels in {wanted_params} params.")
290
+
291
+ # params
292
+ # XXX: for huge models that can't fit into the host's RAM we will have to recode this to support
293
+ # out-of-core computing solution
294
+ total_numel = 0
295
+ total_params = 0
296
+ for shapes, full_single_fp32_vector in zip(param_shapes, merged_single_partition_of_fp32_groups):
297
+ offset = 0
298
+ avail_numel = full_single_fp32_vector.numel()
299
+ for name, shape in shapes.items():
300
+
301
+ unpartitioned_numel = shape.numel() if _has_callable(shape, 'numel') else math.prod(shape)
302
+ total_numel += unpartitioned_numel
303
+ total_params += 1
304
+
305
+ if debug:
306
+ print(f"{name} full shape: {shape} unpartitioned numel {unpartitioned_numel} ")
307
+ state_dict[name] = full_single_fp32_vector.narrow(0, offset, unpartitioned_numel).view(shape)
308
+ offset += unpartitioned_numel
309
+
310
+ # Z2 started to align to 2*world_size to improve nccl performance. Therefore both offset and
311
+ # avail_numel can differ by anywhere between 0..2*world_size. Due to two unrelated complex
312
+ # paddings performed in the code it's almost impossible to predict the exact numbers w/o the
313
+ # live optimizer object, so we are checking that the numbers are within the right range
314
+ align_to = 2 * world_size
315
+
316
+ def zero2_align(x):
317
+ return align_to * math.ceil(x / align_to)
318
+
319
+ if debug:
320
+ print(f"original offset={offset}, avail_numel={avail_numel}")
321
+
322
+ offset = zero2_align(offset)
323
+ avail_numel = zero2_align(avail_numel)
324
+
325
+ if debug:
326
+ print(f"aligned offset={offset}, avail_numel={avail_numel}")
327
+
328
+ # Sanity check
329
+ if offset != avail_numel:
330
+ raise ValueError(f"consumed {offset} numels out of {avail_numel} - something is wrong")
331
+
332
+ print(f"Reconstructed fp32 state dict with {total_params} params {total_numel} elements")
333
+
334
+
335
+ def _get_fp32_state_dict_from_zero2_checkpoint(world_size, fp32_flat_groups, zero_model_states,
336
+ exclude_frozen_parameters):
337
+ state_dict = OrderedDict()
338
+
339
+ # buffers
340
+ buffers = zero_model_states[0].buffers
341
+ state_dict.update(buffers)
342
+ if debug:
343
+ print(f"added {len(buffers)} buffers")
344
+
345
+ if not exclude_frozen_parameters:
346
+ _zero2_merge_frozen_params(state_dict, zero_model_states)
347
+
348
+ _zero2_merge_trainable_params(state_dict, world_size, fp32_flat_groups, zero_model_states)
349
+
350
+ # recover shared parameters
351
+ for pair in zero_model_states[0].shared_params:
352
+ if pair[1] in state_dict:
353
+ state_dict[pair[0]] = state_dict[pair[1]]
354
+
355
+ return state_dict
356
+
357
+
358
+ def zero3_partitioned_param_info(unpartitioned_numel, world_size):
359
+ remainder = unpartitioned_numel % world_size
360
+ padding_numel = (world_size - remainder) if remainder else 0
361
+ partitioned_numel = math.ceil(unpartitioned_numel / world_size)
362
+ return partitioned_numel, padding_numel
363
+
364
+
365
+ def _zero3_merge_frozen_params(state_dict, world_size, zero_model_states):
366
+ if zero_model_states[0].frozen_param_shapes is None or len(zero_model_states[0].frozen_param_shapes) == 0:
367
+ return
368
+
369
+ if debug:
370
+ for i in range(world_size):
371
+ num_elem = sum(s.numel() for s in zero_model_states[i].frozen_param_fragments.values())
372
+ print(f'rank {i}: {FROZEN_PARAM_SHAPES}.numel = {num_elem}')
373
+
374
+ frozen_param_shapes = zero_model_states[0].frozen_param_shapes
375
+ wanted_params = len(frozen_param_shapes)
376
+ wanted_numel = sum(s.numel() for s in frozen_param_shapes.values())
377
+ avail_numel = sum([p.numel() for p in zero_model_states[0].frozen_param_fragments.values()]) * world_size
378
+ print(f'Frozen params: Have {avail_numel} numels to process.')
379
+ print(f'Frozen params: Need {wanted_numel} numels in {wanted_params} params')
380
+
381
+ total_params = 0
382
+ total_numel = 0
383
+ for name, shape in zero_model_states[0].frozen_param_shapes.items():
384
+ total_params += 1
385
+ unpartitioned_numel = shape.numel()
386
+ total_numel += unpartitioned_numel
387
+
388
+ param_frags = tuple(model_state.frozen_param_fragments[name] for model_state in zero_model_states)
389
+ state_dict[name] = torch.cat(param_frags, 0).narrow(0, 0, unpartitioned_numel).view(shape)
390
+
391
+ partitioned_numel, partitioned_padding_numel = zero3_partitioned_param_info(unpartitioned_numel, world_size)
392
+
393
+ if debug:
394
+ print(
395
+ f"Frozen params: {total_params} {name} full shape: {shape} partition0 numel={partitioned_numel} partitioned_padding_numel={partitioned_padding_numel}"
396
+ )
397
+
398
+ print(f"Reconstructed Frozen fp32 state dict with {total_params} params {total_numel} elements")
399
+
400
+
401
+ def _zero3_merge_trainable_params(state_dict, world_size, fp32_flat_groups, zero_model_states):
402
+ param_shapes = zero_model_states[0].param_shapes
403
+ avail_numel = fp32_flat_groups[0].numel() * world_size
404
+ # Reconstruction protocol: For zero3 we need to zip the partitions together at boundary of each
405
+ # param, re-consolidating each param, while dealing with padding if any
406
+
407
+ # merge list of dicts, preserving order
408
+ param_shapes = {k: v for d in param_shapes for k, v in d.items()}
409
+
410
+ if debug:
411
+ for i in range(world_size):
412
+ print(f"{FP32_FLAT_GROUPS}[{i}].shape={fp32_flat_groups[i].shape}")
413
+
414
+ wanted_params = len(param_shapes)
415
+ wanted_numel = sum(shape.numel() for shape in param_shapes.values())
416
+ # not asserting if there is a mismatch due to possible padding
417
+ avail_numel = fp32_flat_groups[0].numel() * world_size
418
+ print(f"Trainable params: Have {avail_numel} numels to process.")
419
+ print(f"Trainable params: Need {wanted_numel} numels in {wanted_params} params.")
420
+
421
+ # params
422
+ # XXX: for huge models that can't fit into the host's RAM we will have to recode this to support
423
+ # out-of-core computing solution
424
+ offset = 0
425
+ total_numel = 0
426
+ total_params = 0
427
+ for name, shape in tqdm(param_shapes.items(), desc='Gathering Sharded Weights'):
428
+ unpartitioned_numel = shape.numel()
429
+ total_numel += unpartitioned_numel
430
+ total_params += 1
431
+ partitioned_numel, partitioned_padding_numel = zero3_partitioned_param_info(unpartitioned_numel, world_size)
432
+
433
+ if debug:
434
+ print(
435
+ f"Trainable params: {total_params} {name} full shape: {shape} partition0 numel={partitioned_numel} partitioned_padding_numel={partitioned_padding_numel}"
436
+ )
437
+
438
+ # XXX: memory usage doubles here
439
+ state_dict[name] = torch.cat(
440
+ tuple(fp32_flat_groups[i].narrow(0, offset, partitioned_numel) for i in range(world_size)),
441
+ 0).narrow(0, 0, unpartitioned_numel).view(shape)
442
+ offset += partitioned_numel
443
+
444
+ offset *= world_size
445
+
446
+ # Sanity check
447
+ if offset != avail_numel:
448
+ raise ValueError(f"consumed {offset} numels out of {avail_numel} - something is wrong")
449
+
450
+ print(f"Reconstructed Trainable fp32 state dict with {total_params} params {total_numel} elements")
451
+
452
+
453
+ def _get_fp32_state_dict_from_zero3_checkpoint(world_size, fp32_flat_groups, zero_model_states,
454
+ exclude_frozen_parameters):
455
+ state_dict = OrderedDict()
456
+
457
+ # buffers
458
+ buffers = zero_model_states[0].buffers
459
+ state_dict.update(buffers)
460
+ if debug:
461
+ print(f"added {len(buffers)} buffers")
462
+
463
+ if not exclude_frozen_parameters:
464
+ _zero3_merge_frozen_params(state_dict, world_size, zero_model_states)
465
+
466
+ _zero3_merge_trainable_params(state_dict, world_size, fp32_flat_groups, zero_model_states)
467
+
468
+ # recover shared parameters
469
+ for pair in zero_model_states[0].shared_params:
470
+ if pair[1] in state_dict:
471
+ state_dict[pair[0]] = state_dict[pair[1]]
472
+
473
+ return state_dict
474
+
475
+
476
+ def get_fp32_state_dict_from_zero_checkpoint(checkpoint_dir, tag=None, exclude_frozen_parameters=False):
477
+ """
478
+ Convert ZeRO 2 or 3 checkpoint into a single fp32 consolidated state_dict that can be loaded with
479
+ ``load_state_dict()`` and used for training without DeepSpeed or shared with others, for example
480
+ via a model hub.
481
+
482
+ Args:
483
+ - ``checkpoint_dir``: path to the desired checkpoint folder
484
+ - ``tag``: checkpoint tag used as a unique identifier for checkpoint. If not provided will attempt to load tag in 'latest' file. e.g., ``global_step14``
485
+ - ``exclude_frozen_parameters``: exclude frozen parameters
486
+
487
+ Returns:
488
+ - pytorch ``state_dict``
489
+
490
+ Note: this approach may not work if your application doesn't have sufficient free CPU memory and
491
+ you may need to use the offline approach using the ``zero_to_fp32.py`` script that is saved with
492
+ the checkpoint.
493
+
494
+ A typical usage might be ::
495
+
496
+ from deepspeed.utils.zero_to_fp32 import get_fp32_state_dict_from_zero_checkpoint
497
+ # do the training and checkpoint saving
498
+ state_dict = get_fp32_state_dict_from_zero_checkpoint(checkpoint_dir) # already on cpu
499
+ model = model.cpu() # move to cpu
500
+ model.load_state_dict(state_dict)
501
+ # submit to model hub or save the model to share with others
502
+
503
+ In this example the ``model`` will no longer be usable in the deepspeed context of the same
504
+ application. i.e. you will need to re-initialize the deepspeed engine, since
505
+ ``model.load_state_dict(state_dict)`` will remove all the deepspeed magic from it.
506
+
507
+ If you want it all done for you, use ``load_state_dict_from_zero_checkpoint`` instead.
508
+
509
+ """
510
+ if tag is None:
511
+ latest_path = os.path.join(checkpoint_dir, 'latest')
512
+ if os.path.isfile(latest_path):
513
+ with open(latest_path, 'r') as fd:
514
+ tag = fd.read().strip()
515
+ else:
516
+ raise ValueError(f"Unable to find 'latest' file at {latest_path}")
517
+
518
+ ds_checkpoint_dir = os.path.join(checkpoint_dir, tag)
519
+
520
+ if not os.path.isdir(ds_checkpoint_dir):
521
+ raise FileNotFoundError(f"Directory '{ds_checkpoint_dir}' doesn't exist")
522
+
523
+ return _get_fp32_state_dict_from_zero_checkpoint(ds_checkpoint_dir, exclude_frozen_parameters)
524
+
525
+
526
+ def convert_zero_checkpoint_to_fp32_state_dict(checkpoint_dir,
527
+ output_dir,
528
+ max_shard_size="5GB",
529
+ safe_serialization=False,
530
+ tag=None,
531
+ exclude_frozen_parameters=False):
532
+ """
533
+ Convert ZeRO 2 or 3 checkpoint into a single fp32 consolidated ``state_dict`` file that can be
534
+ loaded with ``torch.load(file)`` + ``load_state_dict()`` and used for training without DeepSpeed.
535
+
536
+ Args:
537
+ - ``checkpoint_dir``: path to the desired checkpoint folder. (one that contains the tag-folder, like ``global_step14``)
538
+ - ``output_dir``: directory to the pytorch fp32 state_dict output files
539
+ - ``max_shard_size``: the maximum size for a checkpoint before being sharded, default value is 5GB
540
+ - ``safe_serialization``: whether to save the model using `safetensors` or the traditional PyTorch way (that uses `pickle`).
541
+ - ``tag``: checkpoint tag used as a unique identifier for checkpoint. If not provided will attempt to load tag in the file named ``latest`` in the checkpoint folder, e.g., ``global_step14``
542
+ - ``exclude_frozen_parameters``: exclude frozen parameters
543
+ """
544
+ # Dependency pre-check
545
+ if safe_serialization:
546
+ try:
547
+ from safetensors.torch import save_file
548
+ except ImportError:
549
+ print('If you want to use `safe_serialization`, please `pip install safetensors`')
550
+ raise
551
+ if max_shard_size is not None:
552
+ try:
553
+ from huggingface_hub import split_torch_state_dict_into_shards
554
+ except ImportError:
555
+ print('If you want to use `max_shard_size`, please `pip install huggingface_hub`')
556
+ raise
557
+
558
+ # Convert zero checkpoint to state_dict
559
+ state_dict = get_fp32_state_dict_from_zero_checkpoint(checkpoint_dir, tag, exclude_frozen_parameters)
560
+
561
+ # Shard the model if it is too big.
562
+ weights_name = "model.safetensors" if safe_serialization else "pytorch_model.bin"
563
+ if max_shard_size is not None:
564
+ filename_pattern = weights_name.replace(".bin", "{suffix}.bin").replace(".safetensors", "{suffix}.safetensors")
565
+ state_dict_split = split_torch_state_dict_into_shards(state_dict,
566
+ filename_pattern=filename_pattern,
567
+ max_shard_size=max_shard_size)
568
+ else:
569
+ from collections import namedtuple
570
+ StateDictSplit = namedtuple("StateDictSplit", ["is_sharded", "filename_to_tensors"])
571
+ state_dict_split = StateDictSplit(is_sharded=False,
572
+ filename_to_tensors={weights_name: list(state_dict.keys())})
573
+
574
+ # Save the model
575
+ filename_to_tensors = state_dict_split.filename_to_tensors.items()
576
+ for shard_file, tensors in tqdm(filename_to_tensors, desc="Saving checkpoint shards"):
577
+ shard = {tensor: state_dict[tensor].contiguous() for tensor in tensors}
578
+ output_path = os.path.join(output_dir, shard_file)
579
+ if safe_serialization:
580
+ save_file(shard, output_path, metadata={"format": "pt"})
581
+ else:
582
+ torch.save(shard, output_path)
583
+
584
+ # Save index if sharded
585
+ if state_dict_split.is_sharded:
586
+ index = {
587
+ "metadata": state_dict_split.metadata,
588
+ "weight_map": state_dict_split.tensor_to_filename,
589
+ }
590
+ save_index_file = "model.safetensors.index.json" if safe_serialization else "pytorch_model.bin.index.json"
591
+ save_index_file = os.path.join(output_dir, save_index_file)
592
+ with open(save_index_file, "w", encoding="utf-8") as f:
593
+ content = json.dumps(index, indent=2, sort_keys=True) + "\n"
594
+ f.write(content)
595
+
596
+
597
+ def load_state_dict_from_zero_checkpoint(model, checkpoint_dir, tag=None):
598
+ """
599
+ 1. Put the provided model to cpu
600
+ 2. Convert ZeRO 2 or 3 checkpoint into a single fp32 consolidated ``state_dict``
601
+ 3. Load it into the provided model
602
+
603
+ Args:
604
+ - ``model``: the model object to update
605
+ - ``checkpoint_dir``: path to the desired checkpoint folder. (one that contains the tag-folder, like ``global_step14``)
606
+ - ``tag``: checkpoint tag used as a unique identifier for checkpoint. If not provided will attempt to load tag in the file named ``latest`` in the checkpoint folder, e.g., ``global_step14``
607
+
608
+ Returns:
609
+ - ``model`: modified model
610
+
611
+ Make sure you have plenty of CPU memory available before you call this function. If you don't
612
+ have enough use the ``zero_to_fp32.py`` utility to do the conversion. You will find it
613
+ conveniently placed for you in the checkpoint folder.
614
+
615
+ A typical usage might be ::
616
+
617
+ from deepspeed.utils.zero_to_fp32 import load_state_dict_from_zero_checkpoint
618
+ model = load_state_dict_from_zero_checkpoint(trainer.model, checkpoint_dir)
619
+ # submit to model hub or save the model to share with others
620
+
621
+ Note, that once this was run, the ``model`` will no longer be usable in the deepspeed context
622
+ of the same application. i.e. you will need to re-initialize the deepspeed engine, since
623
+ ``model.load_state_dict(state_dict)`` will remove all the deepspeed magic from it.
624
+
625
+ """
626
+ logger.info(f"Extracting fp32 weights")
627
+ state_dict = get_fp32_state_dict_from_zero_checkpoint(checkpoint_dir, tag)
628
+
629
+ logger.info(f"Overwriting model with fp32 weights")
630
+ model = model.cpu()
631
+ model.load_state_dict(state_dict, strict=False)
632
+
633
+ return model
634
+
635
+
636
+ if __name__ == "__main__":
637
+ parser = argparse.ArgumentParser()
638
+ parser.add_argument("checkpoint_dir",
639
+ type=str,
640
+ help="path to the desired checkpoint folder, e.g., path/checkpoint-12")
641
+ parser.add_argument("output_dir",
642
+ type=str,
643
+ help="directory to the pytorch fp32 state_dict output files"
644
+ "(e.g. path/checkpoint-12-output/)")
645
+ parser.add_argument(
646
+ "--max_shard_size",
647
+ type=str,
648
+ default="5GB",
649
+ help="The maximum size for a checkpoint before being sharded. Checkpoints shard will then be each of size"
650
+ "lower than this size. If expressed as a string, needs to be digits followed by a unit (like `5MB`"
651
+ "We default it to 5GB in order for models to be able to run easily on free-tier google colab instances"
652
+ "without CPU OOM issues.")
653
+ parser.add_argument(
654
+ "--safe_serialization",
655
+ default=False,
656
+ action='store_true',
657
+ help="Whether to save the model using `safetensors` or the traditional PyTorch way (that uses `pickle`).")
658
+ parser.add_argument("-t",
659
+ "--tag",
660
+ type=str,
661
+ default=None,
662
+ help="checkpoint tag used as a unique identifier for checkpoint. e.g., global_step1")
663
+ parser.add_argument("--exclude_frozen_parameters", action='store_true', help="exclude frozen parameters")
664
+ parser.add_argument("-d", "--debug", action='store_true', help="enable debug")
665
+ args = parser.parse_args()
666
+
667
+ debug = args.debug
668
+
669
+ convert_zero_checkpoint_to_fp32_state_dict(args.checkpoint_dir,
670
+ args.output_dir,
671
+ max_shard_size=args.max_shard_size,
672
+ safe_serialization=args.safe_serialization,
673
+ tag=args.tag,
674
+ exclude_frozen_parameters=args.exclude_frozen_parameters)