ziansu commited on
Commit
62fca3f
·
verified ·
1 Parent(s): 343332f

Training in progress, step 750, checkpoint

Browse files
checkpoint-750/README.md ADDED
@@ -0,0 +1,202 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ base_model: microsoft/Phi-3-mini-4k-instruct
3
+ library_name: peft
4
+ ---
5
+
6
+ # Model Card for Model ID
7
+
8
+ <!-- Provide a quick summary of what the model is/does. -->
9
+
10
+
11
+
12
+ ## Model Details
13
+
14
+ ### Model Description
15
+
16
+ <!-- Provide a longer summary of what this model is. -->
17
+
18
+
19
+
20
+ - **Developed by:** [More Information Needed]
21
+ - **Funded by [optional]:** [More Information Needed]
22
+ - **Shared by [optional]:** [More Information Needed]
23
+ - **Model type:** [More Information Needed]
24
+ - **Language(s) (NLP):** [More Information Needed]
25
+ - **License:** [More Information Needed]
26
+ - **Finetuned from model [optional]:** [More Information Needed]
27
+
28
+ ### Model Sources [optional]
29
+
30
+ <!-- Provide the basic links for the model. -->
31
+
32
+ - **Repository:** [More Information Needed]
33
+ - **Paper [optional]:** [More Information Needed]
34
+ - **Demo [optional]:** [More Information Needed]
35
+
36
+ ## Uses
37
+
38
+ <!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. -->
39
+
40
+ ### Direct Use
41
+
42
+ <!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. -->
43
+
44
+ [More Information Needed]
45
+
46
+ ### Downstream Use [optional]
47
+
48
+ <!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app -->
49
+
50
+ [More Information Needed]
51
+
52
+ ### Out-of-Scope Use
53
+
54
+ <!-- This section addresses misuse, malicious use, and uses that the model will not work well for. -->
55
+
56
+ [More Information Needed]
57
+
58
+ ## Bias, Risks, and Limitations
59
+
60
+ <!-- This section is meant to convey both technical and sociotechnical limitations. -->
61
+
62
+ [More Information Needed]
63
+
64
+ ### Recommendations
65
+
66
+ <!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. -->
67
+
68
+ Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations.
69
+
70
+ ## How to Get Started with the Model
71
+
72
+ Use the code below to get started with the model.
73
+
74
+ [More Information Needed]
75
+
76
+ ## Training Details
77
+
78
+ ### Training Data
79
+
80
+ <!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. -->
81
+
82
+ [More Information Needed]
83
+
84
+ ### Training Procedure
85
+
86
+ <!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. -->
87
+
88
+ #### Preprocessing [optional]
89
+
90
+ [More Information Needed]
91
+
92
+
93
+ #### Training Hyperparameters
94
+
95
+ - **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision -->
96
+
97
+ #### Speeds, Sizes, Times [optional]
98
+
99
+ <!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. -->
100
+
101
+ [More Information Needed]
102
+
103
+ ## Evaluation
104
+
105
+ <!-- This section describes the evaluation protocols and provides the results. -->
106
+
107
+ ### Testing Data, Factors & Metrics
108
+
109
+ #### Testing Data
110
+
111
+ <!-- This should link to a Dataset Card if possible. -->
112
+
113
+ [More Information Needed]
114
+
115
+ #### Factors
116
+
117
+ <!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. -->
118
+
119
+ [More Information Needed]
120
+
121
+ #### Metrics
122
+
123
+ <!-- These are the evaluation metrics being used, ideally with a description of why. -->
124
+
125
+ [More Information Needed]
126
+
127
+ ### Results
128
+
129
+ [More Information Needed]
130
+
131
+ #### Summary
132
+
133
+
134
+
135
+ ## Model Examination [optional]
136
+
137
+ <!-- Relevant interpretability work for the model goes here -->
138
+
139
+ [More Information Needed]
140
+
141
+ ## Environmental Impact
142
+
143
+ <!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly -->
144
+
145
+ Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700).
146
+
147
+ - **Hardware Type:** [More Information Needed]
148
+ - **Hours used:** [More Information Needed]
149
+ - **Cloud Provider:** [More Information Needed]
150
+ - **Compute Region:** [More Information Needed]
151
+ - **Carbon Emitted:** [More Information Needed]
152
+
153
+ ## Technical Specifications [optional]
154
+
155
+ ### Model Architecture and Objective
156
+
157
+ [More Information Needed]
158
+
159
+ ### Compute Infrastructure
160
+
161
+ [More Information Needed]
162
+
163
+ #### Hardware
164
+
165
+ [More Information Needed]
166
+
167
+ #### Software
168
+
169
+ [More Information Needed]
170
+
171
+ ## Citation [optional]
172
+
173
+ <!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. -->
174
+
175
+ **BibTeX:**
176
+
177
+ [More Information Needed]
178
+
179
+ **APA:**
180
+
181
+ [More Information Needed]
182
+
183
+ ## Glossary [optional]
184
+
185
+ <!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. -->
186
+
187
+ [More Information Needed]
188
+
189
+ ## More Information [optional]
190
+
191
+ [More Information Needed]
192
+
193
+ ## Model Card Authors [optional]
194
+
195
+ [More Information Needed]
196
+
197
+ ## Model Card Contact
198
+
199
+ [More Information Needed]
200
+ ### Framework versions
201
+
202
+ - PEFT 0.14.0
checkpoint-750/adapter_config.json ADDED
@@ -0,0 +1,34 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "alpha_pattern": {},
3
+ "auto_mapping": null,
4
+ "base_model_name_or_path": "microsoft/Phi-3-mini-4k-instruct",
5
+ "bias": "none",
6
+ "eva_config": null,
7
+ "exclude_modules": null,
8
+ "fan_in_fan_out": false,
9
+ "inference_mode": true,
10
+ "init_lora_weights": true,
11
+ "layer_replication": null,
12
+ "layers_pattern": null,
13
+ "layers_to_transform": null,
14
+ "loftq_config": {},
15
+ "lora_alpha": 16,
16
+ "lora_bias": false,
17
+ "lora_dropout": 0.0,
18
+ "megatron_config": null,
19
+ "megatron_core": "megatron.core",
20
+ "modules_to_save": null,
21
+ "peft_type": "LORA",
22
+ "r": 8,
23
+ "rank_pattern": {},
24
+ "revision": null,
25
+ "target_modules": [
26
+ "down_proj",
27
+ "qkv_proj",
28
+ "gate_up_proj",
29
+ "o_proj"
30
+ ],
31
+ "task_type": "CAUSAL_LM",
32
+ "use_dora": false,
33
+ "use_rslora": false
34
+ }
checkpoint-750/adapter_model.safetensors ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:633361ccdfdd139aa9f945143ab1df72e94551665506ce7bd77f575842b21b87
3
+ size 25200088
checkpoint-750/global_step750/bf16_zero_pp_rank_0_mp_rank_00_optim_states.pt ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:1bc74232bd3cd2131ce636b0359bb23a28f33fa9aaed9d217bf805d1722da061
3
+ size 18881328
checkpoint-750/global_step750/bf16_zero_pp_rank_1_mp_rank_00_optim_states.pt ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:64496283c8af94a796b2f6cc618470fa5b90ddd0a7f7f566ba364b682a7fe044
3
+ size 18881328
checkpoint-750/global_step750/bf16_zero_pp_rank_2_mp_rank_00_optim_states.pt ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:96827a5c46c8ecb8e87d9ba51b083dab6f0b0f5b24a2b4dc34e5738856d3e334
3
+ size 18881328
checkpoint-750/global_step750/bf16_zero_pp_rank_3_mp_rank_00_optim_states.pt ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:d98f07598e0c9847a1826dc3c7c63f8079ceb1072aa91882f71744f36aad484f
3
+ size 18881392
checkpoint-750/global_step750/bf16_zero_pp_rank_4_mp_rank_00_optim_states.pt ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:dd6acad15198c4c679af14819ddc21b14bb3c57c450899a1a3788258ec75ce26
3
+ size 18881392
checkpoint-750/global_step750/bf16_zero_pp_rank_5_mp_rank_00_optim_states.pt ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:d91c3a1036352d5212c22958272a8e2577a1fc06ad5ac370554bf3c256314194
3
+ size 18881392
checkpoint-750/global_step750/bf16_zero_pp_rank_6_mp_rank_00_optim_states.pt ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:23534af77aff44e2bfdfcaeff1c4e51c7e78f8deae6e4aec096626e00744f00b
3
+ size 18881392
checkpoint-750/global_step750/bf16_zero_pp_rank_7_mp_rank_00_optim_states.pt ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:f8650496709fa9fa982538529dcc2c95a176414e5602d76086f60f6e82f8de43
3
+ size 18881392
checkpoint-750/global_step750/mp_rank_00_model_states.pt ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:8f90f23a5b27dfe645b16988ff0567af385ed05375db26793bbd21034e297fd9
3
+ size 25379244
checkpoint-750/latest ADDED
@@ -0,0 +1 @@
 
 
1
+ global_step750
checkpoint-750/rng_state_0.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:39d0a42a76c6856b42516358f397705cff8f5ae2210de23f6abc8fc7d370ce43
3
+ size 15984
checkpoint-750/rng_state_1.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:c79d39762bf88c59ea58ab8c192f4d9721ab6eba78debc69a369654d4199af50
3
+ size 15984
checkpoint-750/rng_state_2.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:1426a2458db12639f98377335a1109abade08a448981fb41c315ef1f9fd4191e
3
+ size 15984
checkpoint-750/rng_state_3.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:e598407075fbe89ea2094160f92052415ad3b0b80d125438201859b9875d537b
3
+ size 15984
checkpoint-750/rng_state_4.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:437e8f540f343ec9a874078e652ba30d02c2d12e3039d8092e96942ade74967b
3
+ size 15984
checkpoint-750/rng_state_5.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:23cfb7770b02ea62450b4853818ad587c09df566939a04e941091111cc9b7cf2
3
+ size 15984
checkpoint-750/rng_state_6.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:54fe581e399def26af9ab0920fdea64c37d1eed5ad5a4b3fec55e45525aba99f
3
+ size 15984
checkpoint-750/rng_state_7.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:491793f3baa6e0a6171458158bd6f4cce55a8696d0c0e279c19b74fbf532973f
3
+ size 15984
checkpoint-750/scheduler.pt ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:8befafa70cc542e0acab7097117df36aab3038e24f45897d4d12cf6f78e0085f
3
+ size 1064
checkpoint-750/special_tokens_map.json ADDED
@@ -0,0 +1,30 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "bos_token": {
3
+ "content": "<s>",
4
+ "lstrip": false,
5
+ "normalized": false,
6
+ "rstrip": false,
7
+ "single_word": false
8
+ },
9
+ "eos_token": {
10
+ "content": "<|end|>",
11
+ "lstrip": false,
12
+ "normalized": false,
13
+ "rstrip": false,
14
+ "single_word": false
15
+ },
16
+ "pad_token": {
17
+ "content": "<|endoftext|>",
18
+ "lstrip": false,
19
+ "normalized": false,
20
+ "rstrip": false,
21
+ "single_word": false
22
+ },
23
+ "unk_token": {
24
+ "content": "<unk>",
25
+ "lstrip": false,
26
+ "normalized": false,
27
+ "rstrip": false,
28
+ "single_word": false
29
+ }
30
+ }
checkpoint-750/tokenizer.json ADDED
The diff for this file is too large to render. See raw diff
 
checkpoint-750/tokenizer_config.json ADDED
@@ -0,0 +1,133 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "add_bos_token": false,
3
+ "add_eos_token": false,
4
+ "add_prefix_space": null,
5
+ "added_tokens_decoder": {
6
+ "0": {
7
+ "content": "<unk>",
8
+ "lstrip": false,
9
+ "normalized": false,
10
+ "rstrip": false,
11
+ "single_word": false,
12
+ "special": true
13
+ },
14
+ "1": {
15
+ "content": "<s>",
16
+ "lstrip": false,
17
+ "normalized": false,
18
+ "rstrip": false,
19
+ "single_word": false,
20
+ "special": true
21
+ },
22
+ "2": {
23
+ "content": "</s>",
24
+ "lstrip": false,
25
+ "normalized": false,
26
+ "rstrip": true,
27
+ "single_word": false,
28
+ "special": false
29
+ },
30
+ "32000": {
31
+ "content": "<|endoftext|>",
32
+ "lstrip": false,
33
+ "normalized": false,
34
+ "rstrip": false,
35
+ "single_word": false,
36
+ "special": true
37
+ },
38
+ "32001": {
39
+ "content": "<|assistant|>",
40
+ "lstrip": false,
41
+ "normalized": false,
42
+ "rstrip": true,
43
+ "single_word": false,
44
+ "special": true
45
+ },
46
+ "32002": {
47
+ "content": "<|placeholder1|>",
48
+ "lstrip": false,
49
+ "normalized": false,
50
+ "rstrip": true,
51
+ "single_word": false,
52
+ "special": true
53
+ },
54
+ "32003": {
55
+ "content": "<|placeholder2|>",
56
+ "lstrip": false,
57
+ "normalized": false,
58
+ "rstrip": true,
59
+ "single_word": false,
60
+ "special": true
61
+ },
62
+ "32004": {
63
+ "content": "<|placeholder3|>",
64
+ "lstrip": false,
65
+ "normalized": false,
66
+ "rstrip": true,
67
+ "single_word": false,
68
+ "special": true
69
+ },
70
+ "32005": {
71
+ "content": "<|placeholder4|>",
72
+ "lstrip": false,
73
+ "normalized": false,
74
+ "rstrip": true,
75
+ "single_word": false,
76
+ "special": true
77
+ },
78
+ "32006": {
79
+ "content": "<|system|>",
80
+ "lstrip": false,
81
+ "normalized": false,
82
+ "rstrip": true,
83
+ "single_word": false,
84
+ "special": true
85
+ },
86
+ "32007": {
87
+ "content": "<|end|>",
88
+ "lstrip": false,
89
+ "normalized": false,
90
+ "rstrip": false,
91
+ "single_word": false,
92
+ "special": true
93
+ },
94
+ "32008": {
95
+ "content": "<|placeholder5|>",
96
+ "lstrip": false,
97
+ "normalized": false,
98
+ "rstrip": true,
99
+ "single_word": false,
100
+ "special": true
101
+ },
102
+ "32009": {
103
+ "content": "<|placeholder6|>",
104
+ "lstrip": false,
105
+ "normalized": false,
106
+ "rstrip": true,
107
+ "single_word": false,
108
+ "special": true
109
+ },
110
+ "32010": {
111
+ "content": "<|user|>",
112
+ "lstrip": false,
113
+ "normalized": false,
114
+ "rstrip": true,
115
+ "single_word": false,
116
+ "special": true
117
+ }
118
+ },
119
+ "bos_token": "<s>",
120
+ "chat_template": "{% set system_message = 'You are a helpful AI assistant.' %}{% if messages[0]['role'] == 'system' %}{% set system_message = messages[0]['content'] %}{% endif %}{% if system_message is defined %}{{ '<s>' + '<|system|>\n' + system_message + '<|end|>\n' }}{% endif %}{% for message in messages %}{% set content = message['content'] %}{% if message['role'] == 'user' %}{{ '<|user|>\n' + content + '<|end|>\n<|assistant|>\n' }}{% elif message['role'] == 'assistant' %}{{ content + '<|end|>' + '\n' }}{% endif %}{% endfor %}",
121
+ "clean_up_tokenization_spaces": false,
122
+ "eos_token": "<|end|>",
123
+ "extra_special_tokens": {},
124
+ "legacy": false,
125
+ "model_max_length": 4096,
126
+ "pad_token": "<|endoftext|>",
127
+ "padding_side": "right",
128
+ "sp_model_kwargs": {},
129
+ "split_special_tokens": false,
130
+ "tokenizer_class": "LlamaTokenizer",
131
+ "unk_token": "<unk>",
132
+ "use_default_system_prompt": false
133
+ }
checkpoint-750/trainer_state.json ADDED
@@ -0,0 +1,1398 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "best_metric": null,
3
+ "best_model_checkpoint": null,
4
+ "epoch": 0.6660746003552398,
5
+ "eval_steps": 50,
6
+ "global_step": 750,
7
+ "is_hyper_param_search": false,
8
+ "is_local_process_zero": true,
9
+ "is_world_process_zero": true,
10
+ "log_history": [
11
+ {
12
+ "epoch": 0.008880994671403197,
13
+ "grad_norm": 0.04571289196610451,
14
+ "learning_rate": 4.999451708687114e-06,
15
+ "logits/chosen": 14.56671142578125,
16
+ "logits/rejected": 15.112574577331543,
17
+ "logps/chosen": -0.26506316661834717,
18
+ "logps/rejected": -0.3439488410949707,
19
+ "loss": 0.9267,
20
+ "rewards/accuracies": 0.574999988079071,
21
+ "rewards/chosen": -0.39759472012519836,
22
+ "rewards/margins": 0.11832849681377411,
23
+ "rewards/rejected": -0.5159232020378113,
24
+ "step": 10
25
+ },
26
+ {
27
+ "epoch": 0.017761989342806393,
28
+ "grad_norm": 0.0512714721262455,
29
+ "learning_rate": 4.997807075247147e-06,
30
+ "logits/chosen": 14.376543045043945,
31
+ "logits/rejected": 14.862703323364258,
32
+ "logps/chosen": -0.2708089351654053,
33
+ "logps/rejected": -0.32412824034690857,
34
+ "loss": 0.936,
35
+ "rewards/accuracies": 0.5,
36
+ "rewards/chosen": -0.4062133729457855,
37
+ "rewards/margins": 0.07997899502515793,
38
+ "rewards/rejected": -0.4861923158168793,
39
+ "step": 20
40
+ },
41
+ {
42
+ "epoch": 0.02664298401420959,
43
+ "grad_norm": 0.058383647352457047,
44
+ "learning_rate": 4.9950668210706795e-06,
45
+ "logits/chosen": 14.208717346191406,
46
+ "logits/rejected": 15.370651245117188,
47
+ "logps/chosen": -0.28206294775009155,
48
+ "logps/rejected": -0.38387423753738403,
49
+ "loss": 0.9215,
50
+ "rewards/accuracies": 0.625,
51
+ "rewards/chosen": -0.42309442162513733,
52
+ "rewards/margins": 0.15271687507629395,
53
+ "rewards/rejected": -0.5758112668991089,
54
+ "step": 30
55
+ },
56
+ {
57
+ "epoch": 0.035523978685612786,
58
+ "grad_norm": 0.06262075155973434,
59
+ "learning_rate": 4.9912321481237616e-06,
60
+ "logits/chosen": 14.768765449523926,
61
+ "logits/rejected": 15.169331550598145,
62
+ "logps/chosen": -0.27857059240341187,
63
+ "logps/rejected": -0.3388269543647766,
64
+ "loss": 0.9386,
65
+ "rewards/accuracies": 0.5,
66
+ "rewards/chosen": -0.4178559184074402,
67
+ "rewards/margins": 0.09038447588682175,
68
+ "rewards/rejected": -0.5082404017448425,
69
+ "step": 40
70
+ },
71
+ {
72
+ "epoch": 0.04440497335701599,
73
+ "grad_norm": 0.06259036809206009,
74
+ "learning_rate": 4.986304738420684e-06,
75
+ "logits/chosen": 14.950456619262695,
76
+ "logits/rejected": 15.232122421264648,
77
+ "logps/chosen": -0.2961367070674896,
78
+ "logps/rejected": -0.3322262465953827,
79
+ "loss": 0.9317,
80
+ "rewards/accuracies": 0.44999998807907104,
81
+ "rewards/chosen": -0.44420504570007324,
82
+ "rewards/margins": 0.054134320467710495,
83
+ "rewards/rejected": -0.4983394145965576,
84
+ "step": 50
85
+ },
86
+ {
87
+ "epoch": 0.04440497335701599,
88
+ "eval_logits/chosen": 14.56529426574707,
89
+ "eval_logits/rejected": 14.895020484924316,
90
+ "eval_logps/chosen": -0.2806546986103058,
91
+ "eval_logps/rejected": -0.3486972451210022,
92
+ "eval_loss": 0.9381324052810669,
93
+ "eval_rewards/accuracies": 0.5274725556373596,
94
+ "eval_rewards/chosen": -0.4209820330142975,
95
+ "eval_rewards/margins": 0.10206379741430283,
96
+ "eval_rewards/rejected": -0.5230458974838257,
97
+ "eval_runtime": 25.2574,
98
+ "eval_samples_per_second": 28.823,
99
+ "eval_steps_per_second": 3.603,
100
+ "step": 50
101
+ },
102
+ {
103
+ "epoch": 0.05328596802841918,
104
+ "grad_norm": 0.07301533967256546,
105
+ "learning_rate": 4.980286753286196e-06,
106
+ "logits/chosen": 14.195574760437012,
107
+ "logits/rejected": 15.173194885253906,
108
+ "logps/chosen": -0.2693648636341095,
109
+ "logps/rejected": -0.33997970819473267,
110
+ "loss": 0.9319,
111
+ "rewards/accuracies": 0.512499988079071,
112
+ "rewards/chosen": -0.40404725074768066,
113
+ "rewards/margins": 0.10592226684093475,
114
+ "rewards/rejected": -0.5099694728851318,
115
+ "step": 60
116
+ },
117
+ {
118
+ "epoch": 0.06216696269982238,
119
+ "grad_norm": 0.0659889206290245,
120
+ "learning_rate": 4.973180832407471e-06,
121
+ "logits/chosen": 14.910173416137695,
122
+ "logits/rejected": 15.361429214477539,
123
+ "logps/chosen": -0.28456225991249084,
124
+ "logps/rejected": -0.3702812194824219,
125
+ "loss": 0.9185,
126
+ "rewards/accuracies": 0.625,
127
+ "rewards/chosen": -0.42684346437454224,
128
+ "rewards/margins": 0.12857840955257416,
129
+ "rewards/rejected": -0.5554218292236328,
130
+ "step": 70
131
+ },
132
+ {
133
+ "epoch": 0.07104795737122557,
134
+ "grad_norm": 0.05815625935792923,
135
+ "learning_rate": 4.964990092676263e-06,
136
+ "logits/chosen": 14.407182693481445,
137
+ "logits/rejected": 14.948204040527344,
138
+ "logps/chosen": -0.292889267206192,
139
+ "logps/rejected": -0.3381648063659668,
140
+ "loss": 0.9388,
141
+ "rewards/accuracies": 0.5375000238418579,
142
+ "rewards/chosen": -0.43933385610580444,
143
+ "rewards/margins": 0.06791339069604874,
144
+ "rewards/rejected": -0.5072472095489502,
145
+ "step": 80
146
+ },
147
+ {
148
+ "epoch": 0.07992895204262877,
149
+ "grad_norm": 0.06627190113067627,
150
+ "learning_rate": 4.9557181268217225e-06,
151
+ "logits/chosen": 14.622471809387207,
152
+ "logits/rejected": 15.167770385742188,
153
+ "logps/chosen": -0.28155821561813354,
154
+ "logps/rejected": -0.33633899688720703,
155
+ "loss": 0.9256,
156
+ "rewards/accuracies": 0.5375000238418579,
157
+ "rewards/chosen": -0.4223373532295227,
158
+ "rewards/margins": 0.08217118680477142,
159
+ "rewards/rejected": -0.5045084953308105,
160
+ "step": 90
161
+ },
162
+ {
163
+ "epoch": 0.08880994671403197,
164
+ "grad_norm": 0.0724545568227768,
165
+ "learning_rate": 4.9453690018345144e-06,
166
+ "logits/chosen": 14.289724349975586,
167
+ "logits/rejected": 14.882037162780762,
168
+ "logps/chosen": -0.2791440486907959,
169
+ "logps/rejected": -0.35329627990722656,
170
+ "loss": 0.9374,
171
+ "rewards/accuracies": 0.5375000238418579,
172
+ "rewards/chosen": -0.41871610283851624,
173
+ "rewards/margins": 0.11122839152812958,
174
+ "rewards/rejected": -0.5299445390701294,
175
+ "step": 100
176
+ },
177
+ {
178
+ "epoch": 0.08880994671403197,
179
+ "eval_logits/chosen": 14.337930679321289,
180
+ "eval_logits/rejected": 14.689269065856934,
181
+ "eval_logps/chosen": -0.2726942300796509,
182
+ "eval_logps/rejected": -0.34668418765068054,
183
+ "eval_loss": 0.9302808046340942,
184
+ "eval_rewards/accuracies": 0.5384615659713745,
185
+ "eval_rewards/chosen": -0.40904131531715393,
186
+ "eval_rewards/margins": 0.11098497360944748,
187
+ "eval_rewards/rejected": -0.5200263261795044,
188
+ "eval_runtime": 25.2585,
189
+ "eval_samples_per_second": 28.822,
190
+ "eval_steps_per_second": 3.603,
191
+ "step": 100
192
+ },
193
+ {
194
+ "epoch": 0.09769094138543517,
195
+ "grad_norm": 0.08156246691942215,
196
+ "learning_rate": 4.933947257182901e-06,
197
+ "logits/chosen": 14.499124526977539,
198
+ "logits/rejected": 14.916313171386719,
199
+ "logps/chosen": -0.2798352837562561,
200
+ "logps/rejected": -0.3477734327316284,
201
+ "loss": 0.9243,
202
+ "rewards/accuracies": 0.5625,
203
+ "rewards/chosen": -0.4197530150413513,
204
+ "rewards/margins": 0.10190720856189728,
205
+ "rewards/rejected": -0.5216602087020874,
206
+ "step": 110
207
+ },
208
+ {
209
+ "epoch": 0.10657193605683836,
210
+ "grad_norm": 0.08161844313144684,
211
+ "learning_rate": 4.921457902821578e-06,
212
+ "logits/chosen": 13.595013618469238,
213
+ "logits/rejected": 14.390353202819824,
214
+ "logps/chosen": -0.26682502031326294,
215
+ "logps/rejected": -0.3336995542049408,
216
+ "loss": 0.9123,
217
+ "rewards/accuracies": 0.5874999761581421,
218
+ "rewards/chosen": -0.400237500667572,
219
+ "rewards/margins": 0.10031183809041977,
220
+ "rewards/rejected": -0.5005493760108948,
221
+ "step": 120
222
+ },
223
+ {
224
+ "epoch": 0.11545293072824156,
225
+ "grad_norm": 0.28624778985977173,
226
+ "learning_rate": 4.907906416994146e-06,
227
+ "logits/chosen": 13.711044311523438,
228
+ "logits/rejected": 14.558542251586914,
229
+ "logps/chosen": -0.27874043583869934,
230
+ "logps/rejected": -0.3582325279712677,
231
+ "loss": 0.9163,
232
+ "rewards/accuracies": 0.5375000238418579,
233
+ "rewards/chosen": -0.41811060905456543,
234
+ "rewards/margins": 0.11923813819885254,
235
+ "rewards/rejected": -0.537348747253418,
236
+ "step": 130
237
+ },
238
+ {
239
+ "epoch": 0.12433392539964476,
240
+ "grad_norm": 0.10971464216709137,
241
+ "learning_rate": 4.893298743830168e-06,
242
+ "logits/chosen": 14.18798828125,
243
+ "logits/rejected": 14.993026733398438,
244
+ "logps/chosen": -0.2750400900840759,
245
+ "logps/rejected": -0.39451608061790466,
246
+ "loss": 0.9098,
247
+ "rewards/accuracies": 0.574999988079071,
248
+ "rewards/chosen": -0.4125601351261139,
249
+ "rewards/margins": 0.17921395599842072,
250
+ "rewards/rejected": -0.5917741060256958,
251
+ "step": 140
252
+ },
253
+ {
254
+ "epoch": 0.13321492007104796,
255
+ "grad_norm": 0.09321591258049011,
256
+ "learning_rate": 4.8776412907378845e-06,
257
+ "logits/chosen": 12.775139808654785,
258
+ "logits/rejected": 13.751996994018555,
259
+ "logps/chosen": -0.28446996212005615,
260
+ "logps/rejected": -0.36404967308044434,
261
+ "loss": 0.9104,
262
+ "rewards/accuracies": 0.5249999761581421,
263
+ "rewards/chosen": -0.42670494318008423,
264
+ "rewards/margins": 0.11936960369348526,
265
+ "rewards/rejected": -0.5460745096206665,
266
+ "step": 150
267
+ },
268
+ {
269
+ "epoch": 0.13321492007104796,
270
+ "eval_logits/chosen": 12.97266960144043,
271
+ "eval_logits/rejected": 13.47339916229248,
272
+ "eval_logps/chosen": -0.27297571301460266,
273
+ "eval_logps/rejected": -0.36854612827301025,
274
+ "eval_loss": 0.9143257737159729,
275
+ "eval_rewards/accuracies": 0.5824176073074341,
276
+ "eval_rewards/chosen": -0.4094635546207428,
277
+ "eval_rewards/margins": 0.14335563778877258,
278
+ "eval_rewards/rejected": -0.5528191924095154,
279
+ "eval_runtime": 25.2406,
280
+ "eval_samples_per_second": 28.842,
281
+ "eval_steps_per_second": 3.605,
282
+ "step": 150
283
+ },
284
+ {
285
+ "epoch": 0.14209591474245115,
286
+ "grad_norm": 0.11029861867427826,
287
+ "learning_rate": 4.860940925593703e-06,
288
+ "logits/chosen": 12.677947998046875,
289
+ "logits/rejected": 13.396716117858887,
290
+ "logps/chosen": -0.2631794512271881,
291
+ "logps/rejected": -0.37102141976356506,
292
+ "loss": 0.9051,
293
+ "rewards/accuracies": 0.550000011920929,
294
+ "rewards/chosen": -0.3947691321372986,
295
+ "rewards/margins": 0.161762997508049,
296
+ "rewards/rejected": -0.5565321445465088,
297
+ "step": 160
298
+ },
299
+ {
300
+ "epoch": 0.15097690941385436,
301
+ "grad_norm": 0.15728294849395752,
302
+ "learning_rate": 4.84320497372973e-06,
303
+ "logits/chosen": 12.620219230651855,
304
+ "logits/rejected": 13.189640998840332,
305
+ "logps/chosen": -0.2947639524936676,
306
+ "logps/rejected": -0.3843482732772827,
307
+ "loss": 0.8906,
308
+ "rewards/accuracies": 0.5625,
309
+ "rewards/chosen": -0.442145973443985,
310
+ "rewards/margins": 0.13437646627426147,
311
+ "rewards/rejected": -0.5765224099159241,
312
+ "step": 170
313
+ },
314
+ {
315
+ "epoch": 0.15985790408525755,
316
+ "grad_norm": 0.31504154205322266,
317
+ "learning_rate": 4.824441214720629e-06,
318
+ "logits/chosen": 11.487619400024414,
319
+ "logits/rejected": 12.33470344543457,
320
+ "logps/chosen": -0.271095871925354,
321
+ "logps/rejected": -0.4252637028694153,
322
+ "loss": 0.8766,
323
+ "rewards/accuracies": 0.5874999761581421,
324
+ "rewards/chosen": -0.406643807888031,
325
+ "rewards/margins": 0.2312517911195755,
326
+ "rewards/rejected": -0.6378955245018005,
327
+ "step": 180
328
+ },
329
+ {
330
+ "epoch": 0.16873889875666073,
331
+ "grad_norm": 0.19222252070903778,
332
+ "learning_rate": 4.804657878971252e-06,
333
+ "logits/chosen": 10.093737602233887,
334
+ "logits/rejected": 10.851752281188965,
335
+ "logps/chosen": -0.2679918110370636,
336
+ "logps/rejected": -0.437336266040802,
337
+ "loss": 0.884,
338
+ "rewards/accuracies": 0.637499988079071,
339
+ "rewards/chosen": -0.4019877314567566,
340
+ "rewards/margins": 0.2540166974067688,
341
+ "rewards/rejected": -0.6560044288635254,
342
+ "step": 190
343
+ },
344
+ {
345
+ "epoch": 0.17761989342806395,
346
+ "grad_norm": 0.2275688648223877,
347
+ "learning_rate": 4.783863644106502e-06,
348
+ "logits/chosen": 9.483477592468262,
349
+ "logits/rejected": 10.106366157531738,
350
+ "logps/chosen": -0.2957404553890228,
351
+ "logps/rejected": -0.40739065408706665,
352
+ "loss": 0.8767,
353
+ "rewards/accuracies": 0.5874999761581421,
354
+ "rewards/chosen": -0.4436107575893402,
355
+ "rewards/margins": 0.16747523844242096,
356
+ "rewards/rejected": -0.6110859513282776,
357
+ "step": 200
358
+ },
359
+ {
360
+ "epoch": 0.17761989342806395,
361
+ "eval_logits/chosen": 8.491498947143555,
362
+ "eval_logits/rejected": 8.999146461486816,
363
+ "eval_logps/chosen": -0.3135836124420166,
364
+ "eval_logps/rejected": -0.4829566180706024,
365
+ "eval_loss": 0.8664290904998779,
366
+ "eval_rewards/accuracies": 0.6263736486434937,
367
+ "eval_rewards/chosen": -0.4703753888607025,
368
+ "eval_rewards/margins": 0.2540595233440399,
369
+ "eval_rewards/rejected": -0.7244349122047424,
370
+ "eval_runtime": 25.2553,
371
+ "eval_samples_per_second": 28.826,
372
+ "eval_steps_per_second": 3.603,
373
+ "step": 200
374
+ },
375
+ {
376
+ "epoch": 0.18650088809946713,
377
+ "grad_norm": 0.27885496616363525,
378
+ "learning_rate": 4.762067631165049e-06,
379
+ "logits/chosen": 7.234966278076172,
380
+ "logits/rejected": 8.313450813293457,
381
+ "logps/chosen": -0.29102542996406555,
382
+ "logps/rejected": -0.49241799116134644,
383
+ "loss": 0.8556,
384
+ "rewards/accuracies": 0.637499988079071,
385
+ "rewards/chosen": -0.43653813004493713,
386
+ "rewards/margins": 0.3020888566970825,
387
+ "rewards/rejected": -0.7386269569396973,
388
+ "step": 210
389
+ },
390
+ {
391
+ "epoch": 0.19538188277087035,
392
+ "grad_norm": 0.29907363653182983,
393
+ "learning_rate": 4.7392794005985324e-06,
394
+ "logits/chosen": 7.907521724700928,
395
+ "logits/rejected": 8.253190994262695,
396
+ "logps/chosen": -0.33691853284835815,
397
+ "logps/rejected": -0.4829257130622864,
398
+ "loss": 0.8236,
399
+ "rewards/accuracies": 0.550000011920929,
400
+ "rewards/chosen": -0.5053777694702148,
401
+ "rewards/margins": 0.21901080012321472,
402
+ "rewards/rejected": -0.724388599395752,
403
+ "step": 220
404
+ },
405
+ {
406
+ "epoch": 0.20426287744227353,
407
+ "grad_norm": 0.282474547624588,
408
+ "learning_rate": 4.715508948078037e-06,
409
+ "logits/chosen": 6.367492198944092,
410
+ "logits/rejected": 6.273728370666504,
411
+ "logps/chosen": -0.3519875705242157,
412
+ "logps/rejected": -0.5284813642501831,
413
+ "loss": 0.8027,
414
+ "rewards/accuracies": 0.625,
415
+ "rewards/chosen": -0.5279813408851624,
416
+ "rewards/margins": 0.2647407650947571,
417
+ "rewards/rejected": -0.7927221059799194,
418
+ "step": 230
419
+ },
420
+ {
421
+ "epoch": 0.21314387211367672,
422
+ "grad_norm": 0.327765554189682,
423
+ "learning_rate": 4.690766700109659e-06,
424
+ "logits/chosen": 5.090893268585205,
425
+ "logits/rejected": 4.768380165100098,
426
+ "logps/chosen": -0.3851698040962219,
427
+ "logps/rejected": -0.6464222073554993,
428
+ "loss": 0.7898,
429
+ "rewards/accuracies": 0.612500011920929,
430
+ "rewards/chosen": -0.5777546167373657,
431
+ "rewards/margins": 0.391878604888916,
432
+ "rewards/rejected": -0.9696332812309265,
433
+ "step": 240
434
+ },
435
+ {
436
+ "epoch": 0.22202486678507993,
437
+ "grad_norm": 0.4895865321159363,
438
+ "learning_rate": 4.665063509461098e-06,
439
+ "logits/chosen": 4.056812286376953,
440
+ "logits/rejected": 3.723601818084717,
441
+ "logps/chosen": -0.4400455951690674,
442
+ "logps/rejected": -0.7731422781944275,
443
+ "loss": 0.7626,
444
+ "rewards/accuracies": 0.6625000238418579,
445
+ "rewards/chosen": -0.6600683927536011,
446
+ "rewards/margins": 0.49964505434036255,
447
+ "rewards/rejected": -1.1597135066986084,
448
+ "step": 250
449
+ },
450
+ {
451
+ "epoch": 0.22202486678507993,
452
+ "eval_logits/chosen": 2.420060396194458,
453
+ "eval_logits/rejected": 2.1626052856445312,
454
+ "eval_logps/chosen": -0.4724067151546478,
455
+ "eval_logps/rejected": -0.8418064117431641,
456
+ "eval_loss": 0.7631083130836487,
457
+ "eval_rewards/accuracies": 0.6483516693115234,
458
+ "eval_rewards/chosen": -0.7086100578308105,
459
+ "eval_rewards/margins": 0.5540997385978699,
460
+ "eval_rewards/rejected": -1.2627097368240356,
461
+ "eval_runtime": 25.2418,
462
+ "eval_samples_per_second": 28.841,
463
+ "eval_steps_per_second": 3.605,
464
+ "step": 250
465
+ },
466
+ {
467
+ "epoch": 0.23090586145648312,
468
+ "grad_norm": 0.46291017532348633,
469
+ "learning_rate": 4.638410650401267e-06,
470
+ "logits/chosen": 1.5297390222549438,
471
+ "logits/rejected": 1.1381648778915405,
472
+ "logps/chosen": -0.4418027997016907,
473
+ "logps/rejected": -1.0542564392089844,
474
+ "loss": 0.7026,
475
+ "rewards/accuracies": 0.762499988079071,
476
+ "rewards/chosen": -0.6627041697502136,
477
+ "rewards/margins": 0.9186803698539734,
478
+ "rewards/rejected": -1.5813844203948975,
479
+ "step": 260
480
+ },
481
+ {
482
+ "epoch": 0.23978685612788633,
483
+ "grad_norm": 0.9783313870429993,
484
+ "learning_rate": 4.610819813755038e-06,
485
+ "logits/chosen": 2.8311033248901367,
486
+ "logits/rejected": 1.9742711782455444,
487
+ "logps/chosen": -0.5430587530136108,
488
+ "logps/rejected": -0.9841039776802063,
489
+ "loss": 0.7317,
490
+ "rewards/accuracies": 0.699999988079071,
491
+ "rewards/chosen": -0.814588189125061,
492
+ "rewards/margins": 0.6615679860115051,
493
+ "rewards/rejected": -1.4761559963226318,
494
+ "step": 270
495
+ },
496
+ {
497
+ "epoch": 0.24866785079928952,
498
+ "grad_norm": 2.102562189102173,
499
+ "learning_rate": 4.582303101775249e-06,
500
+ "logits/chosen": 1.8241952657699585,
501
+ "logits/rejected": 0.8777934312820435,
502
+ "logps/chosen": -0.5624039769172668,
503
+ "logps/rejected": -1.1460126638412476,
504
+ "loss": 0.6887,
505
+ "rewards/accuracies": 0.6499999761581421,
506
+ "rewards/chosen": -0.8436058163642883,
507
+ "rewards/margins": 0.8754131197929382,
508
+ "rewards/rejected": -1.7190189361572266,
509
+ "step": 280
510
+ },
511
+ {
512
+ "epoch": 0.25754884547069273,
513
+ "grad_norm": 0.9813026189804077,
514
+ "learning_rate": 4.55287302283426e-06,
515
+ "logits/chosen": 2.370732069015503,
516
+ "logits/rejected": 1.4697134494781494,
517
+ "logps/chosen": -0.6739786863327026,
518
+ "logps/rejected": -1.6581566333770752,
519
+ "loss": 0.5695,
520
+ "rewards/accuracies": 0.6625000238418579,
521
+ "rewards/chosen": -1.0109679698944092,
522
+ "rewards/margins": 1.476266622543335,
523
+ "rewards/rejected": -2.487234592437744,
524
+ "step": 290
525
+ },
526
+ {
527
+ "epoch": 0.2664298401420959,
528
+ "grad_norm": 2.187314510345459,
529
+ "learning_rate": 4.522542485937369e-06,
530
+ "logits/chosen": 1.6230781078338623,
531
+ "logits/rejected": 0.5460122227668762,
532
+ "logps/chosen": -0.6433733701705933,
533
+ "logps/rejected": -2.1001811027526855,
534
+ "loss": 0.5366,
535
+ "rewards/accuracies": 0.762499988079071,
536
+ "rewards/chosen": -0.9650601148605347,
537
+ "rewards/margins": 2.185211658477783,
538
+ "rewards/rejected": -3.1502718925476074,
539
+ "step": 300
540
+ },
541
+ {
542
+ "epoch": 0.2664298401420959,
543
+ "eval_logits/chosen": 1.4087599515914917,
544
+ "eval_logits/rejected": 0.7888947129249573,
545
+ "eval_logps/chosen": -0.7579545974731445,
546
+ "eval_logps/rejected": -2.0049116611480713,
547
+ "eval_loss": 0.551510214805603,
548
+ "eval_rewards/accuracies": 0.6813187003135681,
549
+ "eval_rewards/chosen": -1.1369318962097168,
550
+ "eval_rewards/margins": 1.8704355955123901,
551
+ "eval_rewards/rejected": -3.0073673725128174,
552
+ "eval_runtime": 25.2647,
553
+ "eval_samples_per_second": 28.815,
554
+ "eval_steps_per_second": 3.602,
555
+ "step": 300
556
+ },
557
+ {
558
+ "epoch": 0.2753108348134991,
559
+ "grad_norm": 0.7035408616065979,
560
+ "learning_rate": 4.491324795060491e-06,
561
+ "logits/chosen": 1.5831315517425537,
562
+ "logits/rejected": 0.46730250120162964,
563
+ "logps/chosen": -0.7262418866157532,
564
+ "logps/rejected": -2.1209158897399902,
565
+ "loss": 0.5524,
566
+ "rewards/accuracies": 0.675000011920929,
567
+ "rewards/chosen": -1.0893628597259521,
568
+ "rewards/margins": 2.092010974884033,
569
+ "rewards/rejected": -3.1813735961914062,
570
+ "step": 310
571
+ },
572
+ {
573
+ "epoch": 0.2841918294849023,
574
+ "grad_norm": 0.5678634643554688,
575
+ "learning_rate": 4.4592336433146e-06,
576
+ "logits/chosen": 1.265734076499939,
577
+ "logits/rejected": 0.7576489448547363,
578
+ "logps/chosen": -0.7938942313194275,
579
+ "logps/rejected": -2.3495612144470215,
580
+ "loss": 0.5233,
581
+ "rewards/accuracies": 0.6625000238418579,
582
+ "rewards/chosen": -1.1908413171768188,
583
+ "rewards/margins": 2.333500385284424,
584
+ "rewards/rejected": -3.5243420600891113,
585
+ "step": 320
586
+ },
587
+ {
588
+ "epoch": 0.29307282415630553,
589
+ "grad_norm": 1.1373224258422852,
590
+ "learning_rate": 4.426283106939474e-06,
591
+ "logits/chosen": 2.977414846420288,
592
+ "logits/rejected": 2.1573710441589355,
593
+ "logps/chosen": -0.8513160943984985,
594
+ "logps/rejected": -2.4125566482543945,
595
+ "loss": 0.556,
596
+ "rewards/accuracies": 0.6875,
597
+ "rewards/chosen": -1.2769742012023926,
598
+ "rewards/margins": 2.341860771179199,
599
+ "rewards/rejected": -3.6188347339630127,
600
+ "step": 330
601
+ },
602
+ {
603
+ "epoch": 0.3019538188277087,
604
+ "grad_norm": 4.7876176834106445,
605
+ "learning_rate": 4.3924876391293915e-06,
606
+ "logits/chosen": 2.4026589393615723,
607
+ "logits/rejected": 1.207395315170288,
608
+ "logps/chosen": -0.8529679179191589,
609
+ "logps/rejected": -2.456879138946533,
610
+ "loss": 0.5592,
611
+ "rewards/accuracies": 0.637499988079071,
612
+ "rewards/chosen": -1.279451847076416,
613
+ "rewards/margins": 2.4058666229248047,
614
+ "rewards/rejected": -3.6853187084198,
615
+ "step": 340
616
+ },
617
+ {
618
+ "epoch": 0.3108348134991119,
619
+ "grad_norm": 0.5053763389587402,
620
+ "learning_rate": 4.357862063693486e-06,
621
+ "logits/chosen": 2.434265375137329,
622
+ "logits/rejected": 1.2504141330718994,
623
+ "logps/chosen": -0.9489291310310364,
624
+ "logps/rejected": -2.8521530628204346,
625
+ "loss": 0.4737,
626
+ "rewards/accuracies": 0.6625000238418579,
627
+ "rewards/chosen": -1.423393726348877,
628
+ "rewards/margins": 2.8548355102539062,
629
+ "rewards/rejected": -4.278229236602783,
630
+ "step": 350
631
+ },
632
+ {
633
+ "epoch": 0.3108348134991119,
634
+ "eval_logits/chosen": 1.6632592678070068,
635
+ "eval_logits/rejected": 1.235045075416565,
636
+ "eval_logps/chosen": -1.0692518949508667,
637
+ "eval_logps/rejected": -2.7428486347198486,
638
+ "eval_loss": 0.5021397471427917,
639
+ "eval_rewards/accuracies": 0.692307710647583,
640
+ "eval_rewards/chosen": -1.6038777828216553,
641
+ "eval_rewards/margins": 2.510395050048828,
642
+ "eval_rewards/rejected": -4.1142730712890625,
643
+ "eval_runtime": 25.2582,
644
+ "eval_samples_per_second": 28.822,
645
+ "eval_steps_per_second": 3.603,
646
+ "step": 350
647
+ },
648
+ {
649
+ "epoch": 0.3197158081705151,
650
+ "grad_norm": 0.8040274381637573,
651
+ "learning_rate": 4.322421568553529e-06,
652
+ "logits/chosen": 1.187036395072937,
653
+ "logits/rejected": 0.4290788769721985,
654
+ "logps/chosen": -1.1015206575393677,
655
+ "logps/rejected": -2.919748544692993,
656
+ "loss": 0.489,
657
+ "rewards/accuracies": 0.7250000238418579,
658
+ "rewards/chosen": -1.6522810459136963,
659
+ "rewards/margins": 2.727341651916504,
660
+ "rewards/rejected": -4.379622459411621,
661
+ "step": 360
662
+ },
663
+ {
664
+ "epoch": 0.3285968028419183,
665
+ "grad_norm": 0.9299562573432922,
666
+ "learning_rate": 4.286181699082008e-06,
667
+ "logits/chosen": 2.5852127075195312,
668
+ "logits/rejected": 2.0419259071350098,
669
+ "logps/chosen": -1.1498607397079468,
670
+ "logps/rejected": -3.0336194038391113,
671
+ "loss": 0.4812,
672
+ "rewards/accuracies": 0.675000011920929,
673
+ "rewards/chosen": -1.724791169166565,
674
+ "rewards/margins": 2.8256375789642334,
675
+ "rewards/rejected": -4.55042839050293,
676
+ "step": 370
677
+ },
678
+ {
679
+ "epoch": 0.33747779751332146,
680
+ "grad_norm": 1.7739671468734741,
681
+ "learning_rate": 4.249158351283414e-06,
682
+ "logits/chosen": 2.246245861053467,
683
+ "logits/rejected": 1.5551975965499878,
684
+ "logps/chosen": -1.254900574684143,
685
+ "logps/rejected": -3.206178665161133,
686
+ "loss": 0.4651,
687
+ "rewards/accuracies": 0.737500011920929,
688
+ "rewards/chosen": -1.8823509216308594,
689
+ "rewards/margins": 2.926917552947998,
690
+ "rewards/rejected": -4.809267997741699,
691
+ "step": 380
692
+ },
693
+ {
694
+ "epoch": 0.3463587921847247,
695
+ "grad_norm": 4.380665302276611,
696
+ "learning_rate": 4.211367764821722e-06,
697
+ "logits/chosen": 3.0754549503326416,
698
+ "logits/rejected": 2.622124433517456,
699
+ "logps/chosen": -1.9250037670135498,
700
+ "logps/rejected": -3.69482421875,
701
+ "loss": 0.4292,
702
+ "rewards/accuracies": 0.800000011920929,
703
+ "rewards/chosen": -2.8875060081481934,
704
+ "rewards/margins": 2.6547305583953857,
705
+ "rewards/rejected": -5.542236328125,
706
+ "step": 390
707
+ },
708
+ {
709
+ "epoch": 0.3552397868561279,
710
+ "grad_norm": 1.5087212324142456,
711
+ "learning_rate": 4.172826515897146e-06,
712
+ "logits/chosen": 2.2718021869659424,
713
+ "logits/rejected": 1.8861210346221924,
714
+ "logps/chosen": -2.4473955631256104,
715
+ "logps/rejected": -4.387387752532959,
716
+ "loss": 0.3902,
717
+ "rewards/accuracies": 0.8500000238418579,
718
+ "rewards/chosen": -3.671093702316284,
719
+ "rewards/margins": 2.9099888801574707,
720
+ "rewards/rejected": -6.581082344055176,
721
+ "step": 400
722
+ },
723
+ {
724
+ "epoch": 0.3552397868561279,
725
+ "eval_logits/chosen": 1.759078860282898,
726
+ "eval_logits/rejected": 1.5246928930282593,
727
+ "eval_logps/chosen": -2.720665454864502,
728
+ "eval_logps/rejected": -4.613493919372559,
729
+ "eval_loss": 0.4054907560348511,
730
+ "eval_rewards/accuracies": 0.8791208863258362,
731
+ "eval_rewards/chosen": -4.080998420715332,
732
+ "eval_rewards/margins": 2.839242696762085,
733
+ "eval_rewards/rejected": -6.920241355895996,
734
+ "eval_runtime": 25.2363,
735
+ "eval_samples_per_second": 28.847,
736
+ "eval_steps_per_second": 3.606,
737
+ "step": 400
738
+ },
739
+ {
740
+ "epoch": 0.3641207815275311,
741
+ "grad_norm": 6.079421043395996,
742
+ "learning_rate": 4.133551509975264e-06,
743
+ "logits/chosen": 1.8841949701309204,
744
+ "logits/rejected": 1.3479797840118408,
745
+ "logps/chosen": -2.517265796661377,
746
+ "logps/rejected": -4.453648567199707,
747
+ "loss": 0.3977,
748
+ "rewards/accuracies": 0.862500011920929,
749
+ "rewards/chosen": -3.7758986949920654,
750
+ "rewards/margins": 2.9045748710632324,
751
+ "rewards/rejected": -6.680473327636719,
752
+ "step": 410
753
+ },
754
+ {
755
+ "epoch": 0.37300177619893427,
756
+ "grad_norm": 3.0998194217681885,
757
+ "learning_rate": 4.093559974371725e-06,
758
+ "logits/chosen": 1.6409276723861694,
759
+ "logits/rejected": 1.2141990661621094,
760
+ "logps/chosen": -2.2561168670654297,
761
+ "logps/rejected": -4.470211029052734,
762
+ "loss": 0.3527,
763
+ "rewards/accuracies": 0.875,
764
+ "rewards/chosen": -3.3841750621795654,
765
+ "rewards/margins": 3.321141004562378,
766
+ "rewards/rejected": -6.70531702041626,
767
+ "step": 420
768
+ },
769
+ {
770
+ "epoch": 0.38188277087033745,
771
+ "grad_norm": 6.982161045074463,
772
+ "learning_rate": 4.052869450695776e-06,
773
+ "logits/chosen": 2.835188388824463,
774
+ "logits/rejected": 2.3657329082489014,
775
+ "logps/chosen": -2.8557300567626953,
776
+ "logps/rejected": -5.075521469116211,
777
+ "loss": 0.387,
778
+ "rewards/accuracies": 0.887499988079071,
779
+ "rewards/chosen": -4.283595085144043,
780
+ "rewards/margins": 3.3296875953674316,
781
+ "rewards/rejected": -7.613282680511475,
782
+ "step": 430
783
+ },
784
+ {
785
+ "epoch": 0.3907637655417407,
786
+ "grad_norm": 2.139338970184326,
787
+ "learning_rate": 4.011497787155938e-06,
788
+ "logits/chosen": 2.126509189605713,
789
+ "logits/rejected": 1.459567904472351,
790
+ "logps/chosen": -3.1412863731384277,
791
+ "logps/rejected": -5.423466682434082,
792
+ "loss": 0.3611,
793
+ "rewards/accuracies": 0.925000011920929,
794
+ "rewards/chosen": -4.711928844451904,
795
+ "rewards/margins": 3.4232699871063232,
796
+ "rewards/rejected": -8.135198593139648,
797
+ "step": 440
798
+ },
799
+ {
800
+ "epoch": 0.3996447602131439,
801
+ "grad_norm": 1.7899377346038818,
802
+ "learning_rate": 3.969463130731183e-06,
803
+ "logits/chosen": 2.4551379680633545,
804
+ "logits/rejected": 2.0784289836883545,
805
+ "logps/chosen": -3.098043203353882,
806
+ "logps/rejected": -5.300747871398926,
807
+ "loss": 0.354,
808
+ "rewards/accuracies": 0.8500000238418579,
809
+ "rewards/chosen": -4.647065162658691,
810
+ "rewards/margins": 3.3040566444396973,
811
+ "rewards/rejected": -7.951122283935547,
812
+ "step": 450
813
+ },
814
+ {
815
+ "epoch": 0.3996447602131439,
816
+ "eval_logits/chosen": 1.9761625528335571,
817
+ "eval_logits/rejected": 1.6654667854309082,
818
+ "eval_logps/chosen": -2.8789772987365723,
819
+ "eval_logps/rejected": -5.1105055809021,
820
+ "eval_loss": 0.36211252212524414,
821
+ "eval_rewards/accuracies": 0.8791208863258362,
822
+ "eval_rewards/chosen": -4.3184661865234375,
823
+ "eval_rewards/margins": 3.347292423248291,
824
+ "eval_rewards/rejected": -7.6657586097717285,
825
+ "eval_runtime": 25.2549,
826
+ "eval_samples_per_second": 28.826,
827
+ "eval_steps_per_second": 3.603,
828
+ "step": 450
829
+ },
830
+ {
831
+ "epoch": 0.40852575488454707,
832
+ "grad_norm": 1.9171936511993408,
833
+ "learning_rate": 3.92678391921108e-06,
834
+ "logits/chosen": 2.1672446727752686,
835
+ "logits/rejected": 1.6228408813476562,
836
+ "logps/chosen": -2.688931703567505,
837
+ "logps/rejected": -5.2408246994018555,
838
+ "loss": 0.3266,
839
+ "rewards/accuracies": 0.887499988079071,
840
+ "rewards/chosen": -4.033397197723389,
841
+ "rewards/margins": 3.8278393745422363,
842
+ "rewards/rejected": -7.861237525939941,
843
+ "step": 460
844
+ },
845
+ {
846
+ "epoch": 0.41740674955595025,
847
+ "grad_norm": 1.702635407447815,
848
+ "learning_rate": 3.88347887310836e-06,
849
+ "logits/chosen": 2.3164448738098145,
850
+ "logits/rejected": 2.047529697418213,
851
+ "logps/chosen": -2.6861701011657715,
852
+ "logps/rejected": -5.629918098449707,
853
+ "loss": 0.3339,
854
+ "rewards/accuracies": 0.925000011920929,
855
+ "rewards/chosen": -4.02925443649292,
856
+ "rewards/margins": 4.415622711181641,
857
+ "rewards/rejected": -8.444877624511719,
858
+ "step": 470
859
+ },
860
+ {
861
+ "epoch": 0.42628774422735344,
862
+ "grad_norm": 2.48634934425354,
863
+ "learning_rate": 3.839566987447492e-06,
864
+ "logits/chosen": 2.5225472450256348,
865
+ "logits/rejected": 2.0870003700256348,
866
+ "logps/chosen": -3.041111946105957,
867
+ "logps/rejected": -5.3499016761779785,
868
+ "loss": 0.3226,
869
+ "rewards/accuracies": 0.875,
870
+ "rewards/chosen": -4.561667442321777,
871
+ "rewards/margins": 3.4631850719451904,
872
+ "rewards/rejected": -8.024852752685547,
873
+ "step": 480
874
+ },
875
+ {
876
+ "epoch": 0.4351687388987567,
877
+ "grad_norm": 4.728499412536621,
878
+ "learning_rate": 3.795067523432826e-06,
879
+ "logits/chosen": 2.33893084526062,
880
+ "logits/rejected": 1.7909936904907227,
881
+ "logps/chosen": -2.7356209754943848,
882
+ "logps/rejected": -5.33417272567749,
883
+ "loss": 0.322,
884
+ "rewards/accuracies": 0.9375,
885
+ "rewards/chosen": -4.103431224822998,
886
+ "rewards/margins": 3.8978283405303955,
887
+ "rewards/rejected": -8.001258850097656,
888
+ "step": 490
889
+ },
890
+ {
891
+ "epoch": 0.44404973357015987,
892
+ "grad_norm": 8.412679672241211,
893
+ "learning_rate": 3.7500000000000005e-06,
894
+ "logits/chosen": 2.788668632507324,
895
+ "logits/rejected": 2.439873695373535,
896
+ "logps/chosen": -3.3219153881073,
897
+ "logps/rejected": -5.992051124572754,
898
+ "loss": 0.3075,
899
+ "rewards/accuracies": 0.875,
900
+ "rewards/chosen": -4.98287296295166,
901
+ "rewards/margins": 4.005204200744629,
902
+ "rewards/rejected": -8.988077163696289,
903
+ "step": 500
904
+ },
905
+ {
906
+ "epoch": 0.44404973357015987,
907
+ "eval_logits/chosen": 2.165436029434204,
908
+ "eval_logits/rejected": 1.8186790943145752,
909
+ "eval_logps/chosen": -3.4299349784851074,
910
+ "eval_logps/rejected": -6.0660552978515625,
911
+ "eval_loss": 0.3319137990474701,
912
+ "eval_rewards/accuracies": 0.8901098966598511,
913
+ "eval_rewards/chosen": -5.14490270614624,
914
+ "eval_rewards/margins": 3.954181671142578,
915
+ "eval_rewards/rejected": -9.09908390045166,
916
+ "eval_runtime": 25.2602,
917
+ "eval_samples_per_second": 28.82,
918
+ "eval_steps_per_second": 3.603,
919
+ "step": 500
920
+ },
921
+ {
922
+ "epoch": 0.45293072824156305,
923
+ "grad_norm": 2.8339133262634277,
924
+ "learning_rate": 3.7043841852542884e-06,
925
+ "logits/chosen": 2.109018325805664,
926
+ "logits/rejected": 1.6996265649795532,
927
+ "logps/chosen": -3.288560390472412,
928
+ "logps/rejected": -5.986764430999756,
929
+ "loss": 0.3116,
930
+ "rewards/accuracies": 0.862500011920929,
931
+ "rewards/chosen": -4.932840824127197,
932
+ "rewards/margins": 4.047306060791016,
933
+ "rewards/rejected": -8.980146408081055,
934
+ "step": 510
935
+ },
936
+ {
937
+ "epoch": 0.46181172291296624,
938
+ "grad_norm": 3.8578269481658936,
939
+ "learning_rate": 3.658240087799655e-06,
940
+ "logits/chosen": 1.7659969329833984,
941
+ "logits/rejected": 1.4596515893936157,
942
+ "logps/chosen": -3.0301425457000732,
943
+ "logps/rejected": -6.252682209014893,
944
+ "loss": 0.3015,
945
+ "rewards/accuracies": 0.8999999761581421,
946
+ "rewards/chosen": -4.5452141761779785,
947
+ "rewards/margins": 4.833809852600098,
948
+ "rewards/rejected": -9.379022598266602,
949
+ "step": 520
950
+ },
951
+ {
952
+ "epoch": 0.4706927175843694,
953
+ "grad_norm": 2.7795143127441406,
954
+ "learning_rate": 3.611587947962319e-06,
955
+ "logits/chosen": 2.472006320953369,
956
+ "logits/rejected": 1.9400993585586548,
957
+ "logps/chosen": -3.2479186058044434,
958
+ "logps/rejected": -6.475512504577637,
959
+ "loss": 0.3006,
960
+ "rewards/accuracies": 0.925000011920929,
961
+ "rewards/chosen": -4.871877193450928,
962
+ "rewards/margins": 4.841391086578369,
963
+ "rewards/rejected": -9.713269233703613,
964
+ "step": 530
965
+ },
966
+ {
967
+ "epoch": 0.47957371225577267,
968
+ "grad_norm": 3.5200746059417725,
969
+ "learning_rate": 3.564448228912682e-06,
970
+ "logits/chosen": 2.911531925201416,
971
+ "logits/rejected": 2.2947440147399902,
972
+ "logps/chosen": -3.387556791305542,
973
+ "logps/rejected": -6.559035301208496,
974
+ "loss": 0.2684,
975
+ "rewards/accuracies": 0.9125000238418579,
976
+ "rewards/chosen": -5.081335544586182,
977
+ "rewards/margins": 4.757218360900879,
978
+ "rewards/rejected": -9.838552474975586,
979
+ "step": 540
980
+ },
981
+ {
982
+ "epoch": 0.48845470692717585,
983
+ "grad_norm": 2.368495225906372,
984
+ "learning_rate": 3.516841607689501e-06,
985
+ "logits/chosen": 1.276886224746704,
986
+ "logits/rejected": 1.3811718225479126,
987
+ "logps/chosen": -2.9689180850982666,
988
+ "logps/rejected": -6.619606971740723,
989
+ "loss": 0.3159,
990
+ "rewards/accuracies": 0.9375,
991
+ "rewards/chosen": -4.4533772468566895,
992
+ "rewards/margins": 5.4760332107543945,
993
+ "rewards/rejected": -9.929410934448242,
994
+ "step": 550
995
+ },
996
+ {
997
+ "epoch": 0.48845470692717585,
998
+ "eval_logits/chosen": 2.2735824584960938,
999
+ "eval_logits/rejected": 1.9788992404937744,
1000
+ "eval_logps/chosen": -3.698131799697876,
1001
+ "eval_logps/rejected": -6.64966344833374,
1002
+ "eval_loss": 0.30747923254966736,
1003
+ "eval_rewards/accuracies": 0.9230769276618958,
1004
+ "eval_rewards/chosen": -5.5471978187561035,
1005
+ "eval_rewards/margins": 4.427298545837402,
1006
+ "eval_rewards/rejected": -9.974496841430664,
1007
+ "eval_runtime": 25.2322,
1008
+ "eval_samples_per_second": 28.852,
1009
+ "eval_steps_per_second": 3.606,
1010
+ "step": 550
1011
+ },
1012
+ {
1013
+ "epoch": 0.49733570159857904,
1014
+ "grad_norm": 1.901207685470581,
1015
+ "learning_rate": 3.4687889661302577e-06,
1016
+ "logits/chosen": 1.9734981060028076,
1017
+ "logits/rejected": 1.8617655038833618,
1018
+ "logps/chosen": -3.464953899383545,
1019
+ "logps/rejected": -6.746106147766113,
1020
+ "loss": 0.2912,
1021
+ "rewards/accuracies": 0.9125000238418579,
1022
+ "rewards/chosen": -5.1974310874938965,
1023
+ "rewards/margins": 4.921727180480957,
1024
+ "rewards/rejected": -10.119158744812012,
1025
+ "step": 560
1026
+ },
1027
+ {
1028
+ "epoch": 0.5062166962699822,
1029
+ "grad_norm": 3.526299238204956,
1030
+ "learning_rate": 3.4203113817116955e-06,
1031
+ "logits/chosen": 3.0836069583892822,
1032
+ "logits/rejected": 2.75875186920166,
1033
+ "logps/chosen": -3.5981743335723877,
1034
+ "logps/rejected": -6.405775547027588,
1035
+ "loss": 0.3284,
1036
+ "rewards/accuracies": 0.862500011920929,
1037
+ "rewards/chosen": -5.397261142730713,
1038
+ "rewards/margins": 4.211403846740723,
1039
+ "rewards/rejected": -9.608665466308594,
1040
+ "step": 570
1041
+ },
1042
+ {
1043
+ "epoch": 0.5150976909413855,
1044
+ "grad_norm": 2.816272497177124,
1045
+ "learning_rate": 3.3714301183045382e-06,
1046
+ "logits/chosen": 3.0068678855895996,
1047
+ "logits/rejected": 2.466287136077881,
1048
+ "logps/chosen": -3.7227580547332764,
1049
+ "logps/rejected": -6.9311113357543945,
1050
+ "loss": 0.2728,
1051
+ "rewards/accuracies": 0.9125000238418579,
1052
+ "rewards/chosen": -5.584136962890625,
1053
+ "rewards/margins": 4.812530040740967,
1054
+ "rewards/rejected": -10.39666748046875,
1055
+ "step": 580
1056
+ },
1057
+ {
1058
+ "epoch": 0.5239786856127886,
1059
+ "grad_norm": 2.433389902114868,
1060
+ "learning_rate": 3.3221666168464584e-06,
1061
+ "logits/chosen": 2.9992904663085938,
1062
+ "logits/rejected": 2.678699254989624,
1063
+ "logps/chosen": -3.540968418121338,
1064
+ "logps/rejected": -7.228091239929199,
1065
+ "loss": 0.2568,
1066
+ "rewards/accuracies": 0.9375,
1067
+ "rewards/chosen": -5.3114519119262695,
1068
+ "rewards/margins": 5.530684947967529,
1069
+ "rewards/rejected": -10.842137336730957,
1070
+ "step": 590
1071
+ },
1072
+ {
1073
+ "epoch": 0.5328596802841918,
1074
+ "grad_norm": 2.7557125091552734,
1075
+ "learning_rate": 3.272542485937369e-06,
1076
+ "logits/chosen": 2.557410478591919,
1077
+ "logits/rejected": 2.331958770751953,
1078
+ "logps/chosen": -3.9404635429382324,
1079
+ "logps/rejected": -7.266766548156738,
1080
+ "loss": 0.2639,
1081
+ "rewards/accuracies": 0.925000011920929,
1082
+ "rewards/chosen": -5.9106950759887695,
1083
+ "rewards/margins": 4.9894537925720215,
1084
+ "rewards/rejected": -10.900148391723633,
1085
+ "step": 600
1086
+ },
1087
+ {
1088
+ "epoch": 0.5328596802841918,
1089
+ "eval_logits/chosen": 2.561415910720825,
1090
+ "eval_logits/rejected": 2.2971484661102295,
1091
+ "eval_logps/chosen": -4.015191555023193,
1092
+ "eval_logps/rejected": -7.222255229949951,
1093
+ "eval_loss": 0.28853774070739746,
1094
+ "eval_rewards/accuracies": 0.9340659379959106,
1095
+ "eval_rewards/chosen": -6.022787570953369,
1096
+ "eval_rewards/margins": 4.810595989227295,
1097
+ "eval_rewards/rejected": -10.833383560180664,
1098
+ "eval_runtime": 25.2577,
1099
+ "eval_samples_per_second": 28.823,
1100
+ "eval_steps_per_second": 3.603,
1101
+ "step": 600
1102
+ },
1103
+ {
1104
+ "epoch": 0.5417406749555951,
1105
+ "grad_norm": 2.582770824432373,
1106
+ "learning_rate": 3.222579492361179e-06,
1107
+ "logits/chosen": 2.7404181957244873,
1108
+ "logits/rejected": 2.540113687515259,
1109
+ "logps/chosen": -3.9154396057128906,
1110
+ "logps/rejected": -7.631985664367676,
1111
+ "loss": 0.2816,
1112
+ "rewards/accuracies": 0.9125000238418579,
1113
+ "rewards/chosen": -5.873159408569336,
1114
+ "rewards/margins": 5.574820041656494,
1115
+ "rewards/rejected": -11.447979927062988,
1116
+ "step": 610
1117
+ },
1118
+ {
1119
+ "epoch": 0.5506216696269982,
1120
+ "grad_norm": 3.8167436122894287,
1121
+ "learning_rate": 3.1722995515381644e-06,
1122
+ "logits/chosen": 2.445218563079834,
1123
+ "logits/rejected": 2.288620710372925,
1124
+ "logps/chosen": -3.7501556873321533,
1125
+ "logps/rejected": -7.918539524078369,
1126
+ "loss": 0.2891,
1127
+ "rewards/accuracies": 0.862500011920929,
1128
+ "rewards/chosen": -5.625233173370361,
1129
+ "rewards/margins": 6.252577304840088,
1130
+ "rewards/rejected": -11.877809524536133,
1131
+ "step": 620
1132
+ },
1133
+ {
1134
+ "epoch": 0.5595026642984015,
1135
+ "grad_norm": 3.57536244392395,
1136
+ "learning_rate": 3.121724717912138e-06,
1137
+ "logits/chosen": 2.8337388038635254,
1138
+ "logits/rejected": 2.1241557598114014,
1139
+ "logps/chosen": -3.7040035724639893,
1140
+ "logps/rejected": -7.53197717666626,
1141
+ "loss": 0.2702,
1142
+ "rewards/accuracies": 0.925000011920929,
1143
+ "rewards/chosen": -5.556005477905273,
1144
+ "rewards/margins": 5.741961479187012,
1145
+ "rewards/rejected": -11.297966003417969,
1146
+ "step": 630
1147
+ },
1148
+ {
1149
+ "epoch": 0.5683836589698046,
1150
+ "grad_norm": 3.0520713329315186,
1151
+ "learning_rate": 3.0708771752766397e-06,
1152
+ "logits/chosen": 2.5255160331726074,
1153
+ "logits/rejected": 2.0742428302764893,
1154
+ "logps/chosen": -3.908573865890503,
1155
+ "logps/rejected": -7.60653829574585,
1156
+ "loss": 0.2598,
1157
+ "rewards/accuracies": 0.925000011920929,
1158
+ "rewards/chosen": -5.862860679626465,
1159
+ "rewards/margins": 5.546946048736572,
1160
+ "rewards/rejected": -11.409807205200195,
1161
+ "step": 640
1162
+ },
1163
+ {
1164
+ "epoch": 0.5772646536412078,
1165
+ "grad_norm": 8.067182540893555,
1166
+ "learning_rate": 3.019779227044398e-06,
1167
+ "logits/chosen": 1.6965067386627197,
1168
+ "logits/rejected": 1.644667625427246,
1169
+ "logps/chosen": -3.6588027477264404,
1170
+ "logps/rejected": -7.457572937011719,
1171
+ "loss": 0.2453,
1172
+ "rewards/accuracies": 0.9375,
1173
+ "rewards/chosen": -5.488204002380371,
1174
+ "rewards/margins": 5.698155403137207,
1175
+ "rewards/rejected": -11.186359405517578,
1176
+ "step": 650
1177
+ },
1178
+ {
1179
+ "epoch": 0.5772646536412078,
1180
+ "eval_logits/chosen": 2.577754020690918,
1181
+ "eval_logits/rejected": 2.265626907348633,
1182
+ "eval_logps/chosen": -3.906606435775757,
1183
+ "eval_logps/rejected": -7.3099446296691895,
1184
+ "eval_loss": 0.27302286028862,
1185
+ "eval_rewards/accuracies": 0.9560439586639404,
1186
+ "eval_rewards/chosen": -5.859910011291504,
1187
+ "eval_rewards/margins": 5.105007171630859,
1188
+ "eval_rewards/rejected": -10.964917182922363,
1189
+ "eval_runtime": 25.2446,
1190
+ "eval_samples_per_second": 28.838,
1191
+ "eval_steps_per_second": 3.605,
1192
+ "step": 650
1193
+ },
1194
+ {
1195
+ "epoch": 0.5861456483126111,
1196
+ "grad_norm": 2.9298255443573,
1197
+ "learning_rate": 2.9684532864643123e-06,
1198
+ "logits/chosen": 2.901702404022217,
1199
+ "logits/rejected": 2.595918655395508,
1200
+ "logps/chosen": -3.9949543476104736,
1201
+ "logps/rejected": -7.430356502532959,
1202
+ "loss": 0.2726,
1203
+ "rewards/accuracies": 0.8374999761581421,
1204
+ "rewards/chosen": -5.992431163787842,
1205
+ "rewards/margins": 5.153104782104492,
1206
+ "rewards/rejected": -11.145535469055176,
1207
+ "step": 660
1208
+ },
1209
+ {
1210
+ "epoch": 0.5950266429840142,
1211
+ "grad_norm": 3.085571050643921,
1212
+ "learning_rate": 2.9169218667902562e-06,
1213
+ "logits/chosen": 2.8471388816833496,
1214
+ "logits/rejected": 2.5500330924987793,
1215
+ "logps/chosen": -4.014147758483887,
1216
+ "logps/rejected": -7.298794746398926,
1217
+ "loss": 0.2484,
1218
+ "rewards/accuracies": 0.887499988079071,
1219
+ "rewards/chosen": -6.02122163772583,
1220
+ "rewards/margins": 4.926970481872559,
1221
+ "rewards/rejected": -10.94819164276123,
1222
+ "step": 670
1223
+ },
1224
+ {
1225
+ "epoch": 0.6039076376554174,
1226
+ "grad_norm": 2.3615477085113525,
1227
+ "learning_rate": 2.8652075714060296e-06,
1228
+ "logits/chosen": 2.495004177093506,
1229
+ "logits/rejected": 1.9873936176300049,
1230
+ "logps/chosen": -4.2625041007995605,
1231
+ "logps/rejected": -8.186586380004883,
1232
+ "loss": 0.2144,
1233
+ "rewards/accuracies": 0.987500011920929,
1234
+ "rewards/chosen": -6.393756866455078,
1235
+ "rewards/margins": 5.886124610900879,
1236
+ "rewards/rejected": -12.279881477355957,
1237
+ "step": 680
1238
+ },
1239
+ {
1240
+ "epoch": 0.6127886323268206,
1241
+ "grad_norm": 3.497316837310791,
1242
+ "learning_rate": 2.813333083910761e-06,
1243
+ "logits/chosen": 1.540621042251587,
1244
+ "logits/rejected": 1.2002273797988892,
1245
+ "logps/chosen": -3.71490740776062,
1246
+ "logps/rejected": -8.136199951171875,
1247
+ "loss": 0.2861,
1248
+ "rewards/accuracies": 0.925000011920929,
1249
+ "rewards/chosen": -5.572361469268799,
1250
+ "rewards/margins": 6.631939888000488,
1251
+ "rewards/rejected": -12.204300880432129,
1252
+ "step": 690
1253
+ },
1254
+ {
1255
+ "epoch": 0.6216696269982238,
1256
+ "grad_norm": 3.2540247440338135,
1257
+ "learning_rate": 2.761321158169134e-06,
1258
+ "logits/chosen": 2.776721477508545,
1259
+ "logits/rejected": 2.475888729095459,
1260
+ "logps/chosen": -4.3385329246521,
1261
+ "logps/rejected": -7.8828301429748535,
1262
+ "loss": 0.2885,
1263
+ "rewards/accuracies": 0.887499988079071,
1264
+ "rewards/chosen": -6.507800102233887,
1265
+ "rewards/margins": 5.316445350646973,
1266
+ "rewards/rejected": -11.824244499206543,
1267
+ "step": 700
1268
+ },
1269
+ {
1270
+ "epoch": 0.6216696269982238,
1271
+ "eval_logits/chosen": 2.4267516136169434,
1272
+ "eval_logits/rejected": 2.1245739459991455,
1273
+ "eval_logps/chosen": -3.9584598541259766,
1274
+ "eval_logps/rejected": -7.546706199645996,
1275
+ "eval_loss": 0.26512712240219116,
1276
+ "eval_rewards/accuracies": 0.9340659379959106,
1277
+ "eval_rewards/chosen": -5.937689781188965,
1278
+ "eval_rewards/margins": 5.382368564605713,
1279
+ "eval_rewards/rejected": -11.320058822631836,
1280
+ "eval_runtime": 25.2589,
1281
+ "eval_samples_per_second": 28.822,
1282
+ "eval_steps_per_second": 3.603,
1283
+ "step": 700
1284
+ },
1285
+ {
1286
+ "epoch": 0.6305506216696269,
1287
+ "grad_norm": 2.582273483276367,
1288
+ "learning_rate": 2.70919460833079e-06,
1289
+ "logits/chosen": 2.2102553844451904,
1290
+ "logits/rejected": 1.9504516124725342,
1291
+ "logps/chosen": -3.7470879554748535,
1292
+ "logps/rejected": -7.761659145355225,
1293
+ "loss": 0.2078,
1294
+ "rewards/accuracies": 0.9624999761581421,
1295
+ "rewards/chosen": -5.620632171630859,
1296
+ "rewards/margins": 6.02185583114624,
1297
+ "rewards/rejected": -11.642488479614258,
1298
+ "step": 710
1299
+ },
1300
+ {
1301
+ "epoch": 0.6394316163410302,
1302
+ "grad_norm": 2.2855663299560547,
1303
+ "learning_rate": 2.6569762988232838e-06,
1304
+ "logits/chosen": 2.4659409523010254,
1305
+ "logits/rejected": 2.0434811115264893,
1306
+ "logps/chosen": -3.4346442222595215,
1307
+ "logps/rejected": -7.470824241638184,
1308
+ "loss": 0.2346,
1309
+ "rewards/accuracies": 0.9375,
1310
+ "rewards/chosen": -5.151965618133545,
1311
+ "rewards/margins": 6.054270267486572,
1312
+ "rewards/rejected": -11.206236839294434,
1313
+ "step": 720
1314
+ },
1315
+ {
1316
+ "epoch": 0.6483126110124334,
1317
+ "grad_norm": 2.038733959197998,
1318
+ "learning_rate": 2.604689134322999e-06,
1319
+ "logits/chosen": 2.270310878753662,
1320
+ "logits/rejected": 1.9651508331298828,
1321
+ "logps/chosen": -3.721379518508911,
1322
+ "logps/rejected": -7.776650905609131,
1323
+ "loss": 0.2354,
1324
+ "rewards/accuracies": 0.925000011920929,
1325
+ "rewards/chosen": -5.582068920135498,
1326
+ "rewards/margins": 6.0829057693481445,
1327
+ "rewards/rejected": -11.6649751663208,
1328
+ "step": 730
1329
+ },
1330
+ {
1331
+ "epoch": 0.6571936056838366,
1332
+ "grad_norm": 2.948915481567383,
1333
+ "learning_rate": 2.5523560497083927e-06,
1334
+ "logits/chosen": 2.358057737350464,
1335
+ "logits/rejected": 2.063586711883545,
1336
+ "logps/chosen": -3.6883864402770996,
1337
+ "logps/rejected": -7.352984428405762,
1338
+ "loss": 0.231,
1339
+ "rewards/accuracies": 0.8999999761581421,
1340
+ "rewards/chosen": -5.5325798988342285,
1341
+ "rewards/margins": 5.496896266937256,
1342
+ "rewards/rejected": -11.0294771194458,
1343
+ "step": 740
1344
+ },
1345
+ {
1346
+ "epoch": 0.6660746003552398,
1347
+ "grad_norm": 3.661870002746582,
1348
+ "learning_rate": 2.5e-06,
1349
+ "logits/chosen": 2.6712796688079834,
1350
+ "logits/rejected": 2.393817901611328,
1351
+ "logps/chosen": -4.065141201019287,
1352
+ "logps/rejected": -7.9232306480407715,
1353
+ "loss": 0.2332,
1354
+ "rewards/accuracies": 0.875,
1355
+ "rewards/chosen": -6.097712516784668,
1356
+ "rewards/margins": 5.787134170532227,
1357
+ "rewards/rejected": -11.884846687316895,
1358
+ "step": 750
1359
+ },
1360
+ {
1361
+ "epoch": 0.6660746003552398,
1362
+ "eval_logits/chosen": 2.4871790409088135,
1363
+ "eval_logits/rejected": 2.2864174842834473,
1364
+ "eval_logps/chosen": -4.176412105560303,
1365
+ "eval_logps/rejected": -8.009041786193848,
1366
+ "eval_loss": 0.2521994411945343,
1367
+ "eval_rewards/accuracies": 0.9340659379959106,
1368
+ "eval_rewards/chosen": -6.264617443084717,
1369
+ "eval_rewards/margins": 5.7489447593688965,
1370
+ "eval_rewards/rejected": -12.01356315612793,
1371
+ "eval_runtime": 25.2624,
1372
+ "eval_samples_per_second": 28.818,
1373
+ "eval_steps_per_second": 3.602,
1374
+ "step": 750
1375
+ }
1376
+ ],
1377
+ "logging_steps": 10,
1378
+ "max_steps": 1500,
1379
+ "num_input_tokens_seen": 0,
1380
+ "num_train_epochs": 2,
1381
+ "save_steps": 50,
1382
+ "stateful_callbacks": {
1383
+ "TrainerControl": {
1384
+ "args": {
1385
+ "should_epoch_stop": false,
1386
+ "should_evaluate": false,
1387
+ "should_log": false,
1388
+ "should_save": true,
1389
+ "should_training_stop": false
1390
+ },
1391
+ "attributes": {}
1392
+ }
1393
+ },
1394
+ "total_flos": 1.7692224572998287e+18,
1395
+ "train_batch_size": 1,
1396
+ "trial_name": null,
1397
+ "trial_params": null
1398
+ }
checkpoint-750/training_args.bin ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:f1a9f338a2c311ad932497119af4f36e393c3e914b2390e2dd2e31575d923108
3
+ size 7224
checkpoint-750/zero_to_fp32.py ADDED
@@ -0,0 +1,674 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ #!/usr/bin/env python
2
+
3
+ # Copyright (c) Microsoft Corporation.
4
+ # SPDX-License-Identifier: Apache-2.0
5
+
6
+ # DeepSpeed Team
7
+
8
+ # This script extracts fp32 consolidated weights from a zero 1, 2 and 3 DeepSpeed checkpoints. It gets
9
+ # copied into the top level checkpoint dir, so the user can easily do the conversion at any point in
10
+ # the future. Once extracted, the weights don't require DeepSpeed and can be used in any
11
+ # application.
12
+ #
13
+ # example:
14
+ # python zero_to_fp32.py . output_dir/
15
+ # or
16
+ # python zero_to_fp32.py . output_dir/ --safe_serialization
17
+
18
+ import argparse
19
+ import torch
20
+ import glob
21
+ import math
22
+ import os
23
+ import re
24
+ import json
25
+ from tqdm import tqdm
26
+ from collections import OrderedDict
27
+ from dataclasses import dataclass
28
+
29
+ # while this script doesn't use deepspeed to recover data, since the checkpoints are pickled with
30
+ # DeepSpeed data structures it has to be available in the current python environment.
31
+ from deepspeed.utils import logger
32
+ from deepspeed.checkpoint.constants import (DS_VERSION, OPTIMIZER_STATE_DICT, SINGLE_PARTITION_OF_FP32_GROUPS,
33
+ FP32_FLAT_GROUPS, ZERO_STAGE, PARTITION_COUNT, PARAM_SHAPES, BUFFER_NAMES,
34
+ FROZEN_PARAM_SHAPES, FROZEN_PARAM_FRAGMENTS)
35
+
36
+
37
+ @dataclass
38
+ class zero_model_state:
39
+ buffers: dict()
40
+ param_shapes: dict()
41
+ shared_params: list
42
+ ds_version: int
43
+ frozen_param_shapes: dict()
44
+ frozen_param_fragments: dict()
45
+
46
+
47
+ debug = 0
48
+
49
+ # load to cpu
50
+ device = torch.device('cpu')
51
+
52
+
53
+ def atoi(text):
54
+ return int(text) if text.isdigit() else text
55
+
56
+
57
+ def natural_keys(text):
58
+ '''
59
+ alist.sort(key=natural_keys) sorts in human order
60
+ http://nedbatchelder.com/blog/200712/human_sorting.html
61
+ (See Toothy's implementation in the comments)
62
+ '''
63
+ return [atoi(c) for c in re.split(r'(\d+)', text)]
64
+
65
+
66
+ def get_model_state_file(checkpoint_dir, zero_stage):
67
+ if not os.path.isdir(checkpoint_dir):
68
+ raise FileNotFoundError(f"Directory '{checkpoint_dir}' doesn't exist")
69
+
70
+ # there should be only one file
71
+ if zero_stage <= 2:
72
+ file = os.path.join(checkpoint_dir, "mp_rank_00_model_states.pt")
73
+ elif zero_stage == 3:
74
+ file = os.path.join(checkpoint_dir, "zero_pp_rank_0_mp_rank_00_model_states.pt")
75
+
76
+ if not os.path.exists(file):
77
+ raise FileNotFoundError(f"can't find model states file at '{file}'")
78
+
79
+ return file
80
+
81
+
82
+ def get_checkpoint_files(checkpoint_dir, glob_pattern):
83
+ # XXX: need to test that this simple glob rule works for multi-node setup too
84
+ ckpt_files = sorted(glob.glob(os.path.join(checkpoint_dir, glob_pattern)), key=natural_keys)
85
+
86
+ if len(ckpt_files) == 0:
87
+ raise FileNotFoundError(f"can't find {glob_pattern} files in directory '{checkpoint_dir}'")
88
+
89
+ return ckpt_files
90
+
91
+
92
+ def get_optim_files(checkpoint_dir):
93
+ return get_checkpoint_files(checkpoint_dir, "*_optim_states.pt")
94
+
95
+
96
+ def get_model_state_files(checkpoint_dir):
97
+ return get_checkpoint_files(checkpoint_dir, "*_model_states.pt")
98
+
99
+
100
+ def parse_model_states(files):
101
+ zero_model_states = []
102
+ for file in files:
103
+ state_dict = torch.load(file, map_location=device)
104
+
105
+ if BUFFER_NAMES not in state_dict:
106
+ raise ValueError(f"{file} is not a model state checkpoint")
107
+ buffer_names = state_dict[BUFFER_NAMES]
108
+ if debug:
109
+ print("Found buffers:", buffer_names)
110
+
111
+ # recover just the buffers while restoring them to fp32 if they were saved in fp16
112
+ buffers = {k: v.float() for k, v in state_dict["module"].items() if k in buffer_names}
113
+ param_shapes = state_dict[PARAM_SHAPES]
114
+
115
+ # collect parameters that are included in param_shapes
116
+ param_names = []
117
+ for s in param_shapes:
118
+ for name in s.keys():
119
+ param_names.append(name)
120
+
121
+ # update with frozen parameters
122
+ frozen_param_shapes = state_dict.get(FROZEN_PARAM_SHAPES, None)
123
+ if frozen_param_shapes is not None:
124
+ if debug:
125
+ print(f"Found frozen_param_shapes: {frozen_param_shapes}")
126
+ param_names += list(frozen_param_shapes.keys())
127
+
128
+ # handle shared params
129
+ shared_params = [[k, v] for k, v in state_dict["shared_params"].items()]
130
+
131
+ ds_version = state_dict.get(DS_VERSION, None)
132
+
133
+ frozen_param_fragments = state_dict.get(FROZEN_PARAM_FRAGMENTS, None)
134
+
135
+ z_model_state = zero_model_state(buffers=buffers,
136
+ param_shapes=param_shapes,
137
+ shared_params=shared_params,
138
+ ds_version=ds_version,
139
+ frozen_param_shapes=frozen_param_shapes,
140
+ frozen_param_fragments=frozen_param_fragments)
141
+ zero_model_states.append(z_model_state)
142
+
143
+ return zero_model_states
144
+
145
+
146
+ def parse_optim_states(files, ds_checkpoint_dir):
147
+ total_files = len(files)
148
+ state_dicts = []
149
+ for f in files:
150
+ state_dict = torch.load(f, map_location=device)
151
+ # immediately discard the potentially huge 2 optimizer states as we only care for fp32 master weights
152
+ # and also handle the case where it was already removed by another helper script
153
+ state_dict["optimizer_state_dict"].pop("optimizer_state_dict", None)
154
+ state_dicts.append(state_dict)
155
+
156
+ if not ZERO_STAGE in state_dicts[0][OPTIMIZER_STATE_DICT]:
157
+ raise ValueError(f"{files[0]} is not a zero checkpoint")
158
+ zero_stage = state_dicts[0][OPTIMIZER_STATE_DICT][ZERO_STAGE]
159
+ world_size = state_dicts[0][OPTIMIZER_STATE_DICT][PARTITION_COUNT]
160
+
161
+ # For ZeRO-2 each param group can have different partition_count as data parallelism for expert
162
+ # parameters can be different from data parallelism for non-expert parameters. So we can just
163
+ # use the max of the partition_count to get the dp world_size.
164
+
165
+ if type(world_size) is list:
166
+ world_size = max(world_size)
167
+
168
+ if world_size != total_files:
169
+ raise ValueError(
170
+ f"Expected {world_size} of '*_optim_states.pt' under '{ds_checkpoint_dir}' but found {total_files} files. "
171
+ "Possibly due to an overwrite of an old checkpoint, or a checkpoint didn't get saved by one or more processes."
172
+ )
173
+
174
+ # the groups are named differently in each stage
175
+ if zero_stage <= 2:
176
+ fp32_groups_key = SINGLE_PARTITION_OF_FP32_GROUPS
177
+ elif zero_stage == 3:
178
+ fp32_groups_key = FP32_FLAT_GROUPS
179
+ else:
180
+ raise ValueError(f"unknown zero stage {zero_stage}")
181
+
182
+ if zero_stage <= 2:
183
+ fp32_flat_groups = [state_dicts[i][OPTIMIZER_STATE_DICT][fp32_groups_key] for i in range(len(state_dicts))]
184
+ elif zero_stage == 3:
185
+ # if there is more than one param group, there will be multiple flattened tensors - one
186
+ # flattened tensor per group - for simplicity merge them into a single tensor
187
+ #
188
+ # XXX: could make the script more memory efficient for when there are multiple groups - it
189
+ # will require matching the sub-lists of param_shapes for each param group flattened tensor
190
+
191
+ fp32_flat_groups = [
192
+ torch.cat(state_dicts[i][OPTIMIZER_STATE_DICT][fp32_groups_key], 0) for i in range(len(state_dicts))
193
+ ]
194
+
195
+ return zero_stage, world_size, fp32_flat_groups
196
+
197
+
198
+ def _get_fp32_state_dict_from_zero_checkpoint(ds_checkpoint_dir, exclude_frozen_parameters):
199
+ """
200
+ Returns fp32 state_dict reconstructed from ds checkpoint
201
+
202
+ Args:
203
+ - ``ds_checkpoint_dir``: path to the deepspeed checkpoint folder (where the optimizer files are)
204
+
205
+ """
206
+ print(f"Processing zero checkpoint '{ds_checkpoint_dir}'")
207
+
208
+ optim_files = get_optim_files(ds_checkpoint_dir)
209
+ zero_stage, world_size, fp32_flat_groups = parse_optim_states(optim_files, ds_checkpoint_dir)
210
+ print(f"Detected checkpoint of type zero stage {zero_stage}, world_size: {world_size}")
211
+
212
+ model_files = get_model_state_files(ds_checkpoint_dir)
213
+
214
+ zero_model_states = parse_model_states(model_files)
215
+ print(f'Parsing checkpoint created by deepspeed=={zero_model_states[0].ds_version}')
216
+
217
+ if zero_stage <= 2:
218
+ return _get_fp32_state_dict_from_zero2_checkpoint(world_size, fp32_flat_groups, zero_model_states,
219
+ exclude_frozen_parameters)
220
+ elif zero_stage == 3:
221
+ return _get_fp32_state_dict_from_zero3_checkpoint(world_size, fp32_flat_groups, zero_model_states,
222
+ exclude_frozen_parameters)
223
+
224
+
225
+ def _zero2_merge_frozen_params(state_dict, zero_model_states):
226
+ if zero_model_states[0].frozen_param_shapes is None or len(zero_model_states[0].frozen_param_shapes) == 0:
227
+ return
228
+
229
+ frozen_param_shapes = zero_model_states[0].frozen_param_shapes
230
+ frozen_param_fragments = zero_model_states[0].frozen_param_fragments
231
+
232
+ if debug:
233
+ num_elem = sum(s.numel() for s in frozen_param_shapes.values())
234
+ print(f'rank 0: {FROZEN_PARAM_SHAPES}.numel = {num_elem}')
235
+
236
+ wanted_params = len(frozen_param_shapes)
237
+ wanted_numel = sum(s.numel() for s in frozen_param_shapes.values())
238
+ avail_numel = sum([p.numel() for p in frozen_param_fragments.values()])
239
+ print(f'Frozen params: Have {avail_numel} numels to process.')
240
+ print(f'Frozen params: Need {wanted_numel} numels in {wanted_params} params')
241
+
242
+ total_params = 0
243
+ total_numel = 0
244
+ for name, shape in frozen_param_shapes.items():
245
+ total_params += 1
246
+ unpartitioned_numel = shape.numel()
247
+ total_numel += unpartitioned_numel
248
+
249
+ state_dict[name] = frozen_param_fragments[name]
250
+
251
+ if debug:
252
+ print(f"{name} full shape: {shape} unpartitioned numel {unpartitioned_numel} ")
253
+
254
+ print(f"Reconstructed Frozen fp32 state dict with {total_params} params {total_numel} elements")
255
+
256
+
257
+ def _has_callable(obj, fn):
258
+ attr = getattr(obj, fn, None)
259
+ return callable(attr)
260
+
261
+
262
+ def _zero2_merge_trainable_params(state_dict, world_size, fp32_flat_groups, zero_model_states):
263
+ param_shapes = zero_model_states[0].param_shapes
264
+
265
+ # Reconstruction protocol:
266
+ #
267
+ # XXX: document this
268
+
269
+ if debug:
270
+ for i in range(world_size):
271
+ for j in range(len(fp32_flat_groups[0])):
272
+ print(f"{FP32_FLAT_GROUPS}[{i}][{j}].shape={fp32_flat_groups[i][j].shape}")
273
+
274
+ # XXX: memory usage doubles here (zero2)
275
+ num_param_groups = len(fp32_flat_groups[0])
276
+ merged_single_partition_of_fp32_groups = []
277
+ for i in range(num_param_groups):
278
+ merged_partitions = [sd[i] for sd in fp32_flat_groups]
279
+ full_single_fp32_vector = torch.cat(merged_partitions, 0)
280
+ merged_single_partition_of_fp32_groups.append(full_single_fp32_vector)
281
+ avail_numel = sum(
282
+ [full_single_fp32_vector.numel() for full_single_fp32_vector in merged_single_partition_of_fp32_groups])
283
+
284
+ if debug:
285
+ wanted_params = sum([len(shapes) for shapes in param_shapes])
286
+ wanted_numel = sum([sum(shape.numel() for shape in shapes.values()) for shapes in param_shapes])
287
+ # not asserting if there is a mismatch due to possible padding
288
+ print(f"Have {avail_numel} numels to process.")
289
+ print(f"Need {wanted_numel} numels in {wanted_params} params.")
290
+
291
+ # params
292
+ # XXX: for huge models that can't fit into the host's RAM we will have to recode this to support
293
+ # out-of-core computing solution
294
+ total_numel = 0
295
+ total_params = 0
296
+ for shapes, full_single_fp32_vector in zip(param_shapes, merged_single_partition_of_fp32_groups):
297
+ offset = 0
298
+ avail_numel = full_single_fp32_vector.numel()
299
+ for name, shape in shapes.items():
300
+
301
+ unpartitioned_numel = shape.numel() if _has_callable(shape, 'numel') else math.prod(shape)
302
+ total_numel += unpartitioned_numel
303
+ total_params += 1
304
+
305
+ if debug:
306
+ print(f"{name} full shape: {shape} unpartitioned numel {unpartitioned_numel} ")
307
+ state_dict[name] = full_single_fp32_vector.narrow(0, offset, unpartitioned_numel).view(shape)
308
+ offset += unpartitioned_numel
309
+
310
+ # Z2 started to align to 2*world_size to improve nccl performance. Therefore both offset and
311
+ # avail_numel can differ by anywhere between 0..2*world_size. Due to two unrelated complex
312
+ # paddings performed in the code it's almost impossible to predict the exact numbers w/o the
313
+ # live optimizer object, so we are checking that the numbers are within the right range
314
+ align_to = 2 * world_size
315
+
316
+ def zero2_align(x):
317
+ return align_to * math.ceil(x / align_to)
318
+
319
+ if debug:
320
+ print(f"original offset={offset}, avail_numel={avail_numel}")
321
+
322
+ offset = zero2_align(offset)
323
+ avail_numel = zero2_align(avail_numel)
324
+
325
+ if debug:
326
+ print(f"aligned offset={offset}, avail_numel={avail_numel}")
327
+
328
+ # Sanity check
329
+ if offset != avail_numel:
330
+ raise ValueError(f"consumed {offset} numels out of {avail_numel} - something is wrong")
331
+
332
+ print(f"Reconstructed fp32 state dict with {total_params} params {total_numel} elements")
333
+
334
+
335
+ def _get_fp32_state_dict_from_zero2_checkpoint(world_size, fp32_flat_groups, zero_model_states,
336
+ exclude_frozen_parameters):
337
+ state_dict = OrderedDict()
338
+
339
+ # buffers
340
+ buffers = zero_model_states[0].buffers
341
+ state_dict.update(buffers)
342
+ if debug:
343
+ print(f"added {len(buffers)} buffers")
344
+
345
+ if not exclude_frozen_parameters:
346
+ _zero2_merge_frozen_params(state_dict, zero_model_states)
347
+
348
+ _zero2_merge_trainable_params(state_dict, world_size, fp32_flat_groups, zero_model_states)
349
+
350
+ # recover shared parameters
351
+ for pair in zero_model_states[0].shared_params:
352
+ if pair[1] in state_dict:
353
+ state_dict[pair[0]] = state_dict[pair[1]]
354
+
355
+ return state_dict
356
+
357
+
358
+ def zero3_partitioned_param_info(unpartitioned_numel, world_size):
359
+ remainder = unpartitioned_numel % world_size
360
+ padding_numel = (world_size - remainder) if remainder else 0
361
+ partitioned_numel = math.ceil(unpartitioned_numel / world_size)
362
+ return partitioned_numel, padding_numel
363
+
364
+
365
+ def _zero3_merge_frozen_params(state_dict, world_size, zero_model_states):
366
+ if zero_model_states[0].frozen_param_shapes is None or len(zero_model_states[0].frozen_param_shapes) == 0:
367
+ return
368
+
369
+ if debug:
370
+ for i in range(world_size):
371
+ num_elem = sum(s.numel() for s in zero_model_states[i].frozen_param_fragments.values())
372
+ print(f'rank {i}: {FROZEN_PARAM_SHAPES}.numel = {num_elem}')
373
+
374
+ frozen_param_shapes = zero_model_states[0].frozen_param_shapes
375
+ wanted_params = len(frozen_param_shapes)
376
+ wanted_numel = sum(s.numel() for s in frozen_param_shapes.values())
377
+ avail_numel = sum([p.numel() for p in zero_model_states[0].frozen_param_fragments.values()]) * world_size
378
+ print(f'Frozen params: Have {avail_numel} numels to process.')
379
+ print(f'Frozen params: Need {wanted_numel} numels in {wanted_params} params')
380
+
381
+ total_params = 0
382
+ total_numel = 0
383
+ for name, shape in zero_model_states[0].frozen_param_shapes.items():
384
+ total_params += 1
385
+ unpartitioned_numel = shape.numel()
386
+ total_numel += unpartitioned_numel
387
+
388
+ param_frags = tuple(model_state.frozen_param_fragments[name] for model_state in zero_model_states)
389
+ state_dict[name] = torch.cat(param_frags, 0).narrow(0, 0, unpartitioned_numel).view(shape)
390
+
391
+ partitioned_numel, partitioned_padding_numel = zero3_partitioned_param_info(unpartitioned_numel, world_size)
392
+
393
+ if debug:
394
+ print(
395
+ f"Frozen params: {total_params} {name} full shape: {shape} partition0 numel={partitioned_numel} partitioned_padding_numel={partitioned_padding_numel}"
396
+ )
397
+
398
+ print(f"Reconstructed Frozen fp32 state dict with {total_params} params {total_numel} elements")
399
+
400
+
401
+ def _zero3_merge_trainable_params(state_dict, world_size, fp32_flat_groups, zero_model_states):
402
+ param_shapes = zero_model_states[0].param_shapes
403
+ avail_numel = fp32_flat_groups[0].numel() * world_size
404
+ # Reconstruction protocol: For zero3 we need to zip the partitions together at boundary of each
405
+ # param, re-consolidating each param, while dealing with padding if any
406
+
407
+ # merge list of dicts, preserving order
408
+ param_shapes = {k: v for d in param_shapes for k, v in d.items()}
409
+
410
+ if debug:
411
+ for i in range(world_size):
412
+ print(f"{FP32_FLAT_GROUPS}[{i}].shape={fp32_flat_groups[i].shape}")
413
+
414
+ wanted_params = len(param_shapes)
415
+ wanted_numel = sum(shape.numel() for shape in param_shapes.values())
416
+ # not asserting if there is a mismatch due to possible padding
417
+ avail_numel = fp32_flat_groups[0].numel() * world_size
418
+ print(f"Trainable params: Have {avail_numel} numels to process.")
419
+ print(f"Trainable params: Need {wanted_numel} numels in {wanted_params} params.")
420
+
421
+ # params
422
+ # XXX: for huge models that can't fit into the host's RAM we will have to recode this to support
423
+ # out-of-core computing solution
424
+ offset = 0
425
+ total_numel = 0
426
+ total_params = 0
427
+ for name, shape in tqdm(param_shapes.items(), desc='Gathering Sharded Weights'):
428
+ unpartitioned_numel = shape.numel()
429
+ total_numel += unpartitioned_numel
430
+ total_params += 1
431
+ partitioned_numel, partitioned_padding_numel = zero3_partitioned_param_info(unpartitioned_numel, world_size)
432
+
433
+ if debug:
434
+ print(
435
+ f"Trainable params: {total_params} {name} full shape: {shape} partition0 numel={partitioned_numel} partitioned_padding_numel={partitioned_padding_numel}"
436
+ )
437
+
438
+ # XXX: memory usage doubles here
439
+ state_dict[name] = torch.cat(
440
+ tuple(fp32_flat_groups[i].narrow(0, offset, partitioned_numel) for i in range(world_size)),
441
+ 0).narrow(0, 0, unpartitioned_numel).view(shape)
442
+ offset += partitioned_numel
443
+
444
+ offset *= world_size
445
+
446
+ # Sanity check
447
+ if offset != avail_numel:
448
+ raise ValueError(f"consumed {offset} numels out of {avail_numel} - something is wrong")
449
+
450
+ print(f"Reconstructed Trainable fp32 state dict with {total_params} params {total_numel} elements")
451
+
452
+
453
+ def _get_fp32_state_dict_from_zero3_checkpoint(world_size, fp32_flat_groups, zero_model_states,
454
+ exclude_frozen_parameters):
455
+ state_dict = OrderedDict()
456
+
457
+ # buffers
458
+ buffers = zero_model_states[0].buffers
459
+ state_dict.update(buffers)
460
+ if debug:
461
+ print(f"added {len(buffers)} buffers")
462
+
463
+ if not exclude_frozen_parameters:
464
+ _zero3_merge_frozen_params(state_dict, world_size, zero_model_states)
465
+
466
+ _zero3_merge_trainable_params(state_dict, world_size, fp32_flat_groups, zero_model_states)
467
+
468
+ # recover shared parameters
469
+ for pair in zero_model_states[0].shared_params:
470
+ if pair[1] in state_dict:
471
+ state_dict[pair[0]] = state_dict[pair[1]]
472
+
473
+ return state_dict
474
+
475
+
476
+ def get_fp32_state_dict_from_zero_checkpoint(checkpoint_dir, tag=None, exclude_frozen_parameters=False):
477
+ """
478
+ Convert ZeRO 2 or 3 checkpoint into a single fp32 consolidated state_dict that can be loaded with
479
+ ``load_state_dict()`` and used for training without DeepSpeed or shared with others, for example
480
+ via a model hub.
481
+
482
+ Args:
483
+ - ``checkpoint_dir``: path to the desired checkpoint folder
484
+ - ``tag``: checkpoint tag used as a unique identifier for checkpoint. If not provided will attempt to load tag in 'latest' file. e.g., ``global_step14``
485
+ - ``exclude_frozen_parameters``: exclude frozen parameters
486
+
487
+ Returns:
488
+ - pytorch ``state_dict``
489
+
490
+ Note: this approach may not work if your application doesn't have sufficient free CPU memory and
491
+ you may need to use the offline approach using the ``zero_to_fp32.py`` script that is saved with
492
+ the checkpoint.
493
+
494
+ A typical usage might be ::
495
+
496
+ from deepspeed.utils.zero_to_fp32 import get_fp32_state_dict_from_zero_checkpoint
497
+ # do the training and checkpoint saving
498
+ state_dict = get_fp32_state_dict_from_zero_checkpoint(checkpoint_dir) # already on cpu
499
+ model = model.cpu() # move to cpu
500
+ model.load_state_dict(state_dict)
501
+ # submit to model hub or save the model to share with others
502
+
503
+ In this example the ``model`` will no longer be usable in the deepspeed context of the same
504
+ application. i.e. you will need to re-initialize the deepspeed engine, since
505
+ ``model.load_state_dict(state_dict)`` will remove all the deepspeed magic from it.
506
+
507
+ If you want it all done for you, use ``load_state_dict_from_zero_checkpoint`` instead.
508
+
509
+ """
510
+ if tag is None:
511
+ latest_path = os.path.join(checkpoint_dir, 'latest')
512
+ if os.path.isfile(latest_path):
513
+ with open(latest_path, 'r') as fd:
514
+ tag = fd.read().strip()
515
+ else:
516
+ raise ValueError(f"Unable to find 'latest' file at {latest_path}")
517
+
518
+ ds_checkpoint_dir = os.path.join(checkpoint_dir, tag)
519
+
520
+ if not os.path.isdir(ds_checkpoint_dir):
521
+ raise FileNotFoundError(f"Directory '{ds_checkpoint_dir}' doesn't exist")
522
+
523
+ return _get_fp32_state_dict_from_zero_checkpoint(ds_checkpoint_dir, exclude_frozen_parameters)
524
+
525
+
526
+ def convert_zero_checkpoint_to_fp32_state_dict(checkpoint_dir,
527
+ output_dir,
528
+ max_shard_size="5GB",
529
+ safe_serialization=False,
530
+ tag=None,
531
+ exclude_frozen_parameters=False):
532
+ """
533
+ Convert ZeRO 2 or 3 checkpoint into a single fp32 consolidated ``state_dict`` file that can be
534
+ loaded with ``torch.load(file)`` + ``load_state_dict()`` and used for training without DeepSpeed.
535
+
536
+ Args:
537
+ - ``checkpoint_dir``: path to the desired checkpoint folder. (one that contains the tag-folder, like ``global_step14``)
538
+ - ``output_dir``: directory to the pytorch fp32 state_dict output files
539
+ - ``max_shard_size``: the maximum size for a checkpoint before being sharded, default value is 5GB
540
+ - ``safe_serialization``: whether to save the model using `safetensors` or the traditional PyTorch way (that uses `pickle`).
541
+ - ``tag``: checkpoint tag used as a unique identifier for checkpoint. If not provided will attempt to load tag in the file named ``latest`` in the checkpoint folder, e.g., ``global_step14``
542
+ - ``exclude_frozen_parameters``: exclude frozen parameters
543
+ """
544
+ # Dependency pre-check
545
+ if safe_serialization:
546
+ try:
547
+ from safetensors.torch import save_file
548
+ except ImportError:
549
+ print('If you want to use `safe_serialization`, please `pip install safetensors`')
550
+ raise
551
+ if max_shard_size is not None:
552
+ try:
553
+ from huggingface_hub import split_torch_state_dict_into_shards
554
+ except ImportError:
555
+ print('If you want to use `max_shard_size`, please `pip install huggingface_hub`')
556
+ raise
557
+
558
+ # Convert zero checkpoint to state_dict
559
+ state_dict = get_fp32_state_dict_from_zero_checkpoint(checkpoint_dir, tag, exclude_frozen_parameters)
560
+
561
+ # Shard the model if it is too big.
562
+ weights_name = "model.safetensors" if safe_serialization else "pytorch_model.bin"
563
+ if max_shard_size is not None:
564
+ filename_pattern = weights_name.replace(".bin", "{suffix}.bin").replace(".safetensors", "{suffix}.safetensors")
565
+ state_dict_split = split_torch_state_dict_into_shards(state_dict,
566
+ filename_pattern=filename_pattern,
567
+ max_shard_size=max_shard_size)
568
+ else:
569
+ from collections import namedtuple
570
+ StateDictSplit = namedtuple("StateDictSplit", ["is_sharded", "filename_to_tensors"])
571
+ state_dict_split = StateDictSplit(is_sharded=False,
572
+ filename_to_tensors={weights_name: list(state_dict.keys())})
573
+
574
+ # Save the model
575
+ filename_to_tensors = state_dict_split.filename_to_tensors.items()
576
+ for shard_file, tensors in tqdm(filename_to_tensors, desc="Saving checkpoint shards"):
577
+ shard = {tensor: state_dict[tensor].contiguous() for tensor in tensors}
578
+ output_path = os.path.join(output_dir, shard_file)
579
+ if safe_serialization:
580
+ save_file(shard, output_path, metadata={"format": "pt"})
581
+ else:
582
+ torch.save(shard, output_path)
583
+
584
+ # Save index if sharded
585
+ if state_dict_split.is_sharded:
586
+ index = {
587
+ "metadata": state_dict_split.metadata,
588
+ "weight_map": state_dict_split.tensor_to_filename,
589
+ }
590
+ save_index_file = "model.safetensors.index.json" if safe_serialization else "pytorch_model.bin.index.json"
591
+ save_index_file = os.path.join(output_dir, save_index_file)
592
+ with open(save_index_file, "w", encoding="utf-8") as f:
593
+ content = json.dumps(index, indent=2, sort_keys=True) + "\n"
594
+ f.write(content)
595
+
596
+
597
+ def load_state_dict_from_zero_checkpoint(model, checkpoint_dir, tag=None):
598
+ """
599
+ 1. Put the provided model to cpu
600
+ 2. Convert ZeRO 2 or 3 checkpoint into a single fp32 consolidated ``state_dict``
601
+ 3. Load it into the provided model
602
+
603
+ Args:
604
+ - ``model``: the model object to update
605
+ - ``checkpoint_dir``: path to the desired checkpoint folder. (one that contains the tag-folder, like ``global_step14``)
606
+ - ``tag``: checkpoint tag used as a unique identifier for checkpoint. If not provided will attempt to load tag in the file named ``latest`` in the checkpoint folder, e.g., ``global_step14``
607
+
608
+ Returns:
609
+ - ``model`: modified model
610
+
611
+ Make sure you have plenty of CPU memory available before you call this function. If you don't
612
+ have enough use the ``zero_to_fp32.py`` utility to do the conversion. You will find it
613
+ conveniently placed for you in the checkpoint folder.
614
+
615
+ A typical usage might be ::
616
+
617
+ from deepspeed.utils.zero_to_fp32 import load_state_dict_from_zero_checkpoint
618
+ model = load_state_dict_from_zero_checkpoint(trainer.model, checkpoint_dir)
619
+ # submit to model hub or save the model to share with others
620
+
621
+ Note, that once this was run, the ``model`` will no longer be usable in the deepspeed context
622
+ of the same application. i.e. you will need to re-initialize the deepspeed engine, since
623
+ ``model.load_state_dict(state_dict)`` will remove all the deepspeed magic from it.
624
+
625
+ """
626
+ logger.info(f"Extracting fp32 weights")
627
+ state_dict = get_fp32_state_dict_from_zero_checkpoint(checkpoint_dir, tag)
628
+
629
+ logger.info(f"Overwriting model with fp32 weights")
630
+ model = model.cpu()
631
+ model.load_state_dict(state_dict, strict=False)
632
+
633
+ return model
634
+
635
+
636
+ if __name__ == "__main__":
637
+ parser = argparse.ArgumentParser()
638
+ parser.add_argument("checkpoint_dir",
639
+ type=str,
640
+ help="path to the desired checkpoint folder, e.g., path/checkpoint-12")
641
+ parser.add_argument("output_dir",
642
+ type=str,
643
+ help="directory to the pytorch fp32 state_dict output files"
644
+ "(e.g. path/checkpoint-12-output/)")
645
+ parser.add_argument(
646
+ "--max_shard_size",
647
+ type=str,
648
+ default="5GB",
649
+ help="The maximum size for a checkpoint before being sharded. Checkpoints shard will then be each of size"
650
+ "lower than this size. If expressed as a string, needs to be digits followed by a unit (like `5MB`"
651
+ "We default it to 5GB in order for models to be able to run easily on free-tier google colab instances"
652
+ "without CPU OOM issues.")
653
+ parser.add_argument(
654
+ "--safe_serialization",
655
+ default=False,
656
+ action='store_true',
657
+ help="Whether to save the model using `safetensors` or the traditional PyTorch way (that uses `pickle`).")
658
+ parser.add_argument("-t",
659
+ "--tag",
660
+ type=str,
661
+ default=None,
662
+ help="checkpoint tag used as a unique identifier for checkpoint. e.g., global_step1")
663
+ parser.add_argument("--exclude_frozen_parameters", action='store_true', help="exclude frozen parameters")
664
+ parser.add_argument("-d", "--debug", action='store_true', help="enable debug")
665
+ args = parser.parse_args()
666
+
667
+ debug = args.debug
668
+
669
+ convert_zero_checkpoint_to_fp32_state_dict(args.checkpoint_dir,
670
+ args.output_dir,
671
+ max_shard_size=args.max_shard_size,
672
+ safe_serialization=args.safe_serialization,
673
+ tag=args.tag,
674
+ exclude_frozen_parameters=args.exclude_frozen_parameters)