ziansu commited on
Commit
4c569a4
·
verified ·
1 Parent(s): daf1e6a

Training in progress, step 1400, checkpoint

Browse files
Files changed (28) hide show
  1. checkpoint-1400/README.md +202 -0
  2. checkpoint-1400/adapter_config.json +34 -0
  3. checkpoint-1400/adapter_model.safetensors +3 -0
  4. checkpoint-1400/global_step1398/bf16_zero_pp_rank_0_mp_rank_00_optim_states.pt +3 -0
  5. checkpoint-1400/global_step1398/bf16_zero_pp_rank_1_mp_rank_00_optim_states.pt +3 -0
  6. checkpoint-1400/global_step1398/bf16_zero_pp_rank_2_mp_rank_00_optim_states.pt +3 -0
  7. checkpoint-1400/global_step1398/bf16_zero_pp_rank_3_mp_rank_00_optim_states.pt +3 -0
  8. checkpoint-1400/global_step1398/bf16_zero_pp_rank_4_mp_rank_00_optim_states.pt +3 -0
  9. checkpoint-1400/global_step1398/bf16_zero_pp_rank_5_mp_rank_00_optim_states.pt +3 -0
  10. checkpoint-1400/global_step1398/bf16_zero_pp_rank_6_mp_rank_00_optim_states.pt +3 -0
  11. checkpoint-1400/global_step1398/bf16_zero_pp_rank_7_mp_rank_00_optim_states.pt +3 -0
  12. checkpoint-1400/global_step1398/mp_rank_00_model_states.pt +3 -0
  13. checkpoint-1400/latest +1 -0
  14. checkpoint-1400/rng_state_0.pth +3 -0
  15. checkpoint-1400/rng_state_1.pth +3 -0
  16. checkpoint-1400/rng_state_2.pth +3 -0
  17. checkpoint-1400/rng_state_3.pth +3 -0
  18. checkpoint-1400/rng_state_4.pth +3 -0
  19. checkpoint-1400/rng_state_5.pth +3 -0
  20. checkpoint-1400/rng_state_6.pth +3 -0
  21. checkpoint-1400/rng_state_7.pth +3 -0
  22. checkpoint-1400/scheduler.pt +3 -0
  23. checkpoint-1400/special_tokens_map.json +30 -0
  24. checkpoint-1400/tokenizer.json +0 -0
  25. checkpoint-1400/tokenizer_config.json +133 -0
  26. checkpoint-1400/trainer_state.json +2581 -0
  27. checkpoint-1400/training_args.bin +3 -0
  28. checkpoint-1400/zero_to_fp32.py +674 -0
checkpoint-1400/README.md ADDED
@@ -0,0 +1,202 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ base_model: microsoft/Phi-3-mini-4k-instruct
3
+ library_name: peft
4
+ ---
5
+
6
+ # Model Card for Model ID
7
+
8
+ <!-- Provide a quick summary of what the model is/does. -->
9
+
10
+
11
+
12
+ ## Model Details
13
+
14
+ ### Model Description
15
+
16
+ <!-- Provide a longer summary of what this model is. -->
17
+
18
+
19
+
20
+ - **Developed by:** [More Information Needed]
21
+ - **Funded by [optional]:** [More Information Needed]
22
+ - **Shared by [optional]:** [More Information Needed]
23
+ - **Model type:** [More Information Needed]
24
+ - **Language(s) (NLP):** [More Information Needed]
25
+ - **License:** [More Information Needed]
26
+ - **Finetuned from model [optional]:** [More Information Needed]
27
+
28
+ ### Model Sources [optional]
29
+
30
+ <!-- Provide the basic links for the model. -->
31
+
32
+ - **Repository:** [More Information Needed]
33
+ - **Paper [optional]:** [More Information Needed]
34
+ - **Demo [optional]:** [More Information Needed]
35
+
36
+ ## Uses
37
+
38
+ <!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. -->
39
+
40
+ ### Direct Use
41
+
42
+ <!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. -->
43
+
44
+ [More Information Needed]
45
+
46
+ ### Downstream Use [optional]
47
+
48
+ <!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app -->
49
+
50
+ [More Information Needed]
51
+
52
+ ### Out-of-Scope Use
53
+
54
+ <!-- This section addresses misuse, malicious use, and uses that the model will not work well for. -->
55
+
56
+ [More Information Needed]
57
+
58
+ ## Bias, Risks, and Limitations
59
+
60
+ <!-- This section is meant to convey both technical and sociotechnical limitations. -->
61
+
62
+ [More Information Needed]
63
+
64
+ ### Recommendations
65
+
66
+ <!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. -->
67
+
68
+ Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations.
69
+
70
+ ## How to Get Started with the Model
71
+
72
+ Use the code below to get started with the model.
73
+
74
+ [More Information Needed]
75
+
76
+ ## Training Details
77
+
78
+ ### Training Data
79
+
80
+ <!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. -->
81
+
82
+ [More Information Needed]
83
+
84
+ ### Training Procedure
85
+
86
+ <!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. -->
87
+
88
+ #### Preprocessing [optional]
89
+
90
+ [More Information Needed]
91
+
92
+
93
+ #### Training Hyperparameters
94
+
95
+ - **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision -->
96
+
97
+ #### Speeds, Sizes, Times [optional]
98
+
99
+ <!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. -->
100
+
101
+ [More Information Needed]
102
+
103
+ ## Evaluation
104
+
105
+ <!-- This section describes the evaluation protocols and provides the results. -->
106
+
107
+ ### Testing Data, Factors & Metrics
108
+
109
+ #### Testing Data
110
+
111
+ <!-- This should link to a Dataset Card if possible. -->
112
+
113
+ [More Information Needed]
114
+
115
+ #### Factors
116
+
117
+ <!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. -->
118
+
119
+ [More Information Needed]
120
+
121
+ #### Metrics
122
+
123
+ <!-- These are the evaluation metrics being used, ideally with a description of why. -->
124
+
125
+ [More Information Needed]
126
+
127
+ ### Results
128
+
129
+ [More Information Needed]
130
+
131
+ #### Summary
132
+
133
+
134
+
135
+ ## Model Examination [optional]
136
+
137
+ <!-- Relevant interpretability work for the model goes here -->
138
+
139
+ [More Information Needed]
140
+
141
+ ## Environmental Impact
142
+
143
+ <!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly -->
144
+
145
+ Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700).
146
+
147
+ - **Hardware Type:** [More Information Needed]
148
+ - **Hours used:** [More Information Needed]
149
+ - **Cloud Provider:** [More Information Needed]
150
+ - **Compute Region:** [More Information Needed]
151
+ - **Carbon Emitted:** [More Information Needed]
152
+
153
+ ## Technical Specifications [optional]
154
+
155
+ ### Model Architecture and Objective
156
+
157
+ [More Information Needed]
158
+
159
+ ### Compute Infrastructure
160
+
161
+ [More Information Needed]
162
+
163
+ #### Hardware
164
+
165
+ [More Information Needed]
166
+
167
+ #### Software
168
+
169
+ [More Information Needed]
170
+
171
+ ## Citation [optional]
172
+
173
+ <!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. -->
174
+
175
+ **BibTeX:**
176
+
177
+ [More Information Needed]
178
+
179
+ **APA:**
180
+
181
+ [More Information Needed]
182
+
183
+ ## Glossary [optional]
184
+
185
+ <!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. -->
186
+
187
+ [More Information Needed]
188
+
189
+ ## More Information [optional]
190
+
191
+ [More Information Needed]
192
+
193
+ ## Model Card Authors [optional]
194
+
195
+ [More Information Needed]
196
+
197
+ ## Model Card Contact
198
+
199
+ [More Information Needed]
200
+ ### Framework versions
201
+
202
+ - PEFT 0.14.0
checkpoint-1400/adapter_config.json ADDED
@@ -0,0 +1,34 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "alpha_pattern": {},
3
+ "auto_mapping": null,
4
+ "base_model_name_or_path": "microsoft/Phi-3-mini-4k-instruct",
5
+ "bias": "none",
6
+ "eva_config": null,
7
+ "exclude_modules": null,
8
+ "fan_in_fan_out": false,
9
+ "inference_mode": true,
10
+ "init_lora_weights": true,
11
+ "layer_replication": null,
12
+ "layers_pattern": null,
13
+ "layers_to_transform": null,
14
+ "loftq_config": {},
15
+ "lora_alpha": 16,
16
+ "lora_bias": false,
17
+ "lora_dropout": 0.0,
18
+ "megatron_config": null,
19
+ "megatron_core": "megatron.core",
20
+ "modules_to_save": null,
21
+ "peft_type": "LORA",
22
+ "r": 8,
23
+ "rank_pattern": {},
24
+ "revision": null,
25
+ "target_modules": [
26
+ "down_proj",
27
+ "qkv_proj",
28
+ "o_proj",
29
+ "gate_up_proj"
30
+ ],
31
+ "task_type": "CAUSAL_LM",
32
+ "use_dora": false,
33
+ "use_rslora": false
34
+ }
checkpoint-1400/adapter_model.safetensors ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:d06756c8d92882550024f6c457438a61dc700ef3a3d9e0a489eb56a6d771e3fc
3
+ size 25200088
checkpoint-1400/global_step1398/bf16_zero_pp_rank_0_mp_rank_00_optim_states.pt ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:dfae0d1e65f53bbaa7857718021b41d9b980f6beff73a1ed57c481e436a0c822
3
+ size 18881328
checkpoint-1400/global_step1398/bf16_zero_pp_rank_1_mp_rank_00_optim_states.pt ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:dc15e7e159099bddc79bb490fd09251aec95760b1c70ce57cf047f6e3aa846bf
3
+ size 18881328
checkpoint-1400/global_step1398/bf16_zero_pp_rank_2_mp_rank_00_optim_states.pt ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:e0904b93ee6d8434a75c2209c964898fec0c64f6a10ca9b78a2ce4c59f18468f
3
+ size 18881328
checkpoint-1400/global_step1398/bf16_zero_pp_rank_3_mp_rank_00_optim_states.pt ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:2226e3584a537766296c3d64c1c557c40a3832fc26ad7e9254b469c69f83de85
3
+ size 18881392
checkpoint-1400/global_step1398/bf16_zero_pp_rank_4_mp_rank_00_optim_states.pt ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:17906c9775a85fc5f6c95e42971f4f22326f454a5dcfc99d1eab9769730d8c16
3
+ size 18881392
checkpoint-1400/global_step1398/bf16_zero_pp_rank_5_mp_rank_00_optim_states.pt ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:e9cf919a4dc17cbc9ec84da76800efc2584806310be9ea500df04161f13f95fb
3
+ size 18881392
checkpoint-1400/global_step1398/bf16_zero_pp_rank_6_mp_rank_00_optim_states.pt ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:2bdfc4c2195e16eafaa084d9c369d634835787ced6615e7eacafb1f7bc8fc14b
3
+ size 18881392
checkpoint-1400/global_step1398/bf16_zero_pp_rank_7_mp_rank_00_optim_states.pt ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:8632840769126219e8adc03ed0b9de1160d9529cb947999cc06d784b76126828
3
+ size 18881392
checkpoint-1400/global_step1398/mp_rank_00_model_states.pt ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:fa748062c20e6302261b37306b33fee8ef73906106245543e270aa402ef3908c
3
+ size 25379244
checkpoint-1400/latest ADDED
@@ -0,0 +1 @@
 
 
1
+ global_step1398
checkpoint-1400/rng_state_0.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:27670a2e80ef6eea2112fb593ee34bfc11ac56deececdc41375268836746484a
3
+ size 15984
checkpoint-1400/rng_state_1.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:a9fb368b8e1a011c7ffe983f562eba811ba532df543052875a13820074278b90
3
+ size 15984
checkpoint-1400/rng_state_2.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:1861c92b516c0a288138c867ba18f97edb9adb30cd5750b68b932248cf8d5557
3
+ size 15984
checkpoint-1400/rng_state_3.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:e741f8420186fd289dd05fd1db88f41e0da10203461344518d3b8bc30d50b96b
3
+ size 15984
checkpoint-1400/rng_state_4.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:88efc65eaf65645838644561e78d57941a96e07300aa390bd886817b7ff8bea7
3
+ size 15984
checkpoint-1400/rng_state_5.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:8028ddfb7d72b0c282e45ca3a0cadcd5d0bd77db0bb6f3e3c6102423e14b55ae
3
+ size 15984
checkpoint-1400/rng_state_6.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:8a77febdde7a01f90b20ef76acc76714f772da6245731bf288cd9ea69e57c5fd
3
+ size 15984
checkpoint-1400/rng_state_7.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:d676e14f0aa43cf9b2bd7f5d1a09749f6dc54c870f621fe9fe6d8e3f08c55169
3
+ size 15984
checkpoint-1400/scheduler.pt ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:46ccd2eaabf2e62001ccbd9f6336cb2a4a520c54a3ad99c9dbcf64407d925ac8
3
+ size 1064
checkpoint-1400/special_tokens_map.json ADDED
@@ -0,0 +1,30 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "bos_token": {
3
+ "content": "<s>",
4
+ "lstrip": false,
5
+ "normalized": false,
6
+ "rstrip": false,
7
+ "single_word": false
8
+ },
9
+ "eos_token": {
10
+ "content": "<|end|>",
11
+ "lstrip": false,
12
+ "normalized": false,
13
+ "rstrip": false,
14
+ "single_word": false
15
+ },
16
+ "pad_token": {
17
+ "content": "<|endoftext|>",
18
+ "lstrip": false,
19
+ "normalized": false,
20
+ "rstrip": false,
21
+ "single_word": false
22
+ },
23
+ "unk_token": {
24
+ "content": "<unk>",
25
+ "lstrip": false,
26
+ "normalized": false,
27
+ "rstrip": false,
28
+ "single_word": false
29
+ }
30
+ }
checkpoint-1400/tokenizer.json ADDED
The diff for this file is too large to render. See raw diff
 
checkpoint-1400/tokenizer_config.json ADDED
@@ -0,0 +1,133 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "add_bos_token": false,
3
+ "add_eos_token": false,
4
+ "add_prefix_space": null,
5
+ "added_tokens_decoder": {
6
+ "0": {
7
+ "content": "<unk>",
8
+ "lstrip": false,
9
+ "normalized": false,
10
+ "rstrip": false,
11
+ "single_word": false,
12
+ "special": true
13
+ },
14
+ "1": {
15
+ "content": "<s>",
16
+ "lstrip": false,
17
+ "normalized": false,
18
+ "rstrip": false,
19
+ "single_word": false,
20
+ "special": true
21
+ },
22
+ "2": {
23
+ "content": "</s>",
24
+ "lstrip": false,
25
+ "normalized": false,
26
+ "rstrip": true,
27
+ "single_word": false,
28
+ "special": false
29
+ },
30
+ "32000": {
31
+ "content": "<|endoftext|>",
32
+ "lstrip": false,
33
+ "normalized": false,
34
+ "rstrip": false,
35
+ "single_word": false,
36
+ "special": true
37
+ },
38
+ "32001": {
39
+ "content": "<|assistant|>",
40
+ "lstrip": false,
41
+ "normalized": false,
42
+ "rstrip": true,
43
+ "single_word": false,
44
+ "special": true
45
+ },
46
+ "32002": {
47
+ "content": "<|placeholder1|>",
48
+ "lstrip": false,
49
+ "normalized": false,
50
+ "rstrip": true,
51
+ "single_word": false,
52
+ "special": true
53
+ },
54
+ "32003": {
55
+ "content": "<|placeholder2|>",
56
+ "lstrip": false,
57
+ "normalized": false,
58
+ "rstrip": true,
59
+ "single_word": false,
60
+ "special": true
61
+ },
62
+ "32004": {
63
+ "content": "<|placeholder3|>",
64
+ "lstrip": false,
65
+ "normalized": false,
66
+ "rstrip": true,
67
+ "single_word": false,
68
+ "special": true
69
+ },
70
+ "32005": {
71
+ "content": "<|placeholder4|>",
72
+ "lstrip": false,
73
+ "normalized": false,
74
+ "rstrip": true,
75
+ "single_word": false,
76
+ "special": true
77
+ },
78
+ "32006": {
79
+ "content": "<|system|>",
80
+ "lstrip": false,
81
+ "normalized": false,
82
+ "rstrip": true,
83
+ "single_word": false,
84
+ "special": true
85
+ },
86
+ "32007": {
87
+ "content": "<|end|>",
88
+ "lstrip": false,
89
+ "normalized": false,
90
+ "rstrip": false,
91
+ "single_word": false,
92
+ "special": true
93
+ },
94
+ "32008": {
95
+ "content": "<|placeholder5|>",
96
+ "lstrip": false,
97
+ "normalized": false,
98
+ "rstrip": true,
99
+ "single_word": false,
100
+ "special": true
101
+ },
102
+ "32009": {
103
+ "content": "<|placeholder6|>",
104
+ "lstrip": false,
105
+ "normalized": false,
106
+ "rstrip": true,
107
+ "single_word": false,
108
+ "special": true
109
+ },
110
+ "32010": {
111
+ "content": "<|user|>",
112
+ "lstrip": false,
113
+ "normalized": false,
114
+ "rstrip": true,
115
+ "single_word": false,
116
+ "special": true
117
+ }
118
+ },
119
+ "bos_token": "<s>",
120
+ "chat_template": "{% set system_message = 'You are a helpful AI assistant.' %}{% if messages[0]['role'] == 'system' %}{% set system_message = messages[0]['content'] %}{% endif %}{% if system_message is defined %}{{ '<s>' + '<|system|>\n' + system_message + '<|end|>\n' }}{% endif %}{% for message in messages %}{% set content = message['content'] %}{% if message['role'] == 'user' %}{{ '<|user|>\n' + content + '<|end|>\n<|assistant|>\n' }}{% elif message['role'] == 'assistant' %}{{ content + '<|end|>' + '\n' }}{% endif %}{% endfor %}",
121
+ "clean_up_tokenization_spaces": false,
122
+ "eos_token": "<|end|>",
123
+ "extra_special_tokens": {},
124
+ "legacy": false,
125
+ "model_max_length": 4096,
126
+ "pad_token": "<|endoftext|>",
127
+ "padding_side": "right",
128
+ "sp_model_kwargs": {},
129
+ "split_special_tokens": false,
130
+ "tokenizer_class": "LlamaTokenizer",
131
+ "unk_token": "<unk>",
132
+ "use_default_system_prompt": false
133
+ }
checkpoint-1400/trainer_state.json ADDED
@@ -0,0 +1,2581 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "best_metric": null,
3
+ "best_model_checkpoint": null,
4
+ "epoch": 2.194624288797332,
5
+ "eval_steps": 50,
6
+ "global_step": 1400,
7
+ "is_hyper_param_search": false,
8
+ "is_local_process_zero": true,
9
+ "is_world_process_zero": true,
10
+ "log_history": [
11
+ {
12
+ "epoch": 0.015695507161075144,
13
+ "grad_norm": 0.04355761408805847,
14
+ "learning_rate": 4.999451708687114e-06,
15
+ "logits/chosen": 14.845781326293945,
16
+ "logits/rejected": 14.576438903808594,
17
+ "logps/chosen": -0.31864267587661743,
18
+ "logps/rejected": -0.24545662105083466,
19
+ "loss": 1.0492,
20
+ "rewards/accuracies": 0.25,
21
+ "rewards/chosen": -0.47796401381492615,
22
+ "rewards/margins": -0.10977902263402939,
23
+ "rewards/rejected": -0.3681849539279938,
24
+ "step": 10
25
+ },
26
+ {
27
+ "epoch": 0.03139101432215029,
28
+ "grad_norm": 0.04919258877635002,
29
+ "learning_rate": 4.997807075247147e-06,
30
+ "logits/chosen": 15.27595043182373,
31
+ "logits/rejected": 14.872761726379395,
32
+ "logps/chosen": -0.3344747722148895,
33
+ "logps/rejected": -0.24258682131767273,
34
+ "loss": 1.0487,
35
+ "rewards/accuracies": 0.16249999403953552,
36
+ "rewards/chosen": -0.5017121434211731,
37
+ "rewards/margins": -0.1378319263458252,
38
+ "rewards/rejected": -0.3638802468776703,
39
+ "step": 20
40
+ },
41
+ {
42
+ "epoch": 0.047086521483225424,
43
+ "grad_norm": 0.049933061003685,
44
+ "learning_rate": 4.9950668210706795e-06,
45
+ "logits/chosen": 15.913165092468262,
46
+ "logits/rejected": 15.607622146606445,
47
+ "logps/chosen": -0.3440183997154236,
48
+ "logps/rejected": -0.2831566333770752,
49
+ "loss": 1.0405,
50
+ "rewards/accuracies": 0.1875,
51
+ "rewards/chosen": -0.516027569770813,
52
+ "rewards/margins": -0.09129264950752258,
53
+ "rewards/rejected": -0.4247349202632904,
54
+ "step": 30
55
+ },
56
+ {
57
+ "epoch": 0.06278202864430057,
58
+ "grad_norm": 0.05693503096699715,
59
+ "learning_rate": 4.9912321481237616e-06,
60
+ "logits/chosen": 15.402900695800781,
61
+ "logits/rejected": 14.99272632598877,
62
+ "logps/chosen": -0.3297731578350067,
63
+ "logps/rejected": -0.2746916711330414,
64
+ "loss": 1.0369,
65
+ "rewards/accuracies": 0.21250000596046448,
66
+ "rewards/chosen": -0.49465981125831604,
67
+ "rewards/margins": -0.08262218534946442,
68
+ "rewards/rejected": -0.41203755140304565,
69
+ "step": 40
70
+ },
71
+ {
72
+ "epoch": 0.07847753580537571,
73
+ "grad_norm": 0.05467928573489189,
74
+ "learning_rate": 4.986304738420684e-06,
75
+ "logits/chosen": 15.64543342590332,
76
+ "logits/rejected": 15.632547378540039,
77
+ "logps/chosen": -0.30952686071395874,
78
+ "logps/rejected": -0.24847058951854706,
79
+ "loss": 1.0367,
80
+ "rewards/accuracies": 0.21250000596046448,
81
+ "rewards/chosen": -0.46429023146629333,
82
+ "rewards/margins": -0.09158438444137573,
83
+ "rewards/rejected": -0.37270587682724,
84
+ "step": 50
85
+ },
86
+ {
87
+ "epoch": 0.07847753580537571,
88
+ "eval_logits/chosen": 15.850138664245605,
89
+ "eval_logits/rejected": 15.368529319763184,
90
+ "eval_logps/chosen": -0.3222965598106384,
91
+ "eval_logps/rejected": -0.26877468824386597,
92
+ "eval_loss": 1.0326261520385742,
93
+ "eval_rewards/accuracies": 0.26923078298568726,
94
+ "eval_rewards/chosen": -0.4834447503089905,
95
+ "eval_rewards/margins": -0.08028276264667511,
96
+ "eval_rewards/rejected": -0.40316200256347656,
97
+ "eval_runtime": 14.5044,
98
+ "eval_samples_per_second": 28.405,
99
+ "eval_steps_per_second": 3.585,
100
+ "step": 50
101
+ },
102
+ {
103
+ "epoch": 0.09417304296645085,
104
+ "grad_norm": 0.06174452602863312,
105
+ "learning_rate": 4.980286753286196e-06,
106
+ "logits/chosen": 15.443066596984863,
107
+ "logits/rejected": 15.192205429077148,
108
+ "logps/chosen": -0.31090402603149414,
109
+ "logps/rejected": -0.26281923055648804,
110
+ "loss": 1.04,
111
+ "rewards/accuracies": 0.25,
112
+ "rewards/chosen": -0.466356098651886,
113
+ "rewards/margins": -0.07212716341018677,
114
+ "rewards/rejected": -0.39422887563705444,
115
+ "step": 60
116
+ },
117
+ {
118
+ "epoch": 0.109868550127526,
119
+ "grad_norm": 0.06952528655529022,
120
+ "learning_rate": 4.973180832407471e-06,
121
+ "logits/chosen": 16.024200439453125,
122
+ "logits/rejected": 15.82934284210205,
123
+ "logps/chosen": -0.348227322101593,
124
+ "logps/rejected": -0.26220566034317017,
125
+ "loss": 1.043,
126
+ "rewards/accuracies": 0.21250000596046448,
127
+ "rewards/chosen": -0.5223408937454224,
128
+ "rewards/margins": -0.1290324479341507,
129
+ "rewards/rejected": -0.39330852031707764,
130
+ "step": 70
131
+ },
132
+ {
133
+ "epoch": 0.12556405728860115,
134
+ "grad_norm": 0.07572082430124283,
135
+ "learning_rate": 4.964990092676263e-06,
136
+ "logits/chosen": 15.884915351867676,
137
+ "logits/rejected": 15.603845596313477,
138
+ "logps/chosen": -0.34849274158477783,
139
+ "logps/rejected": -0.26585355401039124,
140
+ "loss": 1.0285,
141
+ "rewards/accuracies": 0.1875,
142
+ "rewards/chosen": -0.5227391719818115,
143
+ "rewards/margins": -0.12395882606506348,
144
+ "rewards/rejected": -0.39878037571907043,
145
+ "step": 80
146
+ },
147
+ {
148
+ "epoch": 0.14125956444967627,
149
+ "grad_norm": 0.2423778474330902,
150
+ "learning_rate": 4.9557181268217225e-06,
151
+ "logits/chosen": 15.978216171264648,
152
+ "logits/rejected": 15.76471996307373,
153
+ "logps/chosen": -0.327436238527298,
154
+ "logps/rejected": -0.25457051396369934,
155
+ "loss": 1.03,
156
+ "rewards/accuracies": 0.22499999403953552,
157
+ "rewards/chosen": -0.49115434288978577,
158
+ "rewards/margins": -0.10929858684539795,
159
+ "rewards/rejected": -0.3818557560443878,
160
+ "step": 90
161
+ },
162
+ {
163
+ "epoch": 0.15695507161075142,
164
+ "grad_norm": 0.1594536453485489,
165
+ "learning_rate": 4.9453690018345144e-06,
166
+ "logits/chosen": 16.307537078857422,
167
+ "logits/rejected": 16.138330459594727,
168
+ "logps/chosen": -0.3342314660549164,
169
+ "logps/rejected": -0.27582648396492004,
170
+ "loss": 1.0309,
171
+ "rewards/accuracies": 0.26249998807907104,
172
+ "rewards/chosen": -0.5013472437858582,
173
+ "rewards/margins": -0.0876075029373169,
174
+ "rewards/rejected": -0.41373974084854126,
175
+ "step": 100
176
+ },
177
+ {
178
+ "epoch": 0.15695507161075142,
179
+ "eval_logits/chosen": 16.4310245513916,
180
+ "eval_logits/rejected": 15.98912525177002,
181
+ "eval_logps/chosen": -0.3239763677120209,
182
+ "eval_logps/rejected": -0.28784558176994324,
183
+ "eval_loss": 1.020836353302002,
184
+ "eval_rewards/accuracies": 0.3076923191547394,
185
+ "eval_rewards/chosen": -0.4859645664691925,
186
+ "eval_rewards/margins": -0.054196178913116455,
187
+ "eval_rewards/rejected": -0.43176835775375366,
188
+ "eval_runtime": 14.5049,
189
+ "eval_samples_per_second": 28.404,
190
+ "eval_steps_per_second": 3.585,
191
+ "step": 100
192
+ },
193
+ {
194
+ "epoch": 0.17265057877182657,
195
+ "grad_norm": 0.07431349903345108,
196
+ "learning_rate": 4.933947257182901e-06,
197
+ "logits/chosen": 16.56686782836914,
198
+ "logits/rejected": 16.093189239501953,
199
+ "logps/chosen": -0.34455060958862305,
200
+ "logps/rejected": -0.2834388315677643,
201
+ "loss": 1.0388,
202
+ "rewards/accuracies": 0.30000001192092896,
203
+ "rewards/chosen": -0.5168259739875793,
204
+ "rewards/margins": -0.09166768193244934,
205
+ "rewards/rejected": -0.4251582622528076,
206
+ "step": 110
207
+ },
208
+ {
209
+ "epoch": 0.1883460859329017,
210
+ "grad_norm": 0.08802352845668793,
211
+ "learning_rate": 4.921457902821578e-06,
212
+ "logits/chosen": 16.50200843811035,
213
+ "logits/rejected": 16.286388397216797,
214
+ "logps/chosen": -0.30845317244529724,
215
+ "logps/rejected": -0.2677682936191559,
216
+ "loss": 1.0247,
217
+ "rewards/accuracies": 0.25,
218
+ "rewards/chosen": -0.4626797139644623,
219
+ "rewards/margins": -0.06102731078863144,
220
+ "rewards/rejected": -0.40165242552757263,
221
+ "step": 120
222
+ },
223
+ {
224
+ "epoch": 0.20404159309397685,
225
+ "grad_norm": 0.10464702546596527,
226
+ "learning_rate": 4.907906416994146e-06,
227
+ "logits/chosen": 16.163082122802734,
228
+ "logits/rejected": 16.158031463623047,
229
+ "logps/chosen": -0.3138599991798401,
230
+ "logps/rejected": -0.28097471594810486,
231
+ "loss": 1.0169,
232
+ "rewards/accuracies": 0.30000001192092896,
233
+ "rewards/chosen": -0.47078999876976013,
234
+ "rewards/margins": -0.04932791367173195,
235
+ "rewards/rejected": -0.4214620590209961,
236
+ "step": 130
237
+ },
238
+ {
239
+ "epoch": 0.219737100255052,
240
+ "grad_norm": 0.16971275210380554,
241
+ "learning_rate": 4.893298743830168e-06,
242
+ "logits/chosen": 16.28864860534668,
243
+ "logits/rejected": 16.151805877685547,
244
+ "logps/chosen": -0.3283368945121765,
245
+ "logps/rejected": -0.2850198745727539,
246
+ "loss": 0.9964,
247
+ "rewards/accuracies": 0.3499999940395355,
248
+ "rewards/chosen": -0.49250537157058716,
249
+ "rewards/margins": -0.06497551500797272,
250
+ "rewards/rejected": -0.42752987146377563,
251
+ "step": 140
252
+ },
253
+ {
254
+ "epoch": 0.23543260741612712,
255
+ "grad_norm": 0.18377964198589325,
256
+ "learning_rate": 4.8776412907378845e-06,
257
+ "logits/chosen": 16.890087127685547,
258
+ "logits/rejected": 16.42388153076172,
259
+ "logps/chosen": -0.33256903290748596,
260
+ "logps/rejected": -0.2939595878124237,
261
+ "loss": 1.0073,
262
+ "rewards/accuracies": 0.30000001192092896,
263
+ "rewards/chosen": -0.49885353446006775,
264
+ "rewards/margins": -0.057914119213819504,
265
+ "rewards/rejected": -0.44093936681747437,
266
+ "step": 150
267
+ },
268
+ {
269
+ "epoch": 0.23543260741612712,
270
+ "eval_logits/chosen": 16.833438873291016,
271
+ "eval_logits/rejected": 16.328977584838867,
272
+ "eval_logps/chosen": -0.32567569613456726,
273
+ "eval_logps/rejected": -0.35700783133506775,
274
+ "eval_loss": 0.9802881479263306,
275
+ "eval_rewards/accuracies": 0.42307692766189575,
276
+ "eval_rewards/chosen": -0.4885135293006897,
277
+ "eval_rewards/margins": 0.04699822515249252,
278
+ "eval_rewards/rejected": -0.5355117321014404,
279
+ "eval_runtime": 14.5005,
280
+ "eval_samples_per_second": 28.413,
281
+ "eval_steps_per_second": 3.586,
282
+ "step": 150
283
+ },
284
+ {
285
+ "epoch": 0.2511281145772023,
286
+ "grad_norm": 0.12049826234579086,
287
+ "learning_rate": 4.860940925593703e-06,
288
+ "logits/chosen": 16.505878448486328,
289
+ "logits/rejected": 16.178979873657227,
290
+ "logps/chosen": -0.3397011458873749,
291
+ "logps/rejected": -0.35640352964401245,
292
+ "loss": 0.9795,
293
+ "rewards/accuracies": 0.4124999940395355,
294
+ "rewards/chosen": -0.5095517039299011,
295
+ "rewards/margins": 0.0250535998493433,
296
+ "rewards/rejected": -0.5346053242683411,
297
+ "step": 160
298
+ },
299
+ {
300
+ "epoch": 0.2668236217382774,
301
+ "grad_norm": 0.09485407918691635,
302
+ "learning_rate": 4.84320497372973e-06,
303
+ "logits/chosen": 16.245588302612305,
304
+ "logits/rejected": 15.922958374023438,
305
+ "logps/chosen": -0.29733315110206604,
306
+ "logps/rejected": -0.3461209237575531,
307
+ "loss": 0.9694,
308
+ "rewards/accuracies": 0.44999998807907104,
309
+ "rewards/chosen": -0.44599977135658264,
310
+ "rewards/margins": 0.0731816366314888,
311
+ "rewards/rejected": -0.5191814303398132,
312
+ "step": 170
313
+ },
314
+ {
315
+ "epoch": 0.28251912889935255,
316
+ "grad_norm": 0.155483216047287,
317
+ "learning_rate": 4.824441214720629e-06,
318
+ "logits/chosen": 16.339645385742188,
319
+ "logits/rejected": 16.115110397338867,
320
+ "logps/chosen": -0.3076801002025604,
321
+ "logps/rejected": -0.3655286729335785,
322
+ "loss": 0.9488,
323
+ "rewards/accuracies": 0.4625000059604645,
324
+ "rewards/chosen": -0.4615201950073242,
325
+ "rewards/margins": 0.0867728441953659,
326
+ "rewards/rejected": -0.5482929944992065,
327
+ "step": 180
328
+ },
329
+ {
330
+ "epoch": 0.2982146360604277,
331
+ "grad_norm": 0.21345795691013336,
332
+ "learning_rate": 4.804657878971252e-06,
333
+ "logits/chosen": 16.491886138916016,
334
+ "logits/rejected": 16.376684188842773,
335
+ "logps/chosen": -0.32437095046043396,
336
+ "logps/rejected": -0.39715105295181274,
337
+ "loss": 0.9423,
338
+ "rewards/accuracies": 0.512499988079071,
339
+ "rewards/chosen": -0.4865564703941345,
340
+ "rewards/margins": 0.10917013883590698,
341
+ "rewards/rejected": -0.5957266092300415,
342
+ "step": 190
343
+ },
344
+ {
345
+ "epoch": 0.31391014322150285,
346
+ "grad_norm": 0.17633090913295746,
347
+ "learning_rate": 4.783863644106502e-06,
348
+ "logits/chosen": 16.6339168548584,
349
+ "logits/rejected": 16.79404640197754,
350
+ "logps/chosen": -0.33018192648887634,
351
+ "logps/rejected": -0.384196400642395,
352
+ "loss": 0.939,
353
+ "rewards/accuracies": 0.42500001192092896,
354
+ "rewards/chosen": -0.4952728748321533,
355
+ "rewards/margins": 0.0810217633843422,
356
+ "rewards/rejected": -0.5762946009635925,
357
+ "step": 200
358
+ },
359
+ {
360
+ "epoch": 0.31391014322150285,
361
+ "eval_logits/chosen": 17.17803192138672,
362
+ "eval_logits/rejected": 16.59328269958496,
363
+ "eval_logps/chosen": -0.33600664138793945,
364
+ "eval_logps/rejected": -0.47861453890800476,
365
+ "eval_loss": 0.9303967356681824,
366
+ "eval_rewards/accuracies": 0.4615384638309479,
367
+ "eval_rewards/chosen": -0.5040098428726196,
368
+ "eval_rewards/margins": 0.21391186118125916,
369
+ "eval_rewards/rejected": -0.717921793460846,
370
+ "eval_runtime": 14.5,
371
+ "eval_samples_per_second": 28.414,
372
+ "eval_steps_per_second": 3.586,
373
+ "step": 200
374
+ },
375
+ {
376
+ "epoch": 0.329605650382578,
377
+ "grad_norm": 0.1562221795320511,
378
+ "learning_rate": 4.762067631165049e-06,
379
+ "logits/chosen": 16.597665786743164,
380
+ "logits/rejected": 16.3507022857666,
381
+ "logps/chosen": -0.33709320425987244,
382
+ "logps/rejected": -0.43131333589553833,
383
+ "loss": 0.9107,
384
+ "rewards/accuracies": 0.4749999940395355,
385
+ "rewards/chosen": -0.5056397914886475,
386
+ "rewards/margins": 0.14133022725582123,
387
+ "rewards/rejected": -0.6469700932502747,
388
+ "step": 210
389
+ },
390
+ {
391
+ "epoch": 0.34530115754365315,
392
+ "grad_norm": 0.17680124938488007,
393
+ "learning_rate": 4.7392794005985324e-06,
394
+ "logits/chosen": 16.873676300048828,
395
+ "logits/rejected": 16.61945152282715,
396
+ "logps/chosen": -0.35083168745040894,
397
+ "logps/rejected": -0.537697434425354,
398
+ "loss": 0.9094,
399
+ "rewards/accuracies": 0.5249999761581421,
400
+ "rewards/chosen": -0.526247501373291,
401
+ "rewards/margins": 0.2802986204624176,
402
+ "rewards/rejected": -0.8065462112426758,
403
+ "step": 220
404
+ },
405
+ {
406
+ "epoch": 0.3609966647047283,
407
+ "grad_norm": 0.2662070393562317,
408
+ "learning_rate": 4.715508948078037e-06,
409
+ "logits/chosen": 16.803974151611328,
410
+ "logits/rejected": 16.698320388793945,
411
+ "logps/chosen": -0.3500753343105316,
412
+ "logps/rejected": -0.5399882793426514,
413
+ "loss": 0.8871,
414
+ "rewards/accuracies": 0.5249999761581421,
415
+ "rewards/chosen": -0.5251129865646362,
416
+ "rewards/margins": 0.2848694324493408,
417
+ "rewards/rejected": -0.8099824786186218,
418
+ "step": 230
419
+ },
420
+ {
421
+ "epoch": 0.3766921718658034,
422
+ "grad_norm": 0.17161667346954346,
423
+ "learning_rate": 4.690766700109659e-06,
424
+ "logits/chosen": 16.67904281616211,
425
+ "logits/rejected": 16.410579681396484,
426
+ "logps/chosen": -0.33549198508262634,
427
+ "logps/rejected": -0.4875665605068207,
428
+ "loss": 0.9037,
429
+ "rewards/accuracies": 0.6000000238418579,
430
+ "rewards/chosen": -0.5032380223274231,
431
+ "rewards/margins": 0.22811183333396912,
432
+ "rewards/rejected": -0.7313498258590698,
433
+ "step": 240
434
+ },
435
+ {
436
+ "epoch": 0.39238767902687854,
437
+ "grad_norm": 1.106021761894226,
438
+ "learning_rate": 4.665063509461098e-06,
439
+ "logits/chosen": 17.208127975463867,
440
+ "logits/rejected": 16.654085159301758,
441
+ "logps/chosen": -0.3752726912498474,
442
+ "logps/rejected": -0.4947708249092102,
443
+ "loss": 0.8606,
444
+ "rewards/accuracies": 0.4375,
445
+ "rewards/chosen": -0.5629090070724487,
446
+ "rewards/margins": 0.1792471706867218,
447
+ "rewards/rejected": -0.7421562671661377,
448
+ "step": 250
449
+ },
450
+ {
451
+ "epoch": 0.39238767902687854,
452
+ "eval_logits/chosen": 17.32963752746582,
453
+ "eval_logits/rejected": 16.589412689208984,
454
+ "eval_logps/chosen": -0.37825876474380493,
455
+ "eval_logps/rejected": -0.9001243114471436,
456
+ "eval_loss": 0.8168494701385498,
457
+ "eval_rewards/accuracies": 0.5192307829856873,
458
+ "eval_rewards/chosen": -0.5673881769180298,
459
+ "eval_rewards/margins": 0.7827982306480408,
460
+ "eval_rewards/rejected": -1.3501865863800049,
461
+ "eval_runtime": 14.5053,
462
+ "eval_samples_per_second": 28.403,
463
+ "eval_steps_per_second": 3.585,
464
+ "step": 250
465
+ },
466
+ {
467
+ "epoch": 0.4080831861879537,
468
+ "grad_norm": 0.29772138595581055,
469
+ "learning_rate": 4.638410650401267e-06,
470
+ "logits/chosen": 16.713775634765625,
471
+ "logits/rejected": 16.35211944580078,
472
+ "logps/chosen": -0.3877524733543396,
473
+ "logps/rejected": -0.8511163592338562,
474
+ "loss": 0.8138,
475
+ "rewards/accuracies": 0.44999998807907104,
476
+ "rewards/chosen": -0.581628680229187,
477
+ "rewards/margins": 0.6950457692146301,
478
+ "rewards/rejected": -1.276674509048462,
479
+ "step": 260
480
+ },
481
+ {
482
+ "epoch": 0.42377869334902885,
483
+ "grad_norm": 0.31860050559043884,
484
+ "learning_rate": 4.610819813755038e-06,
485
+ "logits/chosen": 17.09469985961914,
486
+ "logits/rejected": 16.5472412109375,
487
+ "logps/chosen": -0.47504258155822754,
488
+ "logps/rejected": -1.3266533613204956,
489
+ "loss": 0.7318,
490
+ "rewards/accuracies": 0.512499988079071,
491
+ "rewards/chosen": -0.7125638723373413,
492
+ "rewards/margins": 1.2774161100387573,
493
+ "rewards/rejected": -1.9899799823760986,
494
+ "step": 270
495
+ },
496
+ {
497
+ "epoch": 0.439474200510104,
498
+ "grad_norm": 0.6508163809776306,
499
+ "learning_rate": 4.582303101775249e-06,
500
+ "logits/chosen": 17.11003303527832,
501
+ "logits/rejected": 16.6564998626709,
502
+ "logps/chosen": -0.49357643723487854,
503
+ "logps/rejected": -1.4481580257415771,
504
+ "loss": 0.7599,
505
+ "rewards/accuracies": 0.6625000238418579,
506
+ "rewards/chosen": -0.7403645515441895,
507
+ "rewards/margins": 1.4318726062774658,
508
+ "rewards/rejected": -2.1722371578216553,
509
+ "step": 280
510
+ },
511
+ {
512
+ "epoch": 0.45516970767117915,
513
+ "grad_norm": 0.32430580258369446,
514
+ "learning_rate": 4.55287302283426e-06,
515
+ "logits/chosen": 16.830989837646484,
516
+ "logits/rejected": 16.384944915771484,
517
+ "logps/chosen": -0.593712329864502,
518
+ "logps/rejected": -1.7630856037139893,
519
+ "loss": 0.7336,
520
+ "rewards/accuracies": 0.675000011920929,
521
+ "rewards/chosen": -0.8905684351921082,
522
+ "rewards/margins": 1.7540600299835205,
523
+ "rewards/rejected": -2.6446282863616943,
524
+ "step": 290
525
+ },
526
+ {
527
+ "epoch": 0.47086521483225424,
528
+ "grad_norm": 0.8555932641029358,
529
+ "learning_rate": 4.522542485937369e-06,
530
+ "logits/chosen": 16.72231674194336,
531
+ "logits/rejected": 16.28726577758789,
532
+ "logps/chosen": -0.5670709609985352,
533
+ "logps/rejected": -2.0420775413513184,
534
+ "loss": 0.6861,
535
+ "rewards/accuracies": 0.75,
536
+ "rewards/chosen": -0.8506065607070923,
537
+ "rewards/margins": 2.2125096321105957,
538
+ "rewards/rejected": -3.0631160736083984,
539
+ "step": 300
540
+ },
541
+ {
542
+ "epoch": 0.47086521483225424,
543
+ "eval_logits/chosen": 17.13121795654297,
544
+ "eval_logits/rejected": 16.268341064453125,
545
+ "eval_logps/chosen": -0.6842947602272034,
546
+ "eval_logps/rejected": -2.119321584701538,
547
+ "eval_loss": 0.7583853602409363,
548
+ "eval_rewards/accuracies": 0.75,
549
+ "eval_rewards/chosen": -1.026442289352417,
550
+ "eval_rewards/margins": 2.1525399684906006,
551
+ "eval_rewards/rejected": -3.1789822578430176,
552
+ "eval_runtime": 14.5007,
553
+ "eval_samples_per_second": 28.412,
554
+ "eval_steps_per_second": 3.586,
555
+ "step": 300
556
+ },
557
+ {
558
+ "epoch": 0.4865607219933294,
559
+ "grad_norm": 0.6059070825576782,
560
+ "learning_rate": 4.491324795060491e-06,
561
+ "logits/chosen": 17.147808074951172,
562
+ "logits/rejected": 16.194652557373047,
563
+ "logps/chosen": -0.8036400079727173,
564
+ "logps/rejected": -2.289825201034546,
565
+ "loss": 0.7163,
566
+ "rewards/accuracies": 0.6875,
567
+ "rewards/chosen": -1.2054599523544312,
568
+ "rewards/margins": 2.229278087615967,
569
+ "rewards/rejected": -3.4347376823425293,
570
+ "step": 310
571
+ },
572
+ {
573
+ "epoch": 0.5022562291544046,
574
+ "grad_norm": 1.8073927164077759,
575
+ "learning_rate": 4.4592336433146e-06,
576
+ "logits/chosen": 16.94902992248535,
577
+ "logits/rejected": 16.066068649291992,
578
+ "logps/chosen": -1.198162317276001,
579
+ "logps/rejected": -2.2922632694244385,
580
+ "loss": 0.6894,
581
+ "rewards/accuracies": 0.675000011920929,
582
+ "rewards/chosen": -1.7972434759140015,
583
+ "rewards/margins": 1.6411516666412354,
584
+ "rewards/rejected": -3.4383950233459473,
585
+ "step": 320
586
+ },
587
+ {
588
+ "epoch": 0.5179517363154797,
589
+ "grad_norm": 3.746042490005493,
590
+ "learning_rate": 4.426283106939474e-06,
591
+ "logits/chosen": 16.31036376953125,
592
+ "logits/rejected": 15.991762161254883,
593
+ "logps/chosen": -1.6245781183242798,
594
+ "logps/rejected": -2.553597927093506,
595
+ "loss": 0.6607,
596
+ "rewards/accuracies": 0.7875000238418579,
597
+ "rewards/chosen": -2.4368672370910645,
598
+ "rewards/margins": 1.3935294151306152,
599
+ "rewards/rejected": -3.830397129058838,
600
+ "step": 330
601
+ },
602
+ {
603
+ "epoch": 0.5336472434765548,
604
+ "grad_norm": 2.098111867904663,
605
+ "learning_rate": 4.3924876391293915e-06,
606
+ "logits/chosen": 16.59554672241211,
607
+ "logits/rejected": 15.915553092956543,
608
+ "logps/chosen": -2.183227062225342,
609
+ "logps/rejected": -3.4911434650421143,
610
+ "loss": 0.6381,
611
+ "rewards/accuracies": 0.8500000238418579,
612
+ "rewards/chosen": -3.274840831756592,
613
+ "rewards/margins": 1.9618743658065796,
614
+ "rewards/rejected": -5.236715316772461,
615
+ "step": 340
616
+ },
617
+ {
618
+ "epoch": 0.5493427506376299,
619
+ "grad_norm": 2.153958320617676,
620
+ "learning_rate": 4.357862063693486e-06,
621
+ "logits/chosen": 16.332544326782227,
622
+ "logits/rejected": 15.691922187805176,
623
+ "logps/chosen": -2.673710346221924,
624
+ "logps/rejected": -3.8687057495117188,
625
+ "loss": 0.5752,
626
+ "rewards/accuracies": 0.862500011920929,
627
+ "rewards/chosen": -4.010565757751465,
628
+ "rewards/margins": 1.792493224143982,
629
+ "rewards/rejected": -5.8030595779418945,
630
+ "step": 350
631
+ },
632
+ {
633
+ "epoch": 0.5493427506376299,
634
+ "eval_logits/chosen": 16.272428512573242,
635
+ "eval_logits/rejected": 15.381678581237793,
636
+ "eval_logps/chosen": -3.0390572547912598,
637
+ "eval_logps/rejected": -4.695068836212158,
638
+ "eval_loss": 0.5928590893745422,
639
+ "eval_rewards/accuracies": 0.9230769276618958,
640
+ "eval_rewards/chosen": -4.5585856437683105,
641
+ "eval_rewards/margins": 2.4840168952941895,
642
+ "eval_rewards/rejected": -7.0426025390625,
643
+ "eval_runtime": 14.5008,
644
+ "eval_samples_per_second": 28.412,
645
+ "eval_steps_per_second": 3.586,
646
+ "step": 350
647
+ },
648
+ {
649
+ "epoch": 0.5650382577987051,
650
+ "grad_norm": 1.5755672454833984,
651
+ "learning_rate": 4.322421568553529e-06,
652
+ "logits/chosen": 15.589811325073242,
653
+ "logits/rejected": 14.780921936035156,
654
+ "logps/chosen": -3.069565534591675,
655
+ "logps/rejected": -4.581957817077637,
656
+ "loss": 0.5275,
657
+ "rewards/accuracies": 0.8125,
658
+ "rewards/chosen": -4.604348182678223,
659
+ "rewards/margins": 2.268587827682495,
660
+ "rewards/rejected": -6.872936248779297,
661
+ "step": 360
662
+ },
663
+ {
664
+ "epoch": 0.5807337649597802,
665
+ "grad_norm": 1.8776415586471558,
666
+ "learning_rate": 4.286181699082008e-06,
667
+ "logits/chosen": 15.172673225402832,
668
+ "logits/rejected": 14.400335311889648,
669
+ "logps/chosen": -3.9551639556884766,
670
+ "logps/rejected": -5.95252799987793,
671
+ "loss": 0.5113,
672
+ "rewards/accuracies": 0.887499988079071,
673
+ "rewards/chosen": -5.932745933532715,
674
+ "rewards/margins": 2.996046543121338,
675
+ "rewards/rejected": -8.928792953491211,
676
+ "step": 370
677
+ },
678
+ {
679
+ "epoch": 0.5964292721208554,
680
+ "grad_norm": 1.5507289171218872,
681
+ "learning_rate": 4.249158351283414e-06,
682
+ "logits/chosen": 14.8423433303833,
683
+ "logits/rejected": 14.592633247375488,
684
+ "logps/chosen": -3.7946255207061768,
685
+ "logps/rejected": -5.3750481605529785,
686
+ "loss": 0.4862,
687
+ "rewards/accuracies": 0.887499988079071,
688
+ "rewards/chosen": -5.691938877105713,
689
+ "rewards/margins": 2.370633125305176,
690
+ "rewards/rejected": -8.062570571899414,
691
+ "step": 380
692
+ },
693
+ {
694
+ "epoch": 0.6121247792819305,
695
+ "grad_norm": 3.4510324001312256,
696
+ "learning_rate": 4.211367764821722e-06,
697
+ "logits/chosen": 14.586801528930664,
698
+ "logits/rejected": 14.031987190246582,
699
+ "logps/chosen": -4.391470432281494,
700
+ "logps/rejected": -6.2107672691345215,
701
+ "loss": 0.5117,
702
+ "rewards/accuracies": 0.8500000238418579,
703
+ "rewards/chosen": -6.587205410003662,
704
+ "rewards/margins": 2.72894549369812,
705
+ "rewards/rejected": -9.316150665283203,
706
+ "step": 390
707
+ },
708
+ {
709
+ "epoch": 0.6278202864430057,
710
+ "grad_norm": 3.3816750049591064,
711
+ "learning_rate": 4.172826515897146e-06,
712
+ "logits/chosen": 14.523185729980469,
713
+ "logits/rejected": 14.266815185546875,
714
+ "logps/chosen": -4.090173244476318,
715
+ "logps/rejected": -5.582955837249756,
716
+ "loss": 0.5182,
717
+ "rewards/accuracies": 0.762499988079071,
718
+ "rewards/chosen": -6.135260581970215,
719
+ "rewards/margins": 2.2391738891601562,
720
+ "rewards/rejected": -8.374434471130371,
721
+ "step": 400
722
+ },
723
+ {
724
+ "epoch": 0.6278202864430057,
725
+ "eval_logits/chosen": 15.142684936523438,
726
+ "eval_logits/rejected": 14.101082801818848,
727
+ "eval_logps/chosen": -3.866588830947876,
728
+ "eval_logps/rejected": -6.100707530975342,
729
+ "eval_loss": 0.48699691891670227,
730
+ "eval_rewards/accuracies": 0.9615384340286255,
731
+ "eval_rewards/chosen": -5.7998833656311035,
732
+ "eval_rewards/margins": 3.351177215576172,
733
+ "eval_rewards/rejected": -9.15106201171875,
734
+ "eval_runtime": 14.5024,
735
+ "eval_samples_per_second": 28.409,
736
+ "eval_steps_per_second": 3.586,
737
+ "step": 400
738
+ },
739
+ {
740
+ "epoch": 0.6435157936040808,
741
+ "grad_norm": 1.845595359802246,
742
+ "learning_rate": 4.133551509975264e-06,
743
+ "logits/chosen": 14.54790210723877,
744
+ "logits/rejected": 13.707855224609375,
745
+ "logps/chosen": -4.112462043762207,
746
+ "logps/rejected": -6.583975315093994,
747
+ "loss": 0.5107,
748
+ "rewards/accuracies": 0.800000011920929,
749
+ "rewards/chosen": -6.168692111968994,
750
+ "rewards/margins": 3.707270383834839,
751
+ "rewards/rejected": -9.875962257385254,
752
+ "step": 410
753
+ },
754
+ {
755
+ "epoch": 0.659211300765156,
756
+ "grad_norm": 2.152916193008423,
757
+ "learning_rate": 4.093559974371725e-06,
758
+ "logits/chosen": 14.153576850891113,
759
+ "logits/rejected": 13.553201675415039,
760
+ "logps/chosen": -4.3408918380737305,
761
+ "logps/rejected": -6.828585147857666,
762
+ "loss": 0.41,
763
+ "rewards/accuracies": 0.8999999761581421,
764
+ "rewards/chosen": -6.511338233947754,
765
+ "rewards/margins": 3.7315402030944824,
766
+ "rewards/rejected": -10.242877960205078,
767
+ "step": 420
768
+ },
769
+ {
770
+ "epoch": 0.6749068079262311,
771
+ "grad_norm": 2.305433750152588,
772
+ "learning_rate": 4.052869450695776e-06,
773
+ "logits/chosen": 13.992170333862305,
774
+ "logits/rejected": 13.264738082885742,
775
+ "logps/chosen": -4.259932518005371,
776
+ "logps/rejected": -6.089646339416504,
777
+ "loss": 0.4122,
778
+ "rewards/accuracies": 0.862500011920929,
779
+ "rewards/chosen": -6.389898777008057,
780
+ "rewards/margins": 2.7445709705352783,
781
+ "rewards/rejected": -9.134469985961914,
782
+ "step": 430
783
+ },
784
+ {
785
+ "epoch": 0.6906023150873063,
786
+ "grad_norm": 2.397674322128296,
787
+ "learning_rate": 4.011497787155938e-06,
788
+ "logits/chosen": 13.975759506225586,
789
+ "logits/rejected": 13.173799514770508,
790
+ "logps/chosen": -4.2483391761779785,
791
+ "logps/rejected": -6.487355709075928,
792
+ "loss": 0.4397,
793
+ "rewards/accuracies": 0.8125,
794
+ "rewards/chosen": -6.3725080490112305,
795
+ "rewards/margins": 3.3585267066955566,
796
+ "rewards/rejected": -9.731034278869629,
797
+ "step": 440
798
+ },
799
+ {
800
+ "epoch": 0.7062978222483814,
801
+ "grad_norm": 2.3987627029418945,
802
+ "learning_rate": 3.969463130731183e-06,
803
+ "logits/chosen": 13.777560234069824,
804
+ "logits/rejected": 12.936296463012695,
805
+ "logps/chosen": -3.86059832572937,
806
+ "logps/rejected": -6.495786190032959,
807
+ "loss": 0.444,
808
+ "rewards/accuracies": 0.862500011920929,
809
+ "rewards/chosen": -5.790897846221924,
810
+ "rewards/margins": 3.952782392501831,
811
+ "rewards/rejected": -9.743680000305176,
812
+ "step": 450
813
+ },
814
+ {
815
+ "epoch": 0.7062978222483814,
816
+ "eval_logits/chosen": 14.397418975830078,
817
+ "eval_logits/rejected": 13.271268844604492,
818
+ "eval_logps/chosen": -3.9544241428375244,
819
+ "eval_logps/rejected": -6.69989013671875,
820
+ "eval_loss": 0.435256689786911,
821
+ "eval_rewards/accuracies": 0.9615384340286255,
822
+ "eval_rewards/chosen": -5.931635856628418,
823
+ "eval_rewards/margins": 4.118198871612549,
824
+ "eval_rewards/rejected": -10.049835205078125,
825
+ "eval_runtime": 14.5029,
826
+ "eval_samples_per_second": 28.408,
827
+ "eval_steps_per_second": 3.585,
828
+ "step": 450
829
+ },
830
+ {
831
+ "epoch": 0.7219933294094566,
832
+ "grad_norm": 2.3673465251922607,
833
+ "learning_rate": 3.92678391921108e-06,
834
+ "logits/chosen": 13.67004680633545,
835
+ "logits/rejected": 12.689542770385742,
836
+ "logps/chosen": -4.037893295288086,
837
+ "logps/rejected": -6.727287292480469,
838
+ "loss": 0.3858,
839
+ "rewards/accuracies": 0.925000011920929,
840
+ "rewards/chosen": -6.056839942932129,
841
+ "rewards/margins": 4.034090995788574,
842
+ "rewards/rejected": -10.09093189239502,
843
+ "step": 460
844
+ },
845
+ {
846
+ "epoch": 0.7376888365705316,
847
+ "grad_norm": 2.9868297576904297,
848
+ "learning_rate": 3.88347887310836e-06,
849
+ "logits/chosen": 13.124593734741211,
850
+ "logits/rejected": 12.576837539672852,
851
+ "logps/chosen": -4.324252605438232,
852
+ "logps/rejected": -6.761715888977051,
853
+ "loss": 0.363,
854
+ "rewards/accuracies": 0.862500011920929,
855
+ "rewards/chosen": -6.486379146575928,
856
+ "rewards/margins": 3.6561942100524902,
857
+ "rewards/rejected": -10.142572402954102,
858
+ "step": 470
859
+ },
860
+ {
861
+ "epoch": 0.7533843437316068,
862
+ "grad_norm": 2.613318920135498,
863
+ "learning_rate": 3.839566987447492e-06,
864
+ "logits/chosen": 13.514410018920898,
865
+ "logits/rejected": 12.838116645812988,
866
+ "logps/chosen": -4.333093166351318,
867
+ "logps/rejected": -6.704646110534668,
868
+ "loss": 0.3274,
869
+ "rewards/accuracies": 0.925000011920929,
870
+ "rewards/chosen": -6.499639987945557,
871
+ "rewards/margins": 3.5573298931121826,
872
+ "rewards/rejected": -10.056970596313477,
873
+ "step": 480
874
+ },
875
+ {
876
+ "epoch": 0.7690798508926819,
877
+ "grad_norm": 2.1568610668182373,
878
+ "learning_rate": 3.795067523432826e-06,
879
+ "logits/chosen": 13.456674575805664,
880
+ "logits/rejected": 12.37132453918457,
881
+ "logps/chosen": -4.630190849304199,
882
+ "logps/rejected": -7.871635437011719,
883
+ "loss": 0.3822,
884
+ "rewards/accuracies": 0.9125000238418579,
885
+ "rewards/chosen": -6.945285797119141,
886
+ "rewards/margins": 4.862167835235596,
887
+ "rewards/rejected": -11.807454109191895,
888
+ "step": 490
889
+ },
890
+ {
891
+ "epoch": 0.7847753580537571,
892
+ "grad_norm": 2.516496419906616,
893
+ "learning_rate": 3.7500000000000005e-06,
894
+ "logits/chosen": 13.195734024047852,
895
+ "logits/rejected": 12.557401657104492,
896
+ "logps/chosen": -3.9327914714813232,
897
+ "logps/rejected": -6.561183929443359,
898
+ "loss": 0.352,
899
+ "rewards/accuracies": 0.887499988079071,
900
+ "rewards/chosen": -5.899188041687012,
901
+ "rewards/margins": 3.9425880908966064,
902
+ "rewards/rejected": -9.841775894165039,
903
+ "step": 500
904
+ },
905
+ {
906
+ "epoch": 0.7847753580537571,
907
+ "eval_logits/chosen": 13.891414642333984,
908
+ "eval_logits/rejected": 12.734375,
909
+ "eval_logps/chosen": -3.924809455871582,
910
+ "eval_logps/rejected": -7.003909587860107,
911
+ "eval_loss": 0.3888731002807617,
912
+ "eval_rewards/accuracies": 1.0,
913
+ "eval_rewards/chosen": -5.887214183807373,
914
+ "eval_rewards/margins": 4.618649482727051,
915
+ "eval_rewards/rejected": -10.505864143371582,
916
+ "eval_runtime": 14.5029,
917
+ "eval_samples_per_second": 28.408,
918
+ "eval_steps_per_second": 3.585,
919
+ "step": 500
920
+ },
921
+ {
922
+ "epoch": 0.8004708652148322,
923
+ "grad_norm": 5.4663896560668945,
924
+ "learning_rate": 3.7043841852542884e-06,
925
+ "logits/chosen": 12.861404418945312,
926
+ "logits/rejected": 11.9797945022583,
927
+ "logps/chosen": -4.245055198669434,
928
+ "logps/rejected": -7.063906669616699,
929
+ "loss": 0.4009,
930
+ "rewards/accuracies": 0.8500000238418579,
931
+ "rewards/chosen": -6.36758279800415,
932
+ "rewards/margins": 4.228276252746582,
933
+ "rewards/rejected": -10.59585952758789,
934
+ "step": 510
935
+ },
936
+ {
937
+ "epoch": 0.8161663723759074,
938
+ "grad_norm": 2.4403271675109863,
939
+ "learning_rate": 3.658240087799655e-06,
940
+ "logits/chosen": 12.84996223449707,
941
+ "logits/rejected": 12.256246566772461,
942
+ "logps/chosen": -4.2785773277282715,
943
+ "logps/rejected": -7.003395080566406,
944
+ "loss": 0.3327,
945
+ "rewards/accuracies": 0.9125000238418579,
946
+ "rewards/chosen": -6.417865753173828,
947
+ "rewards/margins": 4.0872273445129395,
948
+ "rewards/rejected": -10.505093574523926,
949
+ "step": 520
950
+ },
951
+ {
952
+ "epoch": 0.8318618795369825,
953
+ "grad_norm": 3.596749782562256,
954
+ "learning_rate": 3.611587947962319e-06,
955
+ "logits/chosen": 13.3360595703125,
956
+ "logits/rejected": 12.449459075927734,
957
+ "logps/chosen": -4.8148322105407715,
958
+ "logps/rejected": -7.221930503845215,
959
+ "loss": 0.3255,
960
+ "rewards/accuracies": 0.8999999761581421,
961
+ "rewards/chosen": -7.222248077392578,
962
+ "rewards/margins": 3.610647201538086,
963
+ "rewards/rejected": -10.832895278930664,
964
+ "step": 530
965
+ },
966
+ {
967
+ "epoch": 0.8475573866980577,
968
+ "grad_norm": 4.537969589233398,
969
+ "learning_rate": 3.564448228912682e-06,
970
+ "logits/chosen": 12.63983154296875,
971
+ "logits/rejected": 12.042104721069336,
972
+ "logps/chosen": -4.933573246002197,
973
+ "logps/rejected": -7.656388282775879,
974
+ "loss": 0.2941,
975
+ "rewards/accuracies": 0.925000011920929,
976
+ "rewards/chosen": -7.400360107421875,
977
+ "rewards/margins": 4.084224224090576,
978
+ "rewards/rejected": -11.484583854675293,
979
+ "step": 540
980
+ },
981
+ {
982
+ "epoch": 0.8632528938591328,
983
+ "grad_norm": 2.4124038219451904,
984
+ "learning_rate": 3.516841607689501e-06,
985
+ "logits/chosen": 13.053291320800781,
986
+ "logits/rejected": 12.351530075073242,
987
+ "logps/chosen": -5.196786403656006,
988
+ "logps/rejected": -7.8461012840271,
989
+ "loss": 0.3906,
990
+ "rewards/accuracies": 0.8999999761581421,
991
+ "rewards/chosen": -7.795179843902588,
992
+ "rewards/margins": 3.9739716053009033,
993
+ "rewards/rejected": -11.76915168762207,
994
+ "step": 550
995
+ },
996
+ {
997
+ "epoch": 0.8632528938591328,
998
+ "eval_logits/chosen": 13.596405982971191,
999
+ "eval_logits/rejected": 12.482269287109375,
1000
+ "eval_logps/chosen": -4.328949928283691,
1001
+ "eval_logps/rejected": -7.602427959442139,
1002
+ "eval_loss": 0.3577499985694885,
1003
+ "eval_rewards/accuracies": 0.9807692170143127,
1004
+ "eval_rewards/chosen": -6.493425369262695,
1005
+ "eval_rewards/margins": 4.910217761993408,
1006
+ "eval_rewards/rejected": -11.403642654418945,
1007
+ "eval_runtime": 14.5032,
1008
+ "eval_samples_per_second": 28.408,
1009
+ "eval_steps_per_second": 3.585,
1010
+ "step": 550
1011
+ },
1012
+ {
1013
+ "epoch": 0.878948401020208,
1014
+ "grad_norm": 1.42177414894104,
1015
+ "learning_rate": 3.4687889661302577e-06,
1016
+ "logits/chosen": 13.275362014770508,
1017
+ "logits/rejected": 12.30308723449707,
1018
+ "logps/chosen": -4.182652950286865,
1019
+ "logps/rejected": -7.163094997406006,
1020
+ "loss": 0.3692,
1021
+ "rewards/accuracies": 0.925000011920929,
1022
+ "rewards/chosen": -6.273979663848877,
1023
+ "rewards/margins": 4.470663547515869,
1024
+ "rewards/rejected": -10.744643211364746,
1025
+ "step": 560
1026
+ },
1027
+ {
1028
+ "epoch": 0.8946439081812831,
1029
+ "grad_norm": 2.431758403778076,
1030
+ "learning_rate": 3.4203113817116955e-06,
1031
+ "logits/chosen": 13.407594680786133,
1032
+ "logits/rejected": 12.078115463256836,
1033
+ "logps/chosen": -4.193841457366943,
1034
+ "logps/rejected": -7.832788944244385,
1035
+ "loss": 0.3487,
1036
+ "rewards/accuracies": 0.9375,
1037
+ "rewards/chosen": -6.290762901306152,
1038
+ "rewards/margins": 5.458420753479004,
1039
+ "rewards/rejected": -11.749183654785156,
1040
+ "step": 570
1041
+ },
1042
+ {
1043
+ "epoch": 0.9103394153423583,
1044
+ "grad_norm": 2.549168348312378,
1045
+ "learning_rate": 3.3714301183045382e-06,
1046
+ "logits/chosen": 12.668423652648926,
1047
+ "logits/rejected": 11.851642608642578,
1048
+ "logps/chosen": -4.831603050231934,
1049
+ "logps/rejected": -7.4626054763793945,
1050
+ "loss": 0.3717,
1051
+ "rewards/accuracies": 0.8500000238418579,
1052
+ "rewards/chosen": -7.2474045753479,
1053
+ "rewards/margins": 3.946502685546875,
1054
+ "rewards/rejected": -11.193906784057617,
1055
+ "step": 580
1056
+ },
1057
+ {
1058
+ "epoch": 0.9260349225034334,
1059
+ "grad_norm": 3.3875763416290283,
1060
+ "learning_rate": 3.3221666168464584e-06,
1061
+ "logits/chosen": 12.595063209533691,
1062
+ "logits/rejected": 12.006935119628906,
1063
+ "logps/chosen": -4.957076072692871,
1064
+ "logps/rejected": -7.576946258544922,
1065
+ "loss": 0.3553,
1066
+ "rewards/accuracies": 0.887499988079071,
1067
+ "rewards/chosen": -7.435614109039307,
1068
+ "rewards/margins": 3.9298064708709717,
1069
+ "rewards/rejected": -11.3654203414917,
1070
+ "step": 590
1071
+ },
1072
+ {
1073
+ "epoch": 0.9417304296645085,
1074
+ "grad_norm": 2.784954071044922,
1075
+ "learning_rate": 3.272542485937369e-06,
1076
+ "logits/chosen": 12.631284713745117,
1077
+ "logits/rejected": 11.908422470092773,
1078
+ "logps/chosen": -4.122859477996826,
1079
+ "logps/rejected": -7.009615421295166,
1080
+ "loss": 0.3086,
1081
+ "rewards/accuracies": 0.875,
1082
+ "rewards/chosen": -6.18428897857666,
1083
+ "rewards/margins": 4.330134868621826,
1084
+ "rewards/rejected": -10.514424324035645,
1085
+ "step": 600
1086
+ },
1087
+ {
1088
+ "epoch": 0.9417304296645085,
1089
+ "eval_logits/chosen": 13.370320320129395,
1090
+ "eval_logits/rejected": 12.268073081970215,
1091
+ "eval_logps/chosen": -4.0377197265625,
1092
+ "eval_logps/rejected": -7.431212425231934,
1093
+ "eval_loss": 0.33698391914367676,
1094
+ "eval_rewards/accuracies": 1.0,
1095
+ "eval_rewards/chosen": -6.056579113006592,
1096
+ "eval_rewards/margins": 5.090238094329834,
1097
+ "eval_rewards/rejected": -11.146818161010742,
1098
+ "eval_runtime": 14.5012,
1099
+ "eval_samples_per_second": 28.411,
1100
+ "eval_steps_per_second": 3.586,
1101
+ "step": 600
1102
+ },
1103
+ {
1104
+ "epoch": 0.9574259368255836,
1105
+ "grad_norm": 3.2864303588867188,
1106
+ "learning_rate": 3.222579492361179e-06,
1107
+ "logits/chosen": 12.638185501098633,
1108
+ "logits/rejected": 11.773119926452637,
1109
+ "logps/chosen": -4.101125240325928,
1110
+ "logps/rejected": -6.985491752624512,
1111
+ "loss": 0.2886,
1112
+ "rewards/accuracies": 0.8999999761581421,
1113
+ "rewards/chosen": -6.1516876220703125,
1114
+ "rewards/margins": 4.326549530029297,
1115
+ "rewards/rejected": -10.47823715209961,
1116
+ "step": 610
1117
+ },
1118
+ {
1119
+ "epoch": 0.9731214439866588,
1120
+ "grad_norm": 3.094020366668701,
1121
+ "learning_rate": 3.1722995515381644e-06,
1122
+ "logits/chosen": 12.71407413482666,
1123
+ "logits/rejected": 11.668571472167969,
1124
+ "logps/chosen": -4.560760498046875,
1125
+ "logps/rejected": -7.878456115722656,
1126
+ "loss": 0.294,
1127
+ "rewards/accuracies": 0.8999999761581421,
1128
+ "rewards/chosen": -6.841139793395996,
1129
+ "rewards/margins": 4.976544380187988,
1130
+ "rewards/rejected": -11.817686080932617,
1131
+ "step": 620
1132
+ },
1133
+ {
1134
+ "epoch": 0.9888169511477339,
1135
+ "grad_norm": 1.906849980354309,
1136
+ "learning_rate": 3.121724717912138e-06,
1137
+ "logits/chosen": 12.863229751586914,
1138
+ "logits/rejected": 11.391074180603027,
1139
+ "logps/chosen": -4.578230857849121,
1140
+ "logps/rejected": -8.216089248657227,
1141
+ "loss": 0.2579,
1142
+ "rewards/accuracies": 0.9624999761581421,
1143
+ "rewards/chosen": -6.86734676361084,
1144
+ "rewards/margins": 5.456785202026367,
1145
+ "rewards/rejected": -12.324131965637207,
1146
+ "step": 630
1147
+ },
1148
+ {
1149
+ "epoch": 1.003139101432215,
1150
+ "grad_norm": 2.699907064437866,
1151
+ "learning_rate": 3.0708771752766397e-06,
1152
+ "logits/chosen": 12.64507007598877,
1153
+ "logits/rejected": 12.148189544677734,
1154
+ "logps/chosen": -4.193073272705078,
1155
+ "logps/rejected": -7.2082905769348145,
1156
+ "loss": 0.2449,
1157
+ "rewards/accuracies": 0.931506872177124,
1158
+ "rewards/chosen": -6.289609909057617,
1159
+ "rewards/margins": 4.522825241088867,
1160
+ "rewards/rejected": -10.812435150146484,
1161
+ "step": 640
1162
+ },
1163
+ {
1164
+ "epoch": 1.0188346085932902,
1165
+ "grad_norm": 3.4014647006988525,
1166
+ "learning_rate": 3.019779227044398e-06,
1167
+ "logits/chosen": 12.921002388000488,
1168
+ "logits/rejected": 12.00908088684082,
1169
+ "logps/chosen": -4.350411415100098,
1170
+ "logps/rejected": -7.187474250793457,
1171
+ "loss": 0.2976,
1172
+ "rewards/accuracies": 0.9125000238418579,
1173
+ "rewards/chosen": -6.5256171226501465,
1174
+ "rewards/margins": 4.255594253540039,
1175
+ "rewards/rejected": -10.781211853027344,
1176
+ "step": 650
1177
+ },
1178
+ {
1179
+ "epoch": 1.0188346085932902,
1180
+ "eval_logits/chosen": 13.153624534606934,
1181
+ "eval_logits/rejected": 12.077543258666992,
1182
+ "eval_logps/chosen": -4.4063401222229,
1183
+ "eval_logps/rejected": -8.090719223022461,
1184
+ "eval_loss": 0.31872284412384033,
1185
+ "eval_rewards/accuracies": 1.0,
1186
+ "eval_rewards/chosen": -6.6095099449157715,
1187
+ "eval_rewards/margins": 5.526568412780762,
1188
+ "eval_rewards/rejected": -12.136077880859375,
1189
+ "eval_runtime": 14.4992,
1190
+ "eval_samples_per_second": 28.415,
1191
+ "eval_steps_per_second": 3.586,
1192
+ "step": 650
1193
+ },
1194
+ {
1195
+ "epoch": 1.0345301157543654,
1196
+ "grad_norm": 3.4320549964904785,
1197
+ "learning_rate": 2.9684532864643123e-06,
1198
+ "logits/chosen": 12.755729675292969,
1199
+ "logits/rejected": 11.981709480285645,
1200
+ "logps/chosen": -4.497554302215576,
1201
+ "logps/rejected": -7.250922203063965,
1202
+ "loss": 0.3013,
1203
+ "rewards/accuracies": 0.887499988079071,
1204
+ "rewards/chosen": -6.746331691741943,
1205
+ "rewards/margins": 4.13005256652832,
1206
+ "rewards/rejected": -10.876383781433105,
1207
+ "step": 660
1208
+ },
1209
+ {
1210
+ "epoch": 1.0502256229154405,
1211
+ "grad_norm": 5.130344867706299,
1212
+ "learning_rate": 2.9169218667902562e-06,
1213
+ "logits/chosen": 12.774751663208008,
1214
+ "logits/rejected": 12.063162803649902,
1215
+ "logps/chosen": -4.672727108001709,
1216
+ "logps/rejected": -7.972691535949707,
1217
+ "loss": 0.2677,
1218
+ "rewards/accuracies": 0.8999999761581421,
1219
+ "rewards/chosen": -7.009090423583984,
1220
+ "rewards/margins": 4.94994592666626,
1221
+ "rewards/rejected": -11.959035873413086,
1222
+ "step": 670
1223
+ },
1224
+ {
1225
+ "epoch": 1.0659211300765157,
1226
+ "grad_norm": 2.1107585430145264,
1227
+ "learning_rate": 2.8652075714060296e-06,
1228
+ "logits/chosen": 12.401437759399414,
1229
+ "logits/rejected": 11.329314231872559,
1230
+ "logps/chosen": -4.372309684753418,
1231
+ "logps/rejected": -7.968375205993652,
1232
+ "loss": 0.2321,
1233
+ "rewards/accuracies": 0.949999988079071,
1234
+ "rewards/chosen": -6.558464050292969,
1235
+ "rewards/margins": 5.394099235534668,
1236
+ "rewards/rejected": -11.952563285827637,
1237
+ "step": 680
1238
+ },
1239
+ {
1240
+ "epoch": 1.0816166372375908,
1241
+ "grad_norm": 2.09533429145813,
1242
+ "learning_rate": 2.813333083910761e-06,
1243
+ "logits/chosen": 12.615015029907227,
1244
+ "logits/rejected": 11.613394737243652,
1245
+ "logps/chosen": -4.582761764526367,
1246
+ "logps/rejected": -7.808516502380371,
1247
+ "loss": 0.2593,
1248
+ "rewards/accuracies": 0.9125000238418579,
1249
+ "rewards/chosen": -6.874144077301025,
1250
+ "rewards/margins": 4.838631629943848,
1251
+ "rewards/rejected": -11.712774276733398,
1252
+ "step": 690
1253
+ },
1254
+ {
1255
+ "epoch": 1.097312144398666,
1256
+ "grad_norm": 2.652644157409668,
1257
+ "learning_rate": 2.761321158169134e-06,
1258
+ "logits/chosen": 12.447229385375977,
1259
+ "logits/rejected": 11.710171699523926,
1260
+ "logps/chosen": -4.722737789154053,
1261
+ "logps/rejected": -8.122079849243164,
1262
+ "loss": 0.263,
1263
+ "rewards/accuracies": 0.9375,
1264
+ "rewards/chosen": -7.084107398986816,
1265
+ "rewards/margins": 5.0990142822265625,
1266
+ "rewards/rejected": -12.183120727539062,
1267
+ "step": 700
1268
+ },
1269
+ {
1270
+ "epoch": 1.097312144398666,
1271
+ "eval_logits/chosen": 13.170889854431152,
1272
+ "eval_logits/rejected": 12.095331192016602,
1273
+ "eval_logps/chosen": -4.405147075653076,
1274
+ "eval_logps/rejected": -8.16016960144043,
1275
+ "eval_loss": 0.3023497760295868,
1276
+ "eval_rewards/accuracies": 1.0,
1277
+ "eval_rewards/chosen": -6.607721328735352,
1278
+ "eval_rewards/margins": 5.632532119750977,
1279
+ "eval_rewards/rejected": -12.240253448486328,
1280
+ "eval_runtime": 14.5027,
1281
+ "eval_samples_per_second": 28.408,
1282
+ "eval_steps_per_second": 3.586,
1283
+ "step": 700
1284
+ },
1285
+ {
1286
+ "epoch": 1.113007651559741,
1287
+ "grad_norm": 2.3017961978912354,
1288
+ "learning_rate": 2.70919460833079e-06,
1289
+ "logits/chosen": 12.642290115356445,
1290
+ "logits/rejected": 11.817375183105469,
1291
+ "logps/chosen": -4.732531547546387,
1292
+ "logps/rejected": -8.388056755065918,
1293
+ "loss": 0.2707,
1294
+ "rewards/accuracies": 0.925000011920929,
1295
+ "rewards/chosen": -7.098797798156738,
1296
+ "rewards/margins": 5.483288764953613,
1297
+ "rewards/rejected": -12.582086563110352,
1298
+ "step": 710
1299
+ },
1300
+ {
1301
+ "epoch": 1.1287031587208163,
1302
+ "grad_norm": 2.538917303085327,
1303
+ "learning_rate": 2.6569762988232838e-06,
1304
+ "logits/chosen": 12.873556137084961,
1305
+ "logits/rejected": 11.74571704864502,
1306
+ "logps/chosen": -5.0908284187316895,
1307
+ "logps/rejected": -8.69284439086914,
1308
+ "loss": 0.2443,
1309
+ "rewards/accuracies": 0.9125000238418579,
1310
+ "rewards/chosen": -7.636242866516113,
1311
+ "rewards/margins": 5.403023719787598,
1312
+ "rewards/rejected": -13.039266586303711,
1313
+ "step": 720
1314
+ },
1315
+ {
1316
+ "epoch": 1.1443986658818912,
1317
+ "grad_norm": 2.7106313705444336,
1318
+ "learning_rate": 2.604689134322999e-06,
1319
+ "logits/chosen": 12.663686752319336,
1320
+ "logits/rejected": 12.057671546936035,
1321
+ "logps/chosen": -4.6052398681640625,
1322
+ "logps/rejected": -7.64666748046875,
1323
+ "loss": 0.2657,
1324
+ "rewards/accuracies": 0.8999999761581421,
1325
+ "rewards/chosen": -6.907858848571777,
1326
+ "rewards/margins": 4.562141418457031,
1327
+ "rewards/rejected": -11.470001220703125,
1328
+ "step": 730
1329
+ },
1330
+ {
1331
+ "epoch": 1.1600941730429664,
1332
+ "grad_norm": 1.9821428060531616,
1333
+ "learning_rate": 2.5523560497083927e-06,
1334
+ "logits/chosen": 12.605002403259277,
1335
+ "logits/rejected": 11.786115646362305,
1336
+ "logps/chosen": -4.447022438049316,
1337
+ "logps/rejected": -8.232423782348633,
1338
+ "loss": 0.2234,
1339
+ "rewards/accuracies": 0.9375,
1340
+ "rewards/chosen": -6.670533180236816,
1341
+ "rewards/margins": 5.678102016448975,
1342
+ "rewards/rejected": -12.348634719848633,
1343
+ "step": 740
1344
+ },
1345
+ {
1346
+ "epoch": 1.1757896802040415,
1347
+ "grad_norm": 2.469222068786621,
1348
+ "learning_rate": 2.5e-06,
1349
+ "logits/chosen": 12.427464485168457,
1350
+ "logits/rejected": 11.602205276489258,
1351
+ "logps/chosen": -4.620213985443115,
1352
+ "logps/rejected": -8.116684913635254,
1353
+ "loss": 0.2895,
1354
+ "rewards/accuracies": 0.887499988079071,
1355
+ "rewards/chosen": -6.93032169342041,
1356
+ "rewards/margins": 5.244706153869629,
1357
+ "rewards/rejected": -12.175026893615723,
1358
+ "step": 750
1359
+ },
1360
+ {
1361
+ "epoch": 1.1757896802040415,
1362
+ "eval_logits/chosen": 13.117497444152832,
1363
+ "eval_logits/rejected": 12.068766593933105,
1364
+ "eval_logps/chosen": -4.3247389793396,
1365
+ "eval_logps/rejected": -8.284286499023438,
1366
+ "eval_loss": 0.2885077893733978,
1367
+ "eval_rewards/accuracies": 1.0,
1368
+ "eval_rewards/chosen": -6.48710823059082,
1369
+ "eval_rewards/margins": 5.939322471618652,
1370
+ "eval_rewards/rejected": -12.426431655883789,
1371
+ "eval_runtime": 14.5056,
1372
+ "eval_samples_per_second": 28.403,
1373
+ "eval_steps_per_second": 3.585,
1374
+ "step": 750
1375
+ },
1376
+ {
1377
+ "epoch": 1.1914851873651167,
1378
+ "grad_norm": 1.4759465456008911,
1379
+ "learning_rate": 2.447643950291608e-06,
1380
+ "logits/chosen": 12.716300010681152,
1381
+ "logits/rejected": 11.687711715698242,
1382
+ "logps/chosen": -4.740975379943848,
1383
+ "logps/rejected": -8.425516128540039,
1384
+ "loss": 0.2696,
1385
+ "rewards/accuracies": 0.9624999761581421,
1386
+ "rewards/chosen": -7.111462593078613,
1387
+ "rewards/margins": 5.526811122894287,
1388
+ "rewards/rejected": -12.638272285461426,
1389
+ "step": 760
1390
+ },
1391
+ {
1392
+ "epoch": 1.2071806945261918,
1393
+ "grad_norm": 4.352353572845459,
1394
+ "learning_rate": 2.3953108656770018e-06,
1395
+ "logits/chosen": 12.28320598602295,
1396
+ "logits/rejected": 11.589045524597168,
1397
+ "logps/chosen": -4.623471260070801,
1398
+ "logps/rejected": -7.964238166809082,
1399
+ "loss": 0.2692,
1400
+ "rewards/accuracies": 0.9125000238418579,
1401
+ "rewards/chosen": -6.935206413269043,
1402
+ "rewards/margins": 5.01115083694458,
1403
+ "rewards/rejected": -11.946358680725098,
1404
+ "step": 770
1405
+ },
1406
+ {
1407
+ "epoch": 1.222876201687267,
1408
+ "grad_norm": 3.407118558883667,
1409
+ "learning_rate": 2.3430237011767166e-06,
1410
+ "logits/chosen": 12.472453117370605,
1411
+ "logits/rejected": 11.568643569946289,
1412
+ "logps/chosen": -4.998484134674072,
1413
+ "logps/rejected": -9.068008422851562,
1414
+ "loss": 0.248,
1415
+ "rewards/accuracies": 0.9750000238418579,
1416
+ "rewards/chosen": -7.4977264404296875,
1417
+ "rewards/margins": 6.104286193847656,
1418
+ "rewards/rejected": -13.602012634277344,
1419
+ "step": 780
1420
+ },
1421
+ {
1422
+ "epoch": 1.2385717088483421,
1423
+ "grad_norm": 2.2443063259124756,
1424
+ "learning_rate": 2.290805391669212e-06,
1425
+ "logits/chosen": 12.315655708312988,
1426
+ "logits/rejected": 11.502891540527344,
1427
+ "logps/chosen": -4.696177959442139,
1428
+ "logps/rejected": -8.123588562011719,
1429
+ "loss": 0.2549,
1430
+ "rewards/accuracies": 1.0,
1431
+ "rewards/chosen": -7.044266700744629,
1432
+ "rewards/margins": 5.141116142272949,
1433
+ "rewards/rejected": -12.185382843017578,
1434
+ "step": 790
1435
+ },
1436
+ {
1437
+ "epoch": 1.2542672160094173,
1438
+ "grad_norm": 3.419119358062744,
1439
+ "learning_rate": 2.238678841830867e-06,
1440
+ "logits/chosen": 12.070470809936523,
1441
+ "logits/rejected": 11.558723449707031,
1442
+ "logps/chosen": -4.473680019378662,
1443
+ "logps/rejected": -7.936869144439697,
1444
+ "loss": 0.3082,
1445
+ "rewards/accuracies": 0.925000011920929,
1446
+ "rewards/chosen": -6.710520267486572,
1447
+ "rewards/margins": 5.1947832107543945,
1448
+ "rewards/rejected": -11.905302047729492,
1449
+ "step": 800
1450
+ },
1451
+ {
1452
+ "epoch": 1.2542672160094173,
1453
+ "eval_logits/chosen": 13.084930419921875,
1454
+ "eval_logits/rejected": 12.024311065673828,
1455
+ "eval_logps/chosen": -4.1232075691223145,
1456
+ "eval_logps/rejected": -8.072820663452148,
1457
+ "eval_loss": 0.27581357955932617,
1458
+ "eval_rewards/accuracies": 1.0,
1459
+ "eval_rewards/chosen": -6.184810161590576,
1460
+ "eval_rewards/margins": 5.924418926239014,
1461
+ "eval_rewards/rejected": -12.10922908782959,
1462
+ "eval_runtime": 14.5062,
1463
+ "eval_samples_per_second": 28.402,
1464
+ "eval_steps_per_second": 3.585,
1465
+ "step": 800
1466
+ },
1467
+ {
1468
+ "epoch": 1.2699627231704924,
1469
+ "grad_norm": 3.637188196182251,
1470
+ "learning_rate": 2.186666916089239e-06,
1471
+ "logits/chosen": 12.425226211547852,
1472
+ "logits/rejected": 11.625535011291504,
1473
+ "logps/chosen": -4.465217590332031,
1474
+ "logps/rejected": -8.138174057006836,
1475
+ "loss": 0.2454,
1476
+ "rewards/accuracies": 0.9375,
1477
+ "rewards/chosen": -6.697826385498047,
1478
+ "rewards/margins": 5.509435653686523,
1479
+ "rewards/rejected": -12.20726203918457,
1480
+ "step": 810
1481
+ },
1482
+ {
1483
+ "epoch": 1.2856582303315676,
1484
+ "grad_norm": 2.836642265319824,
1485
+ "learning_rate": 2.134792428593971e-06,
1486
+ "logits/chosen": 12.305977821350098,
1487
+ "logits/rejected": 11.66655445098877,
1488
+ "logps/chosen": -4.680156707763672,
1489
+ "logps/rejected": -7.750007629394531,
1490
+ "loss": 0.2172,
1491
+ "rewards/accuracies": 0.9125000238418579,
1492
+ "rewards/chosen": -7.020236015319824,
1493
+ "rewards/margins": 4.604775905609131,
1494
+ "rewards/rejected": -11.625011444091797,
1495
+ "step": 820
1496
+ },
1497
+ {
1498
+ "epoch": 1.3013537374926427,
1499
+ "grad_norm": 3.5275964736938477,
1500
+ "learning_rate": 2.0830781332097446e-06,
1501
+ "logits/chosen": 12.902934074401855,
1502
+ "logits/rejected": 11.944432258605957,
1503
+ "logps/chosen": -4.6034321784973145,
1504
+ "logps/rejected": -8.786798477172852,
1505
+ "loss": 0.2231,
1506
+ "rewards/accuracies": 0.925000011920929,
1507
+ "rewards/chosen": -6.905147552490234,
1508
+ "rewards/margins": 6.275050163269043,
1509
+ "rewards/rejected": -13.180196762084961,
1510
+ "step": 830
1511
+ },
1512
+ {
1513
+ "epoch": 1.3170492446537179,
1514
+ "grad_norm": 3.2921273708343506,
1515
+ "learning_rate": 2.031546713535688e-06,
1516
+ "logits/chosen": 12.8768892288208,
1517
+ "logits/rejected": 11.985623359680176,
1518
+ "logps/chosen": -4.825736045837402,
1519
+ "logps/rejected": -8.161986351013184,
1520
+ "loss": 0.2584,
1521
+ "rewards/accuracies": 0.9125000238418579,
1522
+ "rewards/chosen": -7.2386040687561035,
1523
+ "rewards/margins": 5.00437593460083,
1524
+ "rewards/rejected": -12.242980003356934,
1525
+ "step": 840
1526
+ },
1527
+ {
1528
+ "epoch": 1.332744751814793,
1529
+ "grad_norm": 3.1977927684783936,
1530
+ "learning_rate": 1.9802207729556023e-06,
1531
+ "logits/chosen": 12.695280075073242,
1532
+ "logits/rejected": 11.713974952697754,
1533
+ "logps/chosen": -4.446492671966553,
1534
+ "logps/rejected": -8.236989974975586,
1535
+ "loss": 0.2242,
1536
+ "rewards/accuracies": 0.9125000238418579,
1537
+ "rewards/chosen": -6.669739723205566,
1538
+ "rewards/margins": 5.685745716094971,
1539
+ "rewards/rejected": -12.355484008789062,
1540
+ "step": 850
1541
+ },
1542
+ {
1543
+ "epoch": 1.332744751814793,
1544
+ "eval_logits/chosen": 12.975180625915527,
1545
+ "eval_logits/rejected": 11.917383193969727,
1546
+ "eval_logps/chosen": -4.095187664031982,
1547
+ "eval_logps/rejected": -8.178255081176758,
1548
+ "eval_loss": 0.2621641755104065,
1549
+ "eval_rewards/accuracies": 1.0,
1550
+ "eval_rewards/chosen": -6.1427812576293945,
1551
+ "eval_rewards/margins": 6.124600887298584,
1552
+ "eval_rewards/rejected": -12.26738166809082,
1553
+ "eval_runtime": 14.5043,
1554
+ "eval_samples_per_second": 28.405,
1555
+ "eval_steps_per_second": 3.585,
1556
+ "step": 850
1557
+ },
1558
+ {
1559
+ "epoch": 1.3484402589758682,
1560
+ "grad_norm": 4.474134922027588,
1561
+ "learning_rate": 1.9291228247233607e-06,
1562
+ "logits/chosen": 12.378435134887695,
1563
+ "logits/rejected": 11.085493087768555,
1564
+ "logps/chosen": -4.5196709632873535,
1565
+ "logps/rejected": -8.377789497375488,
1566
+ "loss": 0.2711,
1567
+ "rewards/accuracies": 0.9125000238418579,
1568
+ "rewards/chosen": -6.779506683349609,
1569
+ "rewards/margins": 5.787177085876465,
1570
+ "rewards/rejected": -12.566683769226074,
1571
+ "step": 860
1572
+ },
1573
+ {
1574
+ "epoch": 1.3641357661369433,
1575
+ "grad_norm": 3.2606918811798096,
1576
+ "learning_rate": 1.8782752820878636e-06,
1577
+ "logits/chosen": 11.961488723754883,
1578
+ "logits/rejected": 11.434579849243164,
1579
+ "logps/chosen": -4.525224208831787,
1580
+ "logps/rejected": -8.16456413269043,
1581
+ "loss": 0.2569,
1582
+ "rewards/accuracies": 0.9624999761581421,
1583
+ "rewards/chosen": -6.787835597991943,
1584
+ "rewards/margins": 5.459010124206543,
1585
+ "rewards/rejected": -12.246846199035645,
1586
+ "step": 870
1587
+ },
1588
+ {
1589
+ "epoch": 1.3798312732980185,
1590
+ "grad_norm": 3.297881603240967,
1591
+ "learning_rate": 1.827700448461836e-06,
1592
+ "logits/chosen": 12.268153190612793,
1593
+ "logits/rejected": 11.848055839538574,
1594
+ "logps/chosen": -3.979138135910034,
1595
+ "logps/rejected": -7.244141578674316,
1596
+ "loss": 0.2876,
1597
+ "rewards/accuracies": 0.925000011920929,
1598
+ "rewards/chosen": -5.968707084655762,
1599
+ "rewards/margins": 4.897505760192871,
1600
+ "rewards/rejected": -10.866212844848633,
1601
+ "step": 880
1602
+ },
1603
+ {
1604
+ "epoch": 1.3955267804590936,
1605
+ "grad_norm": 5.355867862701416,
1606
+ "learning_rate": 1.7774205076388207e-06,
1607
+ "logits/chosen": 12.47008991241455,
1608
+ "logits/rejected": 11.850513458251953,
1609
+ "logps/chosen": -4.1252217292785645,
1610
+ "logps/rejected": -8.060781478881836,
1611
+ "loss": 0.2502,
1612
+ "rewards/accuracies": 0.925000011920929,
1613
+ "rewards/chosen": -6.187832832336426,
1614
+ "rewards/margins": 5.9033403396606445,
1615
+ "rewards/rejected": -12.09117317199707,
1616
+ "step": 890
1617
+ },
1618
+ {
1619
+ "epoch": 1.4112222876201688,
1620
+ "grad_norm": 3.333230495452881,
1621
+ "learning_rate": 1.7274575140626318e-06,
1622
+ "logits/chosen": 12.16104793548584,
1623
+ "logits/rejected": 11.287874221801758,
1624
+ "logps/chosen": -3.827984571456909,
1625
+ "logps/rejected": -7.516768455505371,
1626
+ "loss": 0.2162,
1627
+ "rewards/accuracies": 0.9624999761581421,
1628
+ "rewards/chosen": -5.741976737976074,
1629
+ "rewards/margins": 5.533174991607666,
1630
+ "rewards/rejected": -11.275151252746582,
1631
+ "step": 900
1632
+ },
1633
+ {
1634
+ "epoch": 1.4112222876201688,
1635
+ "eval_logits/chosen": 12.950577735900879,
1636
+ "eval_logits/rejected": 11.89844799041748,
1637
+ "eval_logps/chosen": -4.105511665344238,
1638
+ "eval_logps/rejected": -8.293257713317871,
1639
+ "eval_loss": 0.2529076933860779,
1640
+ "eval_rewards/accuracies": 1.0,
1641
+ "eval_rewards/chosen": -6.158267498016357,
1642
+ "eval_rewards/margins": 6.281619071960449,
1643
+ "eval_rewards/rejected": -12.439887046813965,
1644
+ "eval_runtime": 14.5023,
1645
+ "eval_samples_per_second": 28.409,
1646
+ "eval_steps_per_second": 3.586,
1647
+ "step": 900
1648
+ },
1649
+ {
1650
+ "epoch": 1.426917794781244,
1651
+ "grad_norm": 2.3288955688476562,
1652
+ "learning_rate": 1.677833383153542e-06,
1653
+ "logits/chosen": 12.872639656066895,
1654
+ "logits/rejected": 11.605780601501465,
1655
+ "logps/chosen": -4.383180141448975,
1656
+ "logps/rejected": -8.010499954223633,
1657
+ "loss": 0.212,
1658
+ "rewards/accuracies": 0.949999988079071,
1659
+ "rewards/chosen": -6.574770927429199,
1660
+ "rewards/margins": 5.440978527069092,
1661
+ "rewards/rejected": -12.015748977661133,
1662
+ "step": 910
1663
+ },
1664
+ {
1665
+ "epoch": 1.442613301942319,
1666
+ "grad_norm": 3.773186206817627,
1667
+ "learning_rate": 1.6285698816954626e-06,
1668
+ "logits/chosen": 12.562664985656738,
1669
+ "logits/rejected": 11.542292594909668,
1670
+ "logps/chosen": -4.957005500793457,
1671
+ "logps/rejected": -9.080846786499023,
1672
+ "loss": 0.2343,
1673
+ "rewards/accuracies": 0.9375,
1674
+ "rewards/chosen": -7.435508728027344,
1675
+ "rewards/margins": 6.185763359069824,
1676
+ "rewards/rejected": -13.621271133422852,
1677
+ "step": 920
1678
+ },
1679
+ {
1680
+ "epoch": 1.4583088091033942,
1681
+ "grad_norm": 2.7567288875579834,
1682
+ "learning_rate": 1.5796886182883053e-06,
1683
+ "logits/chosen": 12.21378231048584,
1684
+ "logits/rejected": 11.380667686462402,
1685
+ "logps/chosen": -4.714855670928955,
1686
+ "logps/rejected": -8.239659309387207,
1687
+ "loss": 0.2487,
1688
+ "rewards/accuracies": 0.925000011920929,
1689
+ "rewards/chosen": -7.072283744812012,
1690
+ "rewards/margins": 5.287206172943115,
1691
+ "rewards/rejected": -12.359490394592285,
1692
+ "step": 930
1693
+ },
1694
+ {
1695
+ "epoch": 1.4740043162644694,
1696
+ "grad_norm": 5.543617248535156,
1697
+ "learning_rate": 1.5312110338697427e-06,
1698
+ "logits/chosen": 11.844781875610352,
1699
+ "logits/rejected": 11.141448974609375,
1700
+ "logps/chosen": -4.98689079284668,
1701
+ "logps/rejected": -8.525138854980469,
1702
+ "loss": 0.2609,
1703
+ "rewards/accuracies": 0.9375,
1704
+ "rewards/chosen": -7.480336666107178,
1705
+ "rewards/margins": 5.307372570037842,
1706
+ "rewards/rejected": -12.78770923614502,
1707
+ "step": 940
1708
+ },
1709
+ {
1710
+ "epoch": 1.4896998234255445,
1711
+ "grad_norm": 4.39804220199585,
1712
+ "learning_rate": 1.4831583923105e-06,
1713
+ "logits/chosen": 12.365824699401855,
1714
+ "logits/rejected": 11.472888946533203,
1715
+ "logps/chosen": -4.707729816436768,
1716
+ "logps/rejected": -8.413005828857422,
1717
+ "loss": 0.2398,
1718
+ "rewards/accuracies": 0.8999999761581421,
1719
+ "rewards/chosen": -7.061594486236572,
1720
+ "rewards/margins": 5.557913780212402,
1721
+ "rewards/rejected": -12.619508743286133,
1722
+ "step": 950
1723
+ },
1724
+ {
1725
+ "epoch": 1.4896998234255445,
1726
+ "eval_logits/chosen": 12.97492790222168,
1727
+ "eval_logits/rejected": 11.935004234313965,
1728
+ "eval_logps/chosen": -4.231271743774414,
1729
+ "eval_logps/rejected": -8.475292205810547,
1730
+ "eval_loss": 0.24798962473869324,
1731
+ "eval_rewards/accuracies": 1.0,
1732
+ "eval_rewards/chosen": -6.346907615661621,
1733
+ "eval_rewards/margins": 6.366030693054199,
1734
+ "eval_rewards/rejected": -12.71293830871582,
1735
+ "eval_runtime": 14.5034,
1736
+ "eval_samples_per_second": 28.407,
1737
+ "eval_steps_per_second": 3.585,
1738
+ "step": 950
1739
+ },
1740
+ {
1741
+ "epoch": 1.5053953305866195,
1742
+ "grad_norm": 2.8650925159454346,
1743
+ "learning_rate": 1.4355517710873184e-06,
1744
+ "logits/chosen": 12.443435668945312,
1745
+ "logits/rejected": 11.93461799621582,
1746
+ "logps/chosen": -4.258164405822754,
1747
+ "logps/rejected": -7.894736289978027,
1748
+ "loss": 0.1948,
1749
+ "rewards/accuracies": 0.8999999761581421,
1750
+ "rewards/chosen": -6.387246131896973,
1751
+ "rewards/margins": 5.454858779907227,
1752
+ "rewards/rejected": -11.8421049118042,
1753
+ "step": 960
1754
+ },
1755
+ {
1756
+ "epoch": 1.5210908377476948,
1757
+ "grad_norm": 3.400313377380371,
1758
+ "learning_rate": 1.388412052037682e-06,
1759
+ "logits/chosen": 12.361493110656738,
1760
+ "logits/rejected": 11.476273536682129,
1761
+ "logps/chosen": -4.457276344299316,
1762
+ "logps/rejected": -8.228893280029297,
1763
+ "loss": 0.1888,
1764
+ "rewards/accuracies": 0.987500011920929,
1765
+ "rewards/chosen": -6.685914039611816,
1766
+ "rewards/margins": 5.657425880432129,
1767
+ "rewards/rejected": -12.343339920043945,
1768
+ "step": 970
1769
+ },
1770
+ {
1771
+ "epoch": 1.5367863449087698,
1772
+ "grad_norm": 3.8736472129821777,
1773
+ "learning_rate": 1.3417599122003464e-06,
1774
+ "logits/chosen": 12.806173324584961,
1775
+ "logits/rejected": 11.818658828735352,
1776
+ "logps/chosen": -4.827099800109863,
1777
+ "logps/rejected": -8.408552169799805,
1778
+ "loss": 0.231,
1779
+ "rewards/accuracies": 0.925000011920929,
1780
+ "rewards/chosen": -7.240649223327637,
1781
+ "rewards/margins": 5.3721795082092285,
1782
+ "rewards/rejected": -12.612829208374023,
1783
+ "step": 980
1784
+ },
1785
+ {
1786
+ "epoch": 1.5524818520698451,
1787
+ "grad_norm": 3.6417574882507324,
1788
+ "learning_rate": 1.2956158147457116e-06,
1789
+ "logits/chosen": 12.428319931030273,
1790
+ "logits/rejected": 11.719505310058594,
1791
+ "logps/chosen": -5.147378444671631,
1792
+ "logps/rejected": -8.708709716796875,
1793
+ "loss": 0.2265,
1794
+ "rewards/accuracies": 0.925000011920929,
1795
+ "rewards/chosen": -7.721067905426025,
1796
+ "rewards/margins": 5.341997146606445,
1797
+ "rewards/rejected": -13.06306266784668,
1798
+ "step": 990
1799
+ },
1800
+ {
1801
+ "epoch": 1.56817735923092,
1802
+ "grad_norm": 2.3367979526519775,
1803
+ "learning_rate": 1.2500000000000007e-06,
1804
+ "logits/chosen": 12.109533309936523,
1805
+ "logits/rejected": 11.499246597290039,
1806
+ "logps/chosen": -5.072439193725586,
1807
+ "logps/rejected": -9.098675727844238,
1808
+ "loss": 0.216,
1809
+ "rewards/accuracies": 0.9624999761581421,
1810
+ "rewards/chosen": -7.608658790588379,
1811
+ "rewards/margins": 6.039353847503662,
1812
+ "rewards/rejected": -13.648012161254883,
1813
+ "step": 1000
1814
+ },
1815
+ {
1816
+ "epoch": 1.56817735923092,
1817
+ "eval_logits/chosen": 12.952030181884766,
1818
+ "eval_logits/rejected": 11.900659561157227,
1819
+ "eval_logps/chosen": -4.205340385437012,
1820
+ "eval_logps/rejected": -8.569601058959961,
1821
+ "eval_loss": 0.2481767237186432,
1822
+ "eval_rewards/accuracies": 1.0,
1823
+ "eval_rewards/chosen": -6.308011054992676,
1824
+ "eval_rewards/margins": 6.546389579772949,
1825
+ "eval_rewards/rejected": -12.854399681091309,
1826
+ "eval_runtime": 14.5049,
1827
+ "eval_samples_per_second": 28.404,
1828
+ "eval_steps_per_second": 3.585,
1829
+ "step": 1000
1830
+ },
1831
+ {
1832
+ "epoch": 1.5838728663919954,
1833
+ "grad_norm": 2.5456700325012207,
1834
+ "learning_rate": 1.204932476567175e-06,
1835
+ "logits/chosen": 11.960077285766602,
1836
+ "logits/rejected": 10.87277603149414,
1837
+ "logps/chosen": -4.433133125305176,
1838
+ "logps/rejected": -8.525662422180176,
1839
+ "loss": 0.2443,
1840
+ "rewards/accuracies": 0.987500011920929,
1841
+ "rewards/chosen": -6.6496992111206055,
1842
+ "rewards/margins": 6.1387939453125,
1843
+ "rewards/rejected": -12.788493156433105,
1844
+ "step": 1010
1845
+ },
1846
+ {
1847
+ "epoch": 1.5995683735530704,
1848
+ "grad_norm": 2.834538698196411,
1849
+ "learning_rate": 1.160433012552508e-06,
1850
+ "logits/chosen": 12.570700645446777,
1851
+ "logits/rejected": 11.804948806762695,
1852
+ "logps/chosen": -3.698901414871216,
1853
+ "logps/rejected": -7.383004665374756,
1854
+ "loss": 0.2226,
1855
+ "rewards/accuracies": 0.949999988079071,
1856
+ "rewards/chosen": -5.5483527183532715,
1857
+ "rewards/margins": 5.526154518127441,
1858
+ "rewards/rejected": -11.074506759643555,
1859
+ "step": 1020
1860
+ },
1861
+ {
1862
+ "epoch": 1.6152638807141457,
1863
+ "grad_norm": 3.336750030517578,
1864
+ "learning_rate": 1.11652112689164e-06,
1865
+ "logits/chosen": 12.501141548156738,
1866
+ "logits/rejected": 11.617207527160645,
1867
+ "logps/chosen": -4.3009490966796875,
1868
+ "logps/rejected": -8.17215347290039,
1869
+ "loss": 0.2303,
1870
+ "rewards/accuracies": 0.9624999761581421,
1871
+ "rewards/chosen": -6.451423645019531,
1872
+ "rewards/margins": 5.806807041168213,
1873
+ "rewards/rejected": -12.258230209350586,
1874
+ "step": 1030
1875
+ },
1876
+ {
1877
+ "epoch": 1.6309593878752207,
1878
+ "grad_norm": 2.519408941268921,
1879
+ "learning_rate": 1.073216080788921e-06,
1880
+ "logits/chosen": 12.614023208618164,
1881
+ "logits/rejected": 11.761343002319336,
1882
+ "logps/chosen": -4.564716815948486,
1883
+ "logps/rejected": -8.430013656616211,
1884
+ "loss": 0.2634,
1885
+ "rewards/accuracies": 0.9125000238418579,
1886
+ "rewards/chosen": -6.847075462341309,
1887
+ "rewards/margins": 5.797944068908691,
1888
+ "rewards/rejected": -12.645018577575684,
1889
+ "step": 1040
1890
+ },
1891
+ {
1892
+ "epoch": 1.6466548950362958,
1893
+ "grad_norm": 4.510939121246338,
1894
+ "learning_rate": 1.0305368692688175e-06,
1895
+ "logits/chosen": 12.286882400512695,
1896
+ "logits/rejected": 11.735586166381836,
1897
+ "logps/chosen": -4.190676212310791,
1898
+ "logps/rejected": -8.055787086486816,
1899
+ "loss": 0.1713,
1900
+ "rewards/accuracies": 0.9375,
1901
+ "rewards/chosen": -6.286014556884766,
1902
+ "rewards/margins": 5.797664642333984,
1903
+ "rewards/rejected": -12.08367919921875,
1904
+ "step": 1050
1905
+ },
1906
+ {
1907
+ "epoch": 1.6466548950362958,
1908
+ "eval_logits/chosen": 12.861144065856934,
1909
+ "eval_logits/rejected": 11.838491439819336,
1910
+ "eval_logps/chosen": -4.190127372741699,
1911
+ "eval_logps/rejected": -8.606769561767578,
1912
+ "eval_loss": 0.24250496923923492,
1913
+ "eval_rewards/accuracies": 1.0,
1914
+ "eval_rewards/chosen": -6.285191535949707,
1915
+ "eval_rewards/margins": 6.624964237213135,
1916
+ "eval_rewards/rejected": -12.910155296325684,
1917
+ "eval_runtime": 14.4989,
1918
+ "eval_samples_per_second": 28.416,
1919
+ "eval_steps_per_second": 3.586,
1920
+ "step": 1050
1921
+ },
1922
+ {
1923
+ "epoch": 1.662350402197371,
1924
+ "grad_norm": 3.669426441192627,
1925
+ "learning_rate": 9.88502212844063e-07,
1926
+ "logits/chosen": 12.255383491516113,
1927
+ "logits/rejected": 11.495210647583008,
1928
+ "logps/chosen": -3.948782444000244,
1929
+ "logps/rejected": -8.229391098022461,
1930
+ "loss": 0.2143,
1931
+ "rewards/accuracies": 0.987500011920929,
1932
+ "rewards/chosen": -5.923173427581787,
1933
+ "rewards/margins": 6.4209136962890625,
1934
+ "rewards/rejected": -12.344087600708008,
1935
+ "step": 1060
1936
+ },
1937
+ {
1938
+ "epoch": 1.678045909358446,
1939
+ "grad_norm": 4.005455493927002,
1940
+ "learning_rate": 9.471305493042243e-07,
1941
+ "logits/chosen": 12.1824312210083,
1942
+ "logits/rejected": 11.290962219238281,
1943
+ "logps/chosen": -4.578344821929932,
1944
+ "logps/rejected": -8.505768775939941,
1945
+ "loss": 0.2361,
1946
+ "rewards/accuracies": 0.949999988079071,
1947
+ "rewards/chosen": -6.867516994476318,
1948
+ "rewards/margins": 5.89113712310791,
1949
+ "rewards/rejected": -12.75865364074707,
1950
+ "step": 1070
1951
+ },
1952
+ {
1953
+ "epoch": 1.6937414165195213,
1954
+ "grad_norm": 2.032545566558838,
1955
+ "learning_rate": 9.064400256282757e-07,
1956
+ "logits/chosen": 12.451539039611816,
1957
+ "logits/rejected": 11.746088027954102,
1958
+ "logps/chosen": -4.1952643394470215,
1959
+ "logps/rejected": -7.86816930770874,
1960
+ "loss": 0.1957,
1961
+ "rewards/accuracies": 0.949999988079071,
1962
+ "rewards/chosen": -6.2928972244262695,
1963
+ "rewards/margins": 5.50935697555542,
1964
+ "rewards/rejected": -11.802255630493164,
1965
+ "step": 1080
1966
+ },
1967
+ {
1968
+ "epoch": 1.7094369236805964,
1969
+ "grad_norm": 4.466379642486572,
1970
+ "learning_rate": 8.664484900247363e-07,
1971
+ "logits/chosen": 12.144006729125977,
1972
+ "logits/rejected": 11.437246322631836,
1973
+ "logps/chosen": -4.593950271606445,
1974
+ "logps/rejected": -8.530038833618164,
1975
+ "loss": 0.186,
1976
+ "rewards/accuracies": 0.9375,
1977
+ "rewards/chosen": -6.890925407409668,
1978
+ "rewards/margins": 5.9041337966918945,
1979
+ "rewards/rejected": -12.795059204101562,
1980
+ "step": 1090
1981
+ },
1982
+ {
1983
+ "epoch": 1.7251324308416716,
1984
+ "grad_norm": 2.941102981567383,
1985
+ "learning_rate": 8.271734841028553e-07,
1986
+ "logits/chosen": 12.305268287658691,
1987
+ "logits/rejected": 11.327041625976562,
1988
+ "logps/chosen": -4.72153377532959,
1989
+ "logps/rejected": -8.988466262817383,
1990
+ "loss": 0.2264,
1991
+ "rewards/accuracies": 0.9624999761581421,
1992
+ "rewards/chosen": -7.082299709320068,
1993
+ "rewards/margins": 6.400399684906006,
1994
+ "rewards/rejected": -13.482701301574707,
1995
+ "step": 1100
1996
+ },
1997
+ {
1998
+ "epoch": 1.7251324308416716,
1999
+ "eval_logits/chosen": 12.896148681640625,
2000
+ "eval_logits/rejected": 11.868448257446289,
2001
+ "eval_logps/chosen": -4.222008228302002,
2002
+ "eval_logps/rejected": -8.642206192016602,
2003
+ "eval_loss": 0.2400711625814438,
2004
+ "eval_rewards/accuracies": 1.0,
2005
+ "eval_rewards/chosen": -6.333012580871582,
2006
+ "eval_rewards/margins": 6.6302971839904785,
2007
+ "eval_rewards/rejected": -12.963308334350586,
2008
+ "eval_runtime": 14.5019,
2009
+ "eval_samples_per_second": 28.41,
2010
+ "eval_steps_per_second": 3.586,
2011
+ "step": 1100
2012
+ },
2013
+ {
2014
+ "epoch": 1.7408279380027467,
2015
+ "grad_norm": 4.001830101013184,
2016
+ "learning_rate": 7.886322351782782e-07,
2017
+ "logits/chosen": 12.858680725097656,
2018
+ "logits/rejected": 11.653299331665039,
2019
+ "logps/chosen": -4.239178657531738,
2020
+ "logps/rejected": -8.762260437011719,
2021
+ "loss": 0.2786,
2022
+ "rewards/accuracies": 0.9375,
2023
+ "rewards/chosen": -6.358767986297607,
2024
+ "rewards/margins": 6.784623622894287,
2025
+ "rewards/rejected": -13.143391609191895,
2026
+ "step": 1110
2027
+ },
2028
+ {
2029
+ "epoch": 1.7565234451638219,
2030
+ "grad_norm": 2.9689064025878906,
2031
+ "learning_rate": 7.508416487165862e-07,
2032
+ "logits/chosen": 12.076465606689453,
2033
+ "logits/rejected": 11.392438888549805,
2034
+ "logps/chosen": -4.560977458953857,
2035
+ "logps/rejected": -8.554190635681152,
2036
+ "loss": 0.1998,
2037
+ "rewards/accuracies": 0.9375,
2038
+ "rewards/chosen": -6.841466426849365,
2039
+ "rewards/margins": 5.98982048034668,
2040
+ "rewards/rejected": -12.831286430358887,
2041
+ "step": 1120
2042
+ },
2043
+ {
2044
+ "epoch": 1.772218952324897,
2045
+ "grad_norm": 1.6012306213378906,
2046
+ "learning_rate": 7.138183009179922e-07,
2047
+ "logits/chosen": 12.253329277038574,
2048
+ "logits/rejected": 11.584481239318848,
2049
+ "logps/chosen": -4.0213422775268555,
2050
+ "logps/rejected": -8.13912296295166,
2051
+ "loss": 0.1823,
2052
+ "rewards/accuracies": 0.949999988079071,
2053
+ "rewards/chosen": -6.032013893127441,
2054
+ "rewards/margins": 6.176670074462891,
2055
+ "rewards/rejected": -12.208683967590332,
2056
+ "step": 1130
2057
+ },
2058
+ {
2059
+ "epoch": 1.7879144594859722,
2060
+ "grad_norm": 3.8666510581970215,
2061
+ "learning_rate": 6.775784314464717e-07,
2062
+ "logits/chosen": 11.831202507019043,
2063
+ "logits/rejected": 11.49097728729248,
2064
+ "logps/chosen": -4.555119037628174,
2065
+ "logps/rejected": -8.43702220916748,
2066
+ "loss": 0.2494,
2067
+ "rewards/accuracies": 0.8999999761581421,
2068
+ "rewards/chosen": -6.832678318023682,
2069
+ "rewards/margins": 5.822856426239014,
2070
+ "rewards/rejected": -12.655534744262695,
2071
+ "step": 1140
2072
+ },
2073
+ {
2074
+ "epoch": 1.8036099666470473,
2075
+ "grad_norm": 3.794703483581543,
2076
+ "learning_rate": 6.421379363065142e-07,
2077
+ "logits/chosen": 12.098966598510742,
2078
+ "logits/rejected": 11.32978343963623,
2079
+ "logps/chosen": -4.038215637207031,
2080
+ "logps/rejected": -7.658058166503906,
2081
+ "loss": 0.2365,
2082
+ "rewards/accuracies": 0.9750000238418579,
2083
+ "rewards/chosen": -6.057322978973389,
2084
+ "rewards/margins": 5.4297637939453125,
2085
+ "rewards/rejected": -11.487086296081543,
2086
+ "step": 1150
2087
+ },
2088
+ {
2089
+ "epoch": 1.8036099666470473,
2090
+ "eval_logits/chosen": 12.860236167907715,
2091
+ "eval_logits/rejected": 11.83856201171875,
2092
+ "eval_logps/chosen": -4.173120498657227,
2093
+ "eval_logps/rejected": -8.646206855773926,
2094
+ "eval_loss": 0.23765961825847626,
2095
+ "eval_rewards/accuracies": 1.0,
2096
+ "eval_rewards/chosen": -6.2596821784973145,
2097
+ "eval_rewards/margins": 6.709629535675049,
2098
+ "eval_rewards/rejected": -12.96930980682373,
2099
+ "eval_runtime": 14.5141,
2100
+ "eval_samples_per_second": 28.386,
2101
+ "eval_steps_per_second": 3.583,
2102
+ "step": 1150
2103
+ },
2104
+ {
2105
+ "epoch": 1.8193054738081225,
2106
+ "grad_norm": 4.030630588531494,
2107
+ "learning_rate": 6.075123608706093e-07,
2108
+ "logits/chosen": 12.267806053161621,
2109
+ "logits/rejected": 11.600652694702148,
2110
+ "logps/chosen": -4.568865776062012,
2111
+ "logps/rejected": -7.858088493347168,
2112
+ "loss": 0.2043,
2113
+ "rewards/accuracies": 0.949999988079071,
2114
+ "rewards/chosen": -6.853298187255859,
2115
+ "rewards/margins": 4.933834552764893,
2116
+ "rewards/rejected": -11.78713321685791,
2117
+ "step": 1160
2118
+ },
2119
+ {
2120
+ "epoch": 1.8350009809691976,
2121
+ "grad_norm": 3.0004727840423584,
2122
+ "learning_rate": 5.737168930605272e-07,
2123
+ "logits/chosen": 12.178464889526367,
2124
+ "logits/rejected": 11.31472110748291,
2125
+ "logps/chosen": -5.0792646408081055,
2126
+ "logps/rejected": -8.85279369354248,
2127
+ "loss": 0.1923,
2128
+ "rewards/accuracies": 0.9624999761581421,
2129
+ "rewards/chosen": -7.618897438049316,
2130
+ "rewards/margins": 5.6602935791015625,
2131
+ "rewards/rejected": -13.279190063476562,
2132
+ "step": 1170
2133
+ },
2134
+ {
2135
+ "epoch": 1.8506964881302728,
2136
+ "grad_norm": 3.7206344604492188,
2137
+ "learning_rate": 5.407663566854008e-07,
2138
+ "logits/chosen": 12.098569869995117,
2139
+ "logits/rejected": 11.365894317626953,
2140
+ "logps/chosen": -5.336371898651123,
2141
+ "logps/rejected": -9.606247901916504,
2142
+ "loss": 0.2206,
2143
+ "rewards/accuracies": 0.987500011920929,
2144
+ "rewards/chosen": -8.004558563232422,
2145
+ "rewards/margins": 6.404813289642334,
2146
+ "rewards/rejected": -14.409372329711914,
2147
+ "step": 1180
2148
+ },
2149
+ {
2150
+ "epoch": 1.8663919952913477,
2151
+ "grad_norm": 4.599307537078857,
2152
+ "learning_rate": 5.086752049395094e-07,
2153
+ "logits/chosen": 12.062299728393555,
2154
+ "logits/rejected": 11.360358238220215,
2155
+ "logps/chosen": -5.103975772857666,
2156
+ "logps/rejected": -9.448270797729492,
2157
+ "loss": 0.2338,
2158
+ "rewards/accuracies": 0.925000011920929,
2159
+ "rewards/chosen": -7.655962944030762,
2160
+ "rewards/margins": 6.516444206237793,
2161
+ "rewards/rejected": -14.172407150268555,
2162
+ "step": 1190
2163
+ },
2164
+ {
2165
+ "epoch": 1.882087502452423,
2166
+ "grad_norm": 2.590059757232666,
2167
+ "learning_rate": 4.774575140626317e-07,
2168
+ "logits/chosen": 12.54432201385498,
2169
+ "logits/rejected": 11.949193000793457,
2170
+ "logps/chosen": -4.637765884399414,
2171
+ "logps/rejected": -8.537626266479492,
2172
+ "loss": 0.2028,
2173
+ "rewards/accuracies": 0.9375,
2174
+ "rewards/chosen": -6.956648826599121,
2175
+ "rewards/margins": 5.849791526794434,
2176
+ "rewards/rejected": -12.806440353393555,
2177
+ "step": 1200
2178
+ },
2179
+ {
2180
+ "epoch": 1.882087502452423,
2181
+ "eval_logits/chosen": 12.827628135681152,
2182
+ "eval_logits/rejected": 11.809093475341797,
2183
+ "eval_logps/chosen": -4.21560001373291,
2184
+ "eval_logps/rejected": -8.739953994750977,
2185
+ "eval_loss": 0.23520438373088837,
2186
+ "eval_rewards/accuracies": 1.0,
2187
+ "eval_rewards/chosen": -6.323400497436523,
2188
+ "eval_rewards/margins": 6.786531448364258,
2189
+ "eval_rewards/rejected": -13.109930992126465,
2190
+ "eval_runtime": 14.5066,
2191
+ "eval_samples_per_second": 28.401,
2192
+ "eval_steps_per_second": 3.585,
2193
+ "step": 1200
2194
+ },
2195
+ {
2196
+ "epoch": 1.897783009613498,
2197
+ "grad_norm": 2.3263192176818848,
2198
+ "learning_rate": 4.4712697716573994e-07,
2199
+ "logits/chosen": 11.775550842285156,
2200
+ "logits/rejected": 11.042590141296387,
2201
+ "logps/chosen": -5.221895694732666,
2202
+ "logps/rejected": -9.288631439208984,
2203
+ "loss": 0.2082,
2204
+ "rewards/accuracies": 0.9125000238418579,
2205
+ "rewards/chosen": -7.832842826843262,
2206
+ "rewards/margins": 6.100103855133057,
2207
+ "rewards/rejected": -13.932948112487793,
2208
+ "step": 1210
2209
+ },
2210
+ {
2211
+ "epoch": 1.9134785167745734,
2212
+ "grad_norm": 3.9693384170532227,
2213
+ "learning_rate": 4.1769689822475147e-07,
2214
+ "logits/chosen": 12.233749389648438,
2215
+ "logits/rejected": 11.018649101257324,
2216
+ "logps/chosen": -4.284747123718262,
2217
+ "logps/rejected": -8.676647186279297,
2218
+ "loss": 0.2287,
2219
+ "rewards/accuracies": 0.949999988079071,
2220
+ "rewards/chosen": -6.427121162414551,
2221
+ "rewards/margins": 6.587851047515869,
2222
+ "rewards/rejected": -13.014971733093262,
2223
+ "step": 1220
2224
+ },
2225
+ {
2226
+ "epoch": 1.9291740239356483,
2227
+ "grad_norm": 3.8713510036468506,
2228
+ "learning_rate": 3.891801862449629e-07,
2229
+ "logits/chosen": 12.066610336303711,
2230
+ "logits/rejected": 11.343181610107422,
2231
+ "logps/chosen": -4.260552883148193,
2232
+ "logps/rejected": -8.419907569885254,
2233
+ "loss": 0.2681,
2234
+ "rewards/accuracies": 0.9624999761581421,
2235
+ "rewards/chosen": -6.390830039978027,
2236
+ "rewards/margins": 6.239031791687012,
2237
+ "rewards/rejected": -12.629861831665039,
2238
+ "step": 1230
2239
+ },
2240
+ {
2241
+ "epoch": 1.9448695310967237,
2242
+ "grad_norm": 3.3727104663848877,
2243
+ "learning_rate": 3.615893495987335e-07,
2244
+ "logits/chosen": 12.09786605834961,
2245
+ "logits/rejected": 10.789514541625977,
2246
+ "logps/chosen": -4.765267372131348,
2247
+ "logps/rejected": -8.926709175109863,
2248
+ "loss": 0.213,
2249
+ "rewards/accuracies": 0.9624999761581421,
2250
+ "rewards/chosen": -7.1479010581970215,
2251
+ "rewards/margins": 6.242161750793457,
2252
+ "rewards/rejected": -13.390063285827637,
2253
+ "step": 1240
2254
+ },
2255
+ {
2256
+ "epoch": 1.9605650382577986,
2257
+ "grad_norm": 5.0855255126953125,
2258
+ "learning_rate": 3.3493649053890325e-07,
2259
+ "logits/chosen": 12.1903715133667,
2260
+ "logits/rejected": 11.303841590881348,
2261
+ "logps/chosen": -4.052525997161865,
2262
+ "logps/rejected": -8.359174728393555,
2263
+ "loss": 0.2177,
2264
+ "rewards/accuracies": 0.987500011920929,
2265
+ "rewards/chosen": -6.078789710998535,
2266
+ "rewards/margins": 6.4599738121032715,
2267
+ "rewards/rejected": -12.538763046264648,
2268
+ "step": 1250
2269
+ },
2270
+ {
2271
+ "epoch": 1.9605650382577986,
2272
+ "eval_logits/chosen": 12.821044921875,
2273
+ "eval_logits/rejected": 11.804606437683105,
2274
+ "eval_logps/chosen": -4.163019180297852,
2275
+ "eval_logps/rejected": -8.714776039123535,
2276
+ "eval_loss": 0.23355062305927277,
2277
+ "eval_rewards/accuracies": 1.0,
2278
+ "eval_rewards/chosen": -6.244529724121094,
2279
+ "eval_rewards/margins": 6.827635765075684,
2280
+ "eval_rewards/rejected": -13.072164535522461,
2281
+ "eval_runtime": 14.5059,
2282
+ "eval_samples_per_second": 28.402,
2283
+ "eval_steps_per_second": 3.585,
2284
+ "step": 1250
2285
+ },
2286
+ {
2287
+ "epoch": 1.976260545418874,
2288
+ "grad_norm": 2.8941688537597656,
2289
+ "learning_rate": 3.092332998903416e-07,
2290
+ "logits/chosen": 12.222402572631836,
2291
+ "logits/rejected": 11.670201301574707,
2292
+ "logps/chosen": -4.20303201675415,
2293
+ "logps/rejected": -7.536846160888672,
2294
+ "loss": 0.2015,
2295
+ "rewards/accuracies": 0.925000011920929,
2296
+ "rewards/chosen": -6.3045477867126465,
2297
+ "rewards/margins": 5.000721454620361,
2298
+ "rewards/rejected": -11.305269241333008,
2299
+ "step": 1260
2300
+ },
2301
+ {
2302
+ "epoch": 1.991956052579949,
2303
+ "grad_norm": 5.021040439605713,
2304
+ "learning_rate": 2.844910519219632e-07,
2305
+ "logits/chosen": 11.843130111694336,
2306
+ "logits/rejected": 11.057130813598633,
2307
+ "logps/chosen": -4.563799858093262,
2308
+ "logps/rejected": -8.902048110961914,
2309
+ "loss": 0.238,
2310
+ "rewards/accuracies": 0.9375,
2311
+ "rewards/chosen": -6.845700740814209,
2312
+ "rewards/margins": 6.507371425628662,
2313
+ "rewards/rejected": -13.353071212768555,
2314
+ "step": 1270
2315
+ },
2316
+ {
2317
+ "epoch": 2.00627820286443,
2318
+ "grad_norm": 2.88142466545105,
2319
+ "learning_rate": 2.6072059940146775e-07,
2320
+ "logits/chosen": 12.205242156982422,
2321
+ "logits/rejected": 11.59632396697998,
2322
+ "logps/chosen": -4.475119590759277,
2323
+ "logps/rejected": -8.82370662689209,
2324
+ "loss": 0.1594,
2325
+ "rewards/accuracies": 0.9726027250289917,
2326
+ "rewards/chosen": -6.712679386138916,
2327
+ "rewards/margins": 6.522879600524902,
2328
+ "rewards/rejected": -13.235559463500977,
2329
+ "step": 1280
2330
+ },
2331
+ {
2332
+ "epoch": 2.021973710025505,
2333
+ "grad_norm": 4.564095973968506,
2334
+ "learning_rate": 2.3793236883495164e-07,
2335
+ "logits/chosen": 12.256528854370117,
2336
+ "logits/rejected": 11.842262268066406,
2337
+ "logps/chosen": -4.68477725982666,
2338
+ "logps/rejected": -8.527600288391113,
2339
+ "loss": 0.2518,
2340
+ "rewards/accuracies": 0.925000011920929,
2341
+ "rewards/chosen": -7.027165412902832,
2342
+ "rewards/margins": 5.764235496520996,
2343
+ "rewards/rejected": -12.791400909423828,
2344
+ "step": 1290
2345
+ },
2346
+ {
2347
+ "epoch": 2.0376692171865805,
2348
+ "grad_norm": 2.108403444290161,
2349
+ "learning_rate": 2.1613635589349756e-07,
2350
+ "logits/chosen": 12.441131591796875,
2351
+ "logits/rejected": 11.819371223449707,
2352
+ "logps/chosen": -4.156233310699463,
2353
+ "logps/rejected": -7.932003974914551,
2354
+ "loss": 0.1959,
2355
+ "rewards/accuracies": 0.9624999761581421,
2356
+ "rewards/chosen": -6.234350204467773,
2357
+ "rewards/margins": 5.663657188415527,
2358
+ "rewards/rejected": -11.8980073928833,
2359
+ "step": 1300
2360
+ },
2361
+ {
2362
+ "epoch": 2.0376692171865805,
2363
+ "eval_logits/chosen": 12.82050609588623,
2364
+ "eval_logits/rejected": 11.804505348205566,
2365
+ "eval_logps/chosen": -4.199222087860107,
2366
+ "eval_logps/rejected": -8.762627601623535,
2367
+ "eval_loss": 0.233205184340477,
2368
+ "eval_rewards/accuracies": 1.0,
2369
+ "eval_rewards/chosen": -6.29883337020874,
2370
+ "eval_rewards/margins": 6.845107078552246,
2371
+ "eval_rewards/rejected": -13.143939971923828,
2372
+ "eval_runtime": 14.5006,
2373
+ "eval_samples_per_second": 28.413,
2374
+ "eval_steps_per_second": 3.586,
2375
+ "step": 1300
2376
+ },
2377
+ {
2378
+ "epoch": 2.0533647243476554,
2379
+ "grad_norm": 2.8547580242156982,
2380
+ "learning_rate": 1.95342121028749e-07,
2381
+ "logits/chosen": 12.230999946594238,
2382
+ "logits/rejected": 11.622830390930176,
2383
+ "logps/chosen": -4.15807580947876,
2384
+ "logps/rejected": -8.706338882446289,
2385
+ "loss": 0.2139,
2386
+ "rewards/accuracies": 0.949999988079071,
2387
+ "rewards/chosen": -6.237114429473877,
2388
+ "rewards/margins": 6.822393894195557,
2389
+ "rewards/rejected": -13.059507369995117,
2390
+ "step": 1310
2391
+ },
2392
+ {
2393
+ "epoch": 2.0690602315087308,
2394
+ "grad_norm": 3.201754331588745,
2395
+ "learning_rate": 1.7555878527937164e-07,
2396
+ "logits/chosen": 11.826972007751465,
2397
+ "logits/rejected": 11.33891773223877,
2398
+ "logps/chosen": -4.819631099700928,
2399
+ "logps/rejected": -8.871285438537598,
2400
+ "loss": 0.1976,
2401
+ "rewards/accuracies": 0.949999988079071,
2402
+ "rewards/chosen": -7.229445457458496,
2403
+ "rewards/margins": 6.077480792999268,
2404
+ "rewards/rejected": -13.306925773620605,
2405
+ "step": 1320
2406
+ },
2407
+ {
2408
+ "epoch": 2.0847557386698057,
2409
+ "grad_norm": 3.492197275161743,
2410
+ "learning_rate": 1.567950262702714e-07,
2411
+ "logits/chosen": 12.089580535888672,
2412
+ "logits/rejected": 11.315408706665039,
2413
+ "logps/chosen": -4.63484525680542,
2414
+ "logps/rejected": -8.714259147644043,
2415
+ "loss": 0.2012,
2416
+ "rewards/accuracies": 0.949999988079071,
2417
+ "rewards/chosen": -6.952267646789551,
2418
+ "rewards/margins": 6.119122505187988,
2419
+ "rewards/rejected": -13.071390151977539,
2420
+ "step": 1330
2421
+ },
2422
+ {
2423
+ "epoch": 2.100451245830881,
2424
+ "grad_norm": 3.4347550868988037,
2425
+ "learning_rate": 1.3905907440629752e-07,
2426
+ "logits/chosen": 12.134693145751953,
2427
+ "logits/rejected": 10.963116645812988,
2428
+ "logps/chosen": -4.529653072357178,
2429
+ "logps/rejected": -9.13645076751709,
2430
+ "loss": 0.2045,
2431
+ "rewards/accuracies": 0.949999988079071,
2432
+ "rewards/chosen": -6.794480323791504,
2433
+ "rewards/margins": 6.9101972579956055,
2434
+ "rewards/rejected": -13.704676628112793,
2435
+ "step": 1340
2436
+ },
2437
+ {
2438
+ "epoch": 2.116146752991956,
2439
+ "grad_norm": 1.7697747945785522,
2440
+ "learning_rate": 1.223587092621162e-07,
2441
+ "logits/chosen": 12.274737358093262,
2442
+ "logits/rejected": 11.442537307739258,
2443
+ "logps/chosen": -4.994804382324219,
2444
+ "logps/rejected": -9.549346923828125,
2445
+ "loss": 0.1997,
2446
+ "rewards/accuracies": 0.9750000238418579,
2447
+ "rewards/chosen": -7.492206573486328,
2448
+ "rewards/margins": 6.831814765930176,
2449
+ "rewards/rejected": -14.324020385742188,
2450
+ "step": 1350
2451
+ },
2452
+ {
2453
+ "epoch": 2.116146752991956,
2454
+ "eval_logits/chosen": 12.819293975830078,
2455
+ "eval_logits/rejected": 11.81404972076416,
2456
+ "eval_logps/chosen": -4.241227149963379,
2457
+ "eval_logps/rejected": -8.782449722290039,
2458
+ "eval_loss": 0.22972312569618225,
2459
+ "eval_rewards/accuracies": 1.0,
2460
+ "eval_rewards/chosen": -6.361841201782227,
2461
+ "eval_rewards/margins": 6.811832904815674,
2462
+ "eval_rewards/rejected": -13.173673629760742,
2463
+ "eval_runtime": 14.5,
2464
+ "eval_samples_per_second": 28.414,
2465
+ "eval_steps_per_second": 3.586,
2466
+ "step": 1350
2467
+ },
2468
+ {
2469
+ "epoch": 2.1318422601530314,
2470
+ "grad_norm": 2.377746343612671,
2471
+ "learning_rate": 1.067012561698319e-07,
2472
+ "logits/chosen": 12.19007396697998,
2473
+ "logits/rejected": 11.572507858276367,
2474
+ "logps/chosen": -4.9034600257873535,
2475
+ "logps/rejected": -9.414239883422852,
2476
+ "loss": 0.2174,
2477
+ "rewards/accuracies": 0.9375,
2478
+ "rewards/chosen": -7.355191230773926,
2479
+ "rewards/margins": 6.766169548034668,
2480
+ "rewards/rejected": -14.121360778808594,
2481
+ "step": 1360
2482
+ },
2483
+ {
2484
+ "epoch": 2.1475377673141063,
2485
+ "grad_norm": 3.618283748626709,
2486
+ "learning_rate": 9.209358300585474e-08,
2487
+ "logits/chosen": 12.282819747924805,
2488
+ "logits/rejected": 12.010876655578613,
2489
+ "logps/chosen": -4.678290367126465,
2490
+ "logps/rejected": -8.606224060058594,
2491
+ "loss": 0.2393,
2492
+ "rewards/accuracies": 0.9624999761581421,
2493
+ "rewards/chosen": -7.0174360275268555,
2494
+ "rewards/margins": 5.89190149307251,
2495
+ "rewards/rejected": -12.909337043762207,
2496
+ "step": 1370
2497
+ },
2498
+ {
2499
+ "epoch": 2.1632332744751817,
2500
+ "grad_norm": 2.742673873901367,
2501
+ "learning_rate": 7.854209717842231e-08,
2502
+ "logits/chosen": 12.202973365783691,
2503
+ "logits/rejected": 11.41163444519043,
2504
+ "logps/chosen": -4.9238996505737305,
2505
+ "logps/rejected": -9.56473445892334,
2506
+ "loss": 0.1748,
2507
+ "rewards/accuracies": 0.9624999761581421,
2508
+ "rewards/chosen": -7.3858489990234375,
2509
+ "rewards/margins": 6.9612531661987305,
2510
+ "rewards/rejected": -14.3471040725708,
2511
+ "step": 1380
2512
+ },
2513
+ {
2514
+ "epoch": 2.1789287816362566,
2515
+ "grad_norm": 2.435816764831543,
2516
+ "learning_rate": 6.605274281709929e-08,
2517
+ "logits/chosen": 12.051380157470703,
2518
+ "logits/rejected": 10.81779670715332,
2519
+ "logps/chosen": -4.7611918449401855,
2520
+ "logps/rejected": -8.955581665039062,
2521
+ "loss": 0.2023,
2522
+ "rewards/accuracies": 0.949999988079071,
2523
+ "rewards/chosen": -7.141787528991699,
2524
+ "rewards/margins": 6.291583061218262,
2525
+ "rewards/rejected": -13.433370590209961,
2526
+ "step": 1390
2527
+ },
2528
+ {
2529
+ "epoch": 2.194624288797332,
2530
+ "grad_norm": 3.3359460830688477,
2531
+ "learning_rate": 5.463099816548578e-08,
2532
+ "logits/chosen": 12.5380220413208,
2533
+ "logits/rejected": 11.374457359313965,
2534
+ "logps/chosen": -4.384824275970459,
2535
+ "logps/rejected": -9.00879192352295,
2536
+ "loss": 0.1709,
2537
+ "rewards/accuracies": 0.9750000238418579,
2538
+ "rewards/chosen": -6.577237129211426,
2539
+ "rewards/margins": 6.935951232910156,
2540
+ "rewards/rejected": -13.513188362121582,
2541
+ "step": 1400
2542
+ },
2543
+ {
2544
+ "epoch": 2.194624288797332,
2545
+ "eval_logits/chosen": 12.820469856262207,
2546
+ "eval_logits/rejected": 11.797761917114258,
2547
+ "eval_logps/chosen": -4.198721408843994,
2548
+ "eval_logps/rejected": -8.741405487060547,
2549
+ "eval_loss": 0.23232795298099518,
2550
+ "eval_rewards/accuracies": 1.0,
2551
+ "eval_rewards/chosen": -6.29808235168457,
2552
+ "eval_rewards/margins": 6.81402587890625,
2553
+ "eval_rewards/rejected": -13.112107276916504,
2554
+ "eval_runtime": 14.5059,
2555
+ "eval_samples_per_second": 28.402,
2556
+ "eval_steps_per_second": 3.585,
2557
+ "step": 1400
2558
+ }
2559
+ ],
2560
+ "logging_steps": 10,
2561
+ "max_steps": 1500,
2562
+ "num_input_tokens_seen": 0,
2563
+ "num_train_epochs": 3,
2564
+ "save_steps": 50,
2565
+ "stateful_callbacks": {
2566
+ "TrainerControl": {
2567
+ "args": {
2568
+ "should_epoch_stop": false,
2569
+ "should_evaluate": false,
2570
+ "should_log": false,
2571
+ "should_save": true,
2572
+ "should_training_stop": false
2573
+ },
2574
+ "attributes": {}
2575
+ }
2576
+ },
2577
+ "total_flos": 3.388940081585717e+18,
2578
+ "train_batch_size": 1,
2579
+ "trial_name": null,
2580
+ "trial_params": null
2581
+ }
checkpoint-1400/training_args.bin ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:9b2203cea5a5bcb79dc529b64d6033ba414f923d9d5e3c378f433027100e50b9
3
+ size 7224
checkpoint-1400/zero_to_fp32.py ADDED
@@ -0,0 +1,674 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ #!/usr/bin/env python
2
+
3
+ # Copyright (c) Microsoft Corporation.
4
+ # SPDX-License-Identifier: Apache-2.0
5
+
6
+ # DeepSpeed Team
7
+
8
+ # This script extracts fp32 consolidated weights from a zero 1, 2 and 3 DeepSpeed checkpoints. It gets
9
+ # copied into the top level checkpoint dir, so the user can easily do the conversion at any point in
10
+ # the future. Once extracted, the weights don't require DeepSpeed and can be used in any
11
+ # application.
12
+ #
13
+ # example:
14
+ # python zero_to_fp32.py . output_dir/
15
+ # or
16
+ # python zero_to_fp32.py . output_dir/ --safe_serialization
17
+
18
+ import argparse
19
+ import torch
20
+ import glob
21
+ import math
22
+ import os
23
+ import re
24
+ import json
25
+ from tqdm import tqdm
26
+ from collections import OrderedDict
27
+ from dataclasses import dataclass
28
+
29
+ # while this script doesn't use deepspeed to recover data, since the checkpoints are pickled with
30
+ # DeepSpeed data structures it has to be available in the current python environment.
31
+ from deepspeed.utils import logger
32
+ from deepspeed.checkpoint.constants import (DS_VERSION, OPTIMIZER_STATE_DICT, SINGLE_PARTITION_OF_FP32_GROUPS,
33
+ FP32_FLAT_GROUPS, ZERO_STAGE, PARTITION_COUNT, PARAM_SHAPES, BUFFER_NAMES,
34
+ FROZEN_PARAM_SHAPES, FROZEN_PARAM_FRAGMENTS)
35
+
36
+
37
+ @dataclass
38
+ class zero_model_state:
39
+ buffers: dict()
40
+ param_shapes: dict()
41
+ shared_params: list
42
+ ds_version: int
43
+ frozen_param_shapes: dict()
44
+ frozen_param_fragments: dict()
45
+
46
+
47
+ debug = 0
48
+
49
+ # load to cpu
50
+ device = torch.device('cpu')
51
+
52
+
53
+ def atoi(text):
54
+ return int(text) if text.isdigit() else text
55
+
56
+
57
+ def natural_keys(text):
58
+ '''
59
+ alist.sort(key=natural_keys) sorts in human order
60
+ http://nedbatchelder.com/blog/200712/human_sorting.html
61
+ (See Toothy's implementation in the comments)
62
+ '''
63
+ return [atoi(c) for c in re.split(r'(\d+)', text)]
64
+
65
+
66
+ def get_model_state_file(checkpoint_dir, zero_stage):
67
+ if not os.path.isdir(checkpoint_dir):
68
+ raise FileNotFoundError(f"Directory '{checkpoint_dir}' doesn't exist")
69
+
70
+ # there should be only one file
71
+ if zero_stage <= 2:
72
+ file = os.path.join(checkpoint_dir, "mp_rank_00_model_states.pt")
73
+ elif zero_stage == 3:
74
+ file = os.path.join(checkpoint_dir, "zero_pp_rank_0_mp_rank_00_model_states.pt")
75
+
76
+ if not os.path.exists(file):
77
+ raise FileNotFoundError(f"can't find model states file at '{file}'")
78
+
79
+ return file
80
+
81
+
82
+ def get_checkpoint_files(checkpoint_dir, glob_pattern):
83
+ # XXX: need to test that this simple glob rule works for multi-node setup too
84
+ ckpt_files = sorted(glob.glob(os.path.join(checkpoint_dir, glob_pattern)), key=natural_keys)
85
+
86
+ if len(ckpt_files) == 0:
87
+ raise FileNotFoundError(f"can't find {glob_pattern} files in directory '{checkpoint_dir}'")
88
+
89
+ return ckpt_files
90
+
91
+
92
+ def get_optim_files(checkpoint_dir):
93
+ return get_checkpoint_files(checkpoint_dir, "*_optim_states.pt")
94
+
95
+
96
+ def get_model_state_files(checkpoint_dir):
97
+ return get_checkpoint_files(checkpoint_dir, "*_model_states.pt")
98
+
99
+
100
+ def parse_model_states(files):
101
+ zero_model_states = []
102
+ for file in files:
103
+ state_dict = torch.load(file, map_location=device)
104
+
105
+ if BUFFER_NAMES not in state_dict:
106
+ raise ValueError(f"{file} is not a model state checkpoint")
107
+ buffer_names = state_dict[BUFFER_NAMES]
108
+ if debug:
109
+ print("Found buffers:", buffer_names)
110
+
111
+ # recover just the buffers while restoring them to fp32 if they were saved in fp16
112
+ buffers = {k: v.float() for k, v in state_dict["module"].items() if k in buffer_names}
113
+ param_shapes = state_dict[PARAM_SHAPES]
114
+
115
+ # collect parameters that are included in param_shapes
116
+ param_names = []
117
+ for s in param_shapes:
118
+ for name in s.keys():
119
+ param_names.append(name)
120
+
121
+ # update with frozen parameters
122
+ frozen_param_shapes = state_dict.get(FROZEN_PARAM_SHAPES, None)
123
+ if frozen_param_shapes is not None:
124
+ if debug:
125
+ print(f"Found frozen_param_shapes: {frozen_param_shapes}")
126
+ param_names += list(frozen_param_shapes.keys())
127
+
128
+ # handle shared params
129
+ shared_params = [[k, v] for k, v in state_dict["shared_params"].items()]
130
+
131
+ ds_version = state_dict.get(DS_VERSION, None)
132
+
133
+ frozen_param_fragments = state_dict.get(FROZEN_PARAM_FRAGMENTS, None)
134
+
135
+ z_model_state = zero_model_state(buffers=buffers,
136
+ param_shapes=param_shapes,
137
+ shared_params=shared_params,
138
+ ds_version=ds_version,
139
+ frozen_param_shapes=frozen_param_shapes,
140
+ frozen_param_fragments=frozen_param_fragments)
141
+ zero_model_states.append(z_model_state)
142
+
143
+ return zero_model_states
144
+
145
+
146
+ def parse_optim_states(files, ds_checkpoint_dir):
147
+ total_files = len(files)
148
+ state_dicts = []
149
+ for f in files:
150
+ state_dict = torch.load(f, map_location=device)
151
+ # immediately discard the potentially huge 2 optimizer states as we only care for fp32 master weights
152
+ # and also handle the case where it was already removed by another helper script
153
+ state_dict["optimizer_state_dict"].pop("optimizer_state_dict", None)
154
+ state_dicts.append(state_dict)
155
+
156
+ if not ZERO_STAGE in state_dicts[0][OPTIMIZER_STATE_DICT]:
157
+ raise ValueError(f"{files[0]} is not a zero checkpoint")
158
+ zero_stage = state_dicts[0][OPTIMIZER_STATE_DICT][ZERO_STAGE]
159
+ world_size = state_dicts[0][OPTIMIZER_STATE_DICT][PARTITION_COUNT]
160
+
161
+ # For ZeRO-2 each param group can have different partition_count as data parallelism for expert
162
+ # parameters can be different from data parallelism for non-expert parameters. So we can just
163
+ # use the max of the partition_count to get the dp world_size.
164
+
165
+ if type(world_size) is list:
166
+ world_size = max(world_size)
167
+
168
+ if world_size != total_files:
169
+ raise ValueError(
170
+ f"Expected {world_size} of '*_optim_states.pt' under '{ds_checkpoint_dir}' but found {total_files} files. "
171
+ "Possibly due to an overwrite of an old checkpoint, or a checkpoint didn't get saved by one or more processes."
172
+ )
173
+
174
+ # the groups are named differently in each stage
175
+ if zero_stage <= 2:
176
+ fp32_groups_key = SINGLE_PARTITION_OF_FP32_GROUPS
177
+ elif zero_stage == 3:
178
+ fp32_groups_key = FP32_FLAT_GROUPS
179
+ else:
180
+ raise ValueError(f"unknown zero stage {zero_stage}")
181
+
182
+ if zero_stage <= 2:
183
+ fp32_flat_groups = [state_dicts[i][OPTIMIZER_STATE_DICT][fp32_groups_key] for i in range(len(state_dicts))]
184
+ elif zero_stage == 3:
185
+ # if there is more than one param group, there will be multiple flattened tensors - one
186
+ # flattened tensor per group - for simplicity merge them into a single tensor
187
+ #
188
+ # XXX: could make the script more memory efficient for when there are multiple groups - it
189
+ # will require matching the sub-lists of param_shapes for each param group flattened tensor
190
+
191
+ fp32_flat_groups = [
192
+ torch.cat(state_dicts[i][OPTIMIZER_STATE_DICT][fp32_groups_key], 0) for i in range(len(state_dicts))
193
+ ]
194
+
195
+ return zero_stage, world_size, fp32_flat_groups
196
+
197
+
198
+ def _get_fp32_state_dict_from_zero_checkpoint(ds_checkpoint_dir, exclude_frozen_parameters):
199
+ """
200
+ Returns fp32 state_dict reconstructed from ds checkpoint
201
+
202
+ Args:
203
+ - ``ds_checkpoint_dir``: path to the deepspeed checkpoint folder (where the optimizer files are)
204
+
205
+ """
206
+ print(f"Processing zero checkpoint '{ds_checkpoint_dir}'")
207
+
208
+ optim_files = get_optim_files(ds_checkpoint_dir)
209
+ zero_stage, world_size, fp32_flat_groups = parse_optim_states(optim_files, ds_checkpoint_dir)
210
+ print(f"Detected checkpoint of type zero stage {zero_stage}, world_size: {world_size}")
211
+
212
+ model_files = get_model_state_files(ds_checkpoint_dir)
213
+
214
+ zero_model_states = parse_model_states(model_files)
215
+ print(f'Parsing checkpoint created by deepspeed=={zero_model_states[0].ds_version}')
216
+
217
+ if zero_stage <= 2:
218
+ return _get_fp32_state_dict_from_zero2_checkpoint(world_size, fp32_flat_groups, zero_model_states,
219
+ exclude_frozen_parameters)
220
+ elif zero_stage == 3:
221
+ return _get_fp32_state_dict_from_zero3_checkpoint(world_size, fp32_flat_groups, zero_model_states,
222
+ exclude_frozen_parameters)
223
+
224
+
225
+ def _zero2_merge_frozen_params(state_dict, zero_model_states):
226
+ if zero_model_states[0].frozen_param_shapes is None or len(zero_model_states[0].frozen_param_shapes) == 0:
227
+ return
228
+
229
+ frozen_param_shapes = zero_model_states[0].frozen_param_shapes
230
+ frozen_param_fragments = zero_model_states[0].frozen_param_fragments
231
+
232
+ if debug:
233
+ num_elem = sum(s.numel() for s in frozen_param_shapes.values())
234
+ print(f'rank 0: {FROZEN_PARAM_SHAPES}.numel = {num_elem}')
235
+
236
+ wanted_params = len(frozen_param_shapes)
237
+ wanted_numel = sum(s.numel() for s in frozen_param_shapes.values())
238
+ avail_numel = sum([p.numel() for p in frozen_param_fragments.values()])
239
+ print(f'Frozen params: Have {avail_numel} numels to process.')
240
+ print(f'Frozen params: Need {wanted_numel} numels in {wanted_params} params')
241
+
242
+ total_params = 0
243
+ total_numel = 0
244
+ for name, shape in frozen_param_shapes.items():
245
+ total_params += 1
246
+ unpartitioned_numel = shape.numel()
247
+ total_numel += unpartitioned_numel
248
+
249
+ state_dict[name] = frozen_param_fragments[name]
250
+
251
+ if debug:
252
+ print(f"{name} full shape: {shape} unpartitioned numel {unpartitioned_numel} ")
253
+
254
+ print(f"Reconstructed Frozen fp32 state dict with {total_params} params {total_numel} elements")
255
+
256
+
257
+ def _has_callable(obj, fn):
258
+ attr = getattr(obj, fn, None)
259
+ return callable(attr)
260
+
261
+
262
+ def _zero2_merge_trainable_params(state_dict, world_size, fp32_flat_groups, zero_model_states):
263
+ param_shapes = zero_model_states[0].param_shapes
264
+
265
+ # Reconstruction protocol:
266
+ #
267
+ # XXX: document this
268
+
269
+ if debug:
270
+ for i in range(world_size):
271
+ for j in range(len(fp32_flat_groups[0])):
272
+ print(f"{FP32_FLAT_GROUPS}[{i}][{j}].shape={fp32_flat_groups[i][j].shape}")
273
+
274
+ # XXX: memory usage doubles here (zero2)
275
+ num_param_groups = len(fp32_flat_groups[0])
276
+ merged_single_partition_of_fp32_groups = []
277
+ for i in range(num_param_groups):
278
+ merged_partitions = [sd[i] for sd in fp32_flat_groups]
279
+ full_single_fp32_vector = torch.cat(merged_partitions, 0)
280
+ merged_single_partition_of_fp32_groups.append(full_single_fp32_vector)
281
+ avail_numel = sum(
282
+ [full_single_fp32_vector.numel() for full_single_fp32_vector in merged_single_partition_of_fp32_groups])
283
+
284
+ if debug:
285
+ wanted_params = sum([len(shapes) for shapes in param_shapes])
286
+ wanted_numel = sum([sum(shape.numel() for shape in shapes.values()) for shapes in param_shapes])
287
+ # not asserting if there is a mismatch due to possible padding
288
+ print(f"Have {avail_numel} numels to process.")
289
+ print(f"Need {wanted_numel} numels in {wanted_params} params.")
290
+
291
+ # params
292
+ # XXX: for huge models that can't fit into the host's RAM we will have to recode this to support
293
+ # out-of-core computing solution
294
+ total_numel = 0
295
+ total_params = 0
296
+ for shapes, full_single_fp32_vector in zip(param_shapes, merged_single_partition_of_fp32_groups):
297
+ offset = 0
298
+ avail_numel = full_single_fp32_vector.numel()
299
+ for name, shape in shapes.items():
300
+
301
+ unpartitioned_numel = shape.numel() if _has_callable(shape, 'numel') else math.prod(shape)
302
+ total_numel += unpartitioned_numel
303
+ total_params += 1
304
+
305
+ if debug:
306
+ print(f"{name} full shape: {shape} unpartitioned numel {unpartitioned_numel} ")
307
+ state_dict[name] = full_single_fp32_vector.narrow(0, offset, unpartitioned_numel).view(shape)
308
+ offset += unpartitioned_numel
309
+
310
+ # Z2 started to align to 2*world_size to improve nccl performance. Therefore both offset and
311
+ # avail_numel can differ by anywhere between 0..2*world_size. Due to two unrelated complex
312
+ # paddings performed in the code it's almost impossible to predict the exact numbers w/o the
313
+ # live optimizer object, so we are checking that the numbers are within the right range
314
+ align_to = 2 * world_size
315
+
316
+ def zero2_align(x):
317
+ return align_to * math.ceil(x / align_to)
318
+
319
+ if debug:
320
+ print(f"original offset={offset}, avail_numel={avail_numel}")
321
+
322
+ offset = zero2_align(offset)
323
+ avail_numel = zero2_align(avail_numel)
324
+
325
+ if debug:
326
+ print(f"aligned offset={offset}, avail_numel={avail_numel}")
327
+
328
+ # Sanity check
329
+ if offset != avail_numel:
330
+ raise ValueError(f"consumed {offset} numels out of {avail_numel} - something is wrong")
331
+
332
+ print(f"Reconstructed fp32 state dict with {total_params} params {total_numel} elements")
333
+
334
+
335
+ def _get_fp32_state_dict_from_zero2_checkpoint(world_size, fp32_flat_groups, zero_model_states,
336
+ exclude_frozen_parameters):
337
+ state_dict = OrderedDict()
338
+
339
+ # buffers
340
+ buffers = zero_model_states[0].buffers
341
+ state_dict.update(buffers)
342
+ if debug:
343
+ print(f"added {len(buffers)} buffers")
344
+
345
+ if not exclude_frozen_parameters:
346
+ _zero2_merge_frozen_params(state_dict, zero_model_states)
347
+
348
+ _zero2_merge_trainable_params(state_dict, world_size, fp32_flat_groups, zero_model_states)
349
+
350
+ # recover shared parameters
351
+ for pair in zero_model_states[0].shared_params:
352
+ if pair[1] in state_dict:
353
+ state_dict[pair[0]] = state_dict[pair[1]]
354
+
355
+ return state_dict
356
+
357
+
358
+ def zero3_partitioned_param_info(unpartitioned_numel, world_size):
359
+ remainder = unpartitioned_numel % world_size
360
+ padding_numel = (world_size - remainder) if remainder else 0
361
+ partitioned_numel = math.ceil(unpartitioned_numel / world_size)
362
+ return partitioned_numel, padding_numel
363
+
364
+
365
+ def _zero3_merge_frozen_params(state_dict, world_size, zero_model_states):
366
+ if zero_model_states[0].frozen_param_shapes is None or len(zero_model_states[0].frozen_param_shapes) == 0:
367
+ return
368
+
369
+ if debug:
370
+ for i in range(world_size):
371
+ num_elem = sum(s.numel() for s in zero_model_states[i].frozen_param_fragments.values())
372
+ print(f'rank {i}: {FROZEN_PARAM_SHAPES}.numel = {num_elem}')
373
+
374
+ frozen_param_shapes = zero_model_states[0].frozen_param_shapes
375
+ wanted_params = len(frozen_param_shapes)
376
+ wanted_numel = sum(s.numel() for s in frozen_param_shapes.values())
377
+ avail_numel = sum([p.numel() for p in zero_model_states[0].frozen_param_fragments.values()]) * world_size
378
+ print(f'Frozen params: Have {avail_numel} numels to process.')
379
+ print(f'Frozen params: Need {wanted_numel} numels in {wanted_params} params')
380
+
381
+ total_params = 0
382
+ total_numel = 0
383
+ for name, shape in zero_model_states[0].frozen_param_shapes.items():
384
+ total_params += 1
385
+ unpartitioned_numel = shape.numel()
386
+ total_numel += unpartitioned_numel
387
+
388
+ param_frags = tuple(model_state.frozen_param_fragments[name] for model_state in zero_model_states)
389
+ state_dict[name] = torch.cat(param_frags, 0).narrow(0, 0, unpartitioned_numel).view(shape)
390
+
391
+ partitioned_numel, partitioned_padding_numel = zero3_partitioned_param_info(unpartitioned_numel, world_size)
392
+
393
+ if debug:
394
+ print(
395
+ f"Frozen params: {total_params} {name} full shape: {shape} partition0 numel={partitioned_numel} partitioned_padding_numel={partitioned_padding_numel}"
396
+ )
397
+
398
+ print(f"Reconstructed Frozen fp32 state dict with {total_params} params {total_numel} elements")
399
+
400
+
401
+ def _zero3_merge_trainable_params(state_dict, world_size, fp32_flat_groups, zero_model_states):
402
+ param_shapes = zero_model_states[0].param_shapes
403
+ avail_numel = fp32_flat_groups[0].numel() * world_size
404
+ # Reconstruction protocol: For zero3 we need to zip the partitions together at boundary of each
405
+ # param, re-consolidating each param, while dealing with padding if any
406
+
407
+ # merge list of dicts, preserving order
408
+ param_shapes = {k: v for d in param_shapes for k, v in d.items()}
409
+
410
+ if debug:
411
+ for i in range(world_size):
412
+ print(f"{FP32_FLAT_GROUPS}[{i}].shape={fp32_flat_groups[i].shape}")
413
+
414
+ wanted_params = len(param_shapes)
415
+ wanted_numel = sum(shape.numel() for shape in param_shapes.values())
416
+ # not asserting if there is a mismatch due to possible padding
417
+ avail_numel = fp32_flat_groups[0].numel() * world_size
418
+ print(f"Trainable params: Have {avail_numel} numels to process.")
419
+ print(f"Trainable params: Need {wanted_numel} numels in {wanted_params} params.")
420
+
421
+ # params
422
+ # XXX: for huge models that can't fit into the host's RAM we will have to recode this to support
423
+ # out-of-core computing solution
424
+ offset = 0
425
+ total_numel = 0
426
+ total_params = 0
427
+ for name, shape in tqdm(param_shapes.items(), desc='Gathering Sharded Weights'):
428
+ unpartitioned_numel = shape.numel()
429
+ total_numel += unpartitioned_numel
430
+ total_params += 1
431
+ partitioned_numel, partitioned_padding_numel = zero3_partitioned_param_info(unpartitioned_numel, world_size)
432
+
433
+ if debug:
434
+ print(
435
+ f"Trainable params: {total_params} {name} full shape: {shape} partition0 numel={partitioned_numel} partitioned_padding_numel={partitioned_padding_numel}"
436
+ )
437
+
438
+ # XXX: memory usage doubles here
439
+ state_dict[name] = torch.cat(
440
+ tuple(fp32_flat_groups[i].narrow(0, offset, partitioned_numel) for i in range(world_size)),
441
+ 0).narrow(0, 0, unpartitioned_numel).view(shape)
442
+ offset += partitioned_numel
443
+
444
+ offset *= world_size
445
+
446
+ # Sanity check
447
+ if offset != avail_numel:
448
+ raise ValueError(f"consumed {offset} numels out of {avail_numel} - something is wrong")
449
+
450
+ print(f"Reconstructed Trainable fp32 state dict with {total_params} params {total_numel} elements")
451
+
452
+
453
+ def _get_fp32_state_dict_from_zero3_checkpoint(world_size, fp32_flat_groups, zero_model_states,
454
+ exclude_frozen_parameters):
455
+ state_dict = OrderedDict()
456
+
457
+ # buffers
458
+ buffers = zero_model_states[0].buffers
459
+ state_dict.update(buffers)
460
+ if debug:
461
+ print(f"added {len(buffers)} buffers")
462
+
463
+ if not exclude_frozen_parameters:
464
+ _zero3_merge_frozen_params(state_dict, world_size, zero_model_states)
465
+
466
+ _zero3_merge_trainable_params(state_dict, world_size, fp32_flat_groups, zero_model_states)
467
+
468
+ # recover shared parameters
469
+ for pair in zero_model_states[0].shared_params:
470
+ if pair[1] in state_dict:
471
+ state_dict[pair[0]] = state_dict[pair[1]]
472
+
473
+ return state_dict
474
+
475
+
476
+ def get_fp32_state_dict_from_zero_checkpoint(checkpoint_dir, tag=None, exclude_frozen_parameters=False):
477
+ """
478
+ Convert ZeRO 2 or 3 checkpoint into a single fp32 consolidated state_dict that can be loaded with
479
+ ``load_state_dict()`` and used for training without DeepSpeed or shared with others, for example
480
+ via a model hub.
481
+
482
+ Args:
483
+ - ``checkpoint_dir``: path to the desired checkpoint folder
484
+ - ``tag``: checkpoint tag used as a unique identifier for checkpoint. If not provided will attempt to load tag in 'latest' file. e.g., ``global_step14``
485
+ - ``exclude_frozen_parameters``: exclude frozen parameters
486
+
487
+ Returns:
488
+ - pytorch ``state_dict``
489
+
490
+ Note: this approach may not work if your application doesn't have sufficient free CPU memory and
491
+ you may need to use the offline approach using the ``zero_to_fp32.py`` script that is saved with
492
+ the checkpoint.
493
+
494
+ A typical usage might be ::
495
+
496
+ from deepspeed.utils.zero_to_fp32 import get_fp32_state_dict_from_zero_checkpoint
497
+ # do the training and checkpoint saving
498
+ state_dict = get_fp32_state_dict_from_zero_checkpoint(checkpoint_dir) # already on cpu
499
+ model = model.cpu() # move to cpu
500
+ model.load_state_dict(state_dict)
501
+ # submit to model hub or save the model to share with others
502
+
503
+ In this example the ``model`` will no longer be usable in the deepspeed context of the same
504
+ application. i.e. you will need to re-initialize the deepspeed engine, since
505
+ ``model.load_state_dict(state_dict)`` will remove all the deepspeed magic from it.
506
+
507
+ If you want it all done for you, use ``load_state_dict_from_zero_checkpoint`` instead.
508
+
509
+ """
510
+ if tag is None:
511
+ latest_path = os.path.join(checkpoint_dir, 'latest')
512
+ if os.path.isfile(latest_path):
513
+ with open(latest_path, 'r') as fd:
514
+ tag = fd.read().strip()
515
+ else:
516
+ raise ValueError(f"Unable to find 'latest' file at {latest_path}")
517
+
518
+ ds_checkpoint_dir = os.path.join(checkpoint_dir, tag)
519
+
520
+ if not os.path.isdir(ds_checkpoint_dir):
521
+ raise FileNotFoundError(f"Directory '{ds_checkpoint_dir}' doesn't exist")
522
+
523
+ return _get_fp32_state_dict_from_zero_checkpoint(ds_checkpoint_dir, exclude_frozen_parameters)
524
+
525
+
526
+ def convert_zero_checkpoint_to_fp32_state_dict(checkpoint_dir,
527
+ output_dir,
528
+ max_shard_size="5GB",
529
+ safe_serialization=False,
530
+ tag=None,
531
+ exclude_frozen_parameters=False):
532
+ """
533
+ Convert ZeRO 2 or 3 checkpoint into a single fp32 consolidated ``state_dict`` file that can be
534
+ loaded with ``torch.load(file)`` + ``load_state_dict()`` and used for training without DeepSpeed.
535
+
536
+ Args:
537
+ - ``checkpoint_dir``: path to the desired checkpoint folder. (one that contains the tag-folder, like ``global_step14``)
538
+ - ``output_dir``: directory to the pytorch fp32 state_dict output files
539
+ - ``max_shard_size``: the maximum size for a checkpoint before being sharded, default value is 5GB
540
+ - ``safe_serialization``: whether to save the model using `safetensors` or the traditional PyTorch way (that uses `pickle`).
541
+ - ``tag``: checkpoint tag used as a unique identifier for checkpoint. If not provided will attempt to load tag in the file named ``latest`` in the checkpoint folder, e.g., ``global_step14``
542
+ - ``exclude_frozen_parameters``: exclude frozen parameters
543
+ """
544
+ # Dependency pre-check
545
+ if safe_serialization:
546
+ try:
547
+ from safetensors.torch import save_file
548
+ except ImportError:
549
+ print('If you want to use `safe_serialization`, please `pip install safetensors`')
550
+ raise
551
+ if max_shard_size is not None:
552
+ try:
553
+ from huggingface_hub import split_torch_state_dict_into_shards
554
+ except ImportError:
555
+ print('If you want to use `max_shard_size`, please `pip install huggingface_hub`')
556
+ raise
557
+
558
+ # Convert zero checkpoint to state_dict
559
+ state_dict = get_fp32_state_dict_from_zero_checkpoint(checkpoint_dir, tag, exclude_frozen_parameters)
560
+
561
+ # Shard the model if it is too big.
562
+ weights_name = "model.safetensors" if safe_serialization else "pytorch_model.bin"
563
+ if max_shard_size is not None:
564
+ filename_pattern = weights_name.replace(".bin", "{suffix}.bin").replace(".safetensors", "{suffix}.safetensors")
565
+ state_dict_split = split_torch_state_dict_into_shards(state_dict,
566
+ filename_pattern=filename_pattern,
567
+ max_shard_size=max_shard_size)
568
+ else:
569
+ from collections import namedtuple
570
+ StateDictSplit = namedtuple("StateDictSplit", ["is_sharded", "filename_to_tensors"])
571
+ state_dict_split = StateDictSplit(is_sharded=False,
572
+ filename_to_tensors={weights_name: list(state_dict.keys())})
573
+
574
+ # Save the model
575
+ filename_to_tensors = state_dict_split.filename_to_tensors.items()
576
+ for shard_file, tensors in tqdm(filename_to_tensors, desc="Saving checkpoint shards"):
577
+ shard = {tensor: state_dict[tensor].contiguous() for tensor in tensors}
578
+ output_path = os.path.join(output_dir, shard_file)
579
+ if safe_serialization:
580
+ save_file(shard, output_path, metadata={"format": "pt"})
581
+ else:
582
+ torch.save(shard, output_path)
583
+
584
+ # Save index if sharded
585
+ if state_dict_split.is_sharded:
586
+ index = {
587
+ "metadata": state_dict_split.metadata,
588
+ "weight_map": state_dict_split.tensor_to_filename,
589
+ }
590
+ save_index_file = "model.safetensors.index.json" if safe_serialization else "pytorch_model.bin.index.json"
591
+ save_index_file = os.path.join(output_dir, save_index_file)
592
+ with open(save_index_file, "w", encoding="utf-8") as f:
593
+ content = json.dumps(index, indent=2, sort_keys=True) + "\n"
594
+ f.write(content)
595
+
596
+
597
+ def load_state_dict_from_zero_checkpoint(model, checkpoint_dir, tag=None):
598
+ """
599
+ 1. Put the provided model to cpu
600
+ 2. Convert ZeRO 2 or 3 checkpoint into a single fp32 consolidated ``state_dict``
601
+ 3. Load it into the provided model
602
+
603
+ Args:
604
+ - ``model``: the model object to update
605
+ - ``checkpoint_dir``: path to the desired checkpoint folder. (one that contains the tag-folder, like ``global_step14``)
606
+ - ``tag``: checkpoint tag used as a unique identifier for checkpoint. If not provided will attempt to load tag in the file named ``latest`` in the checkpoint folder, e.g., ``global_step14``
607
+
608
+ Returns:
609
+ - ``model`: modified model
610
+
611
+ Make sure you have plenty of CPU memory available before you call this function. If you don't
612
+ have enough use the ``zero_to_fp32.py`` utility to do the conversion. You will find it
613
+ conveniently placed for you in the checkpoint folder.
614
+
615
+ A typical usage might be ::
616
+
617
+ from deepspeed.utils.zero_to_fp32 import load_state_dict_from_zero_checkpoint
618
+ model = load_state_dict_from_zero_checkpoint(trainer.model, checkpoint_dir)
619
+ # submit to model hub or save the model to share with others
620
+
621
+ Note, that once this was run, the ``model`` will no longer be usable in the deepspeed context
622
+ of the same application. i.e. you will need to re-initialize the deepspeed engine, since
623
+ ``model.load_state_dict(state_dict)`` will remove all the deepspeed magic from it.
624
+
625
+ """
626
+ logger.info(f"Extracting fp32 weights")
627
+ state_dict = get_fp32_state_dict_from_zero_checkpoint(checkpoint_dir, tag)
628
+
629
+ logger.info(f"Overwriting model with fp32 weights")
630
+ model = model.cpu()
631
+ model.load_state_dict(state_dict, strict=False)
632
+
633
+ return model
634
+
635
+
636
+ if __name__ == "__main__":
637
+ parser = argparse.ArgumentParser()
638
+ parser.add_argument("checkpoint_dir",
639
+ type=str,
640
+ help="path to the desired checkpoint folder, e.g., path/checkpoint-12")
641
+ parser.add_argument("output_dir",
642
+ type=str,
643
+ help="directory to the pytorch fp32 state_dict output files"
644
+ "(e.g. path/checkpoint-12-output/)")
645
+ parser.add_argument(
646
+ "--max_shard_size",
647
+ type=str,
648
+ default="5GB",
649
+ help="The maximum size for a checkpoint before being sharded. Checkpoints shard will then be each of size"
650
+ "lower than this size. If expressed as a string, needs to be digits followed by a unit (like `5MB`"
651
+ "We default it to 5GB in order for models to be able to run easily on free-tier google colab instances"
652
+ "without CPU OOM issues.")
653
+ parser.add_argument(
654
+ "--safe_serialization",
655
+ default=False,
656
+ action='store_true',
657
+ help="Whether to save the model using `safetensors` or the traditional PyTorch way (that uses `pickle`).")
658
+ parser.add_argument("-t",
659
+ "--tag",
660
+ type=str,
661
+ default=None,
662
+ help="checkpoint tag used as a unique identifier for checkpoint. e.g., global_step1")
663
+ parser.add_argument("--exclude_frozen_parameters", action='store_true', help="exclude frozen parameters")
664
+ parser.add_argument("-d", "--debug", action='store_true', help="enable debug")
665
+ args = parser.parse_args()
666
+
667
+ debug = args.debug
668
+
669
+ convert_zero_checkpoint_to_fp32_state_dict(args.checkpoint_dir,
670
+ args.output_dir,
671
+ max_shard_size=args.max_shard_size,
672
+ safe_serialization=args.safe_serialization,
673
+ tag=args.tag,
674
+ exclude_frozen_parameters=args.exclude_frozen_parameters)