ziansu commited on
Commit
a2c4581
·
verified ·
1 Parent(s): 5bd621d

Training in progress, step 300, checkpoint

Browse files
checkpoint-300/README.md ADDED
@@ -0,0 +1,202 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ base_model: meta-llama/CodeLlama-7b-Instruct-hf
3
+ library_name: peft
4
+ ---
5
+
6
+ # Model Card for Model ID
7
+
8
+ <!-- Provide a quick summary of what the model is/does. -->
9
+
10
+
11
+
12
+ ## Model Details
13
+
14
+ ### Model Description
15
+
16
+ <!-- Provide a longer summary of what this model is. -->
17
+
18
+
19
+
20
+ - **Developed by:** [More Information Needed]
21
+ - **Funded by [optional]:** [More Information Needed]
22
+ - **Shared by [optional]:** [More Information Needed]
23
+ - **Model type:** [More Information Needed]
24
+ - **Language(s) (NLP):** [More Information Needed]
25
+ - **License:** [More Information Needed]
26
+ - **Finetuned from model [optional]:** [More Information Needed]
27
+
28
+ ### Model Sources [optional]
29
+
30
+ <!-- Provide the basic links for the model. -->
31
+
32
+ - **Repository:** [More Information Needed]
33
+ - **Paper [optional]:** [More Information Needed]
34
+ - **Demo [optional]:** [More Information Needed]
35
+
36
+ ## Uses
37
+
38
+ <!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. -->
39
+
40
+ ### Direct Use
41
+
42
+ <!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. -->
43
+
44
+ [More Information Needed]
45
+
46
+ ### Downstream Use [optional]
47
+
48
+ <!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app -->
49
+
50
+ [More Information Needed]
51
+
52
+ ### Out-of-Scope Use
53
+
54
+ <!-- This section addresses misuse, malicious use, and uses that the model will not work well for. -->
55
+
56
+ [More Information Needed]
57
+
58
+ ## Bias, Risks, and Limitations
59
+
60
+ <!-- This section is meant to convey both technical and sociotechnical limitations. -->
61
+
62
+ [More Information Needed]
63
+
64
+ ### Recommendations
65
+
66
+ <!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. -->
67
+
68
+ Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations.
69
+
70
+ ## How to Get Started with the Model
71
+
72
+ Use the code below to get started with the model.
73
+
74
+ [More Information Needed]
75
+
76
+ ## Training Details
77
+
78
+ ### Training Data
79
+
80
+ <!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. -->
81
+
82
+ [More Information Needed]
83
+
84
+ ### Training Procedure
85
+
86
+ <!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. -->
87
+
88
+ #### Preprocessing [optional]
89
+
90
+ [More Information Needed]
91
+
92
+
93
+ #### Training Hyperparameters
94
+
95
+ - **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision -->
96
+
97
+ #### Speeds, Sizes, Times [optional]
98
+
99
+ <!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. -->
100
+
101
+ [More Information Needed]
102
+
103
+ ## Evaluation
104
+
105
+ <!-- This section describes the evaluation protocols and provides the results. -->
106
+
107
+ ### Testing Data, Factors & Metrics
108
+
109
+ #### Testing Data
110
+
111
+ <!-- This should link to a Dataset Card if possible. -->
112
+
113
+ [More Information Needed]
114
+
115
+ #### Factors
116
+
117
+ <!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. -->
118
+
119
+ [More Information Needed]
120
+
121
+ #### Metrics
122
+
123
+ <!-- These are the evaluation metrics being used, ideally with a description of why. -->
124
+
125
+ [More Information Needed]
126
+
127
+ ### Results
128
+
129
+ [More Information Needed]
130
+
131
+ #### Summary
132
+
133
+
134
+
135
+ ## Model Examination [optional]
136
+
137
+ <!-- Relevant interpretability work for the model goes here -->
138
+
139
+ [More Information Needed]
140
+
141
+ ## Environmental Impact
142
+
143
+ <!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly -->
144
+
145
+ Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700).
146
+
147
+ - **Hardware Type:** [More Information Needed]
148
+ - **Hours used:** [More Information Needed]
149
+ - **Cloud Provider:** [More Information Needed]
150
+ - **Compute Region:** [More Information Needed]
151
+ - **Carbon Emitted:** [More Information Needed]
152
+
153
+ ## Technical Specifications [optional]
154
+
155
+ ### Model Architecture and Objective
156
+
157
+ [More Information Needed]
158
+
159
+ ### Compute Infrastructure
160
+
161
+ [More Information Needed]
162
+
163
+ #### Hardware
164
+
165
+ [More Information Needed]
166
+
167
+ #### Software
168
+
169
+ [More Information Needed]
170
+
171
+ ## Citation [optional]
172
+
173
+ <!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. -->
174
+
175
+ **BibTeX:**
176
+
177
+ [More Information Needed]
178
+
179
+ **APA:**
180
+
181
+ [More Information Needed]
182
+
183
+ ## Glossary [optional]
184
+
185
+ <!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. -->
186
+
187
+ [More Information Needed]
188
+
189
+ ## More Information [optional]
190
+
191
+ [More Information Needed]
192
+
193
+ ## Model Card Authors [optional]
194
+
195
+ [More Information Needed]
196
+
197
+ ## Model Card Contact
198
+
199
+ [More Information Needed]
200
+ ### Framework versions
201
+
202
+ - PEFT 0.14.0
checkpoint-300/adapter_config.json ADDED
@@ -0,0 +1,37 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "alpha_pattern": {},
3
+ "auto_mapping": null,
4
+ "base_model_name_or_path": "meta-llama/CodeLlama-7b-Instruct-hf",
5
+ "bias": "none",
6
+ "eva_config": null,
7
+ "exclude_modules": null,
8
+ "fan_in_fan_out": false,
9
+ "inference_mode": true,
10
+ "init_lora_weights": true,
11
+ "layer_replication": null,
12
+ "layers_pattern": null,
13
+ "layers_to_transform": null,
14
+ "loftq_config": {},
15
+ "lora_alpha": 16,
16
+ "lora_bias": false,
17
+ "lora_dropout": 0.0,
18
+ "megatron_config": null,
19
+ "megatron_core": "megatron.core",
20
+ "modules_to_save": null,
21
+ "peft_type": "LORA",
22
+ "r": 8,
23
+ "rank_pattern": {},
24
+ "revision": null,
25
+ "target_modules": [
26
+ "o_proj",
27
+ "gate_proj",
28
+ "down_proj",
29
+ "up_proj",
30
+ "v_proj",
31
+ "q_proj",
32
+ "k_proj"
33
+ ],
34
+ "task_type": "CAUSAL_LM",
35
+ "use_dora": false,
36
+ "use_rslora": false
37
+ }
checkpoint-300/adapter_model.safetensors ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:19daadb3a75f2d3e0ea7e18013279dce4803b3d0523487e96586bd50074abaa1
3
+ size 40036488
checkpoint-300/global_step300/bf16_zero_pp_rank_0_mp_rank_00_optim_states.pt ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:867ef3d582708d002aeb441fb1d8511aa2c14af164ae7f9e90248d833d22a14b
3
+ size 29992112
checkpoint-300/global_step300/bf16_zero_pp_rank_1_mp_rank_00_optim_states.pt ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:8c9289b327de8131024aa8c5ea123a6d350ca07c4615c9dc90ed799913447417
3
+ size 29992112
checkpoint-300/global_step300/bf16_zero_pp_rank_2_mp_rank_00_optim_states.pt ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:7e30e573663692682392b329e06e0465da94766919c648ef75f7224d2698f1f0
3
+ size 29992176
checkpoint-300/global_step300/bf16_zero_pp_rank_3_mp_rank_00_optim_states.pt ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:8575b19c43a03393d56869daeaaa6e41c4df4e505762b0b2e340172b31023389
3
+ size 29992176
checkpoint-300/global_step300/bf16_zero_pp_rank_4_mp_rank_00_optim_states.pt ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:14f6d23f81b721d26302070f7f8afc4f1d53f453e5ad895c7d13ebe48217977e
3
+ size 29992176
checkpoint-300/global_step300/bf16_zero_pp_rank_5_mp_rank_00_optim_states.pt ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:dfa056caa8947604ba0212065a94dff0f33d8880c4def0cd85526218ef511525
3
+ size 29992176
checkpoint-300/global_step300/bf16_zero_pp_rank_6_mp_rank_00_optim_states.pt ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:61cfdea84a0c95117929f7e158555bf4fc56136948332cdff950a0f18a20583d
3
+ size 29992176
checkpoint-300/global_step300/bf16_zero_pp_rank_7_mp_rank_00_optim_states.pt ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:d0127281f32e9b3d54cf0b02510c340288e28d0711802b10235e6149b71c93cb
3
+ size 29992176
checkpoint-300/global_step300/mp_rank_00_model_states.pt ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:d1dab77491dbe3854dc205e41c4ae28f3b5bc4497f336b95240f9cf872291426
3
+ size 40324204
checkpoint-300/latest ADDED
@@ -0,0 +1 @@
 
 
1
+ global_step300
checkpoint-300/rng_state_0.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:cb18ac8d6db3307b1c242f7cb069fc8b8dab957434ddfcafcac997cfd6a43abf
3
+ size 15984
checkpoint-300/rng_state_1.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:4bdab708057b5f34a402d9a2b4443f5f93a8e8ee2ddb66d955f0a15ad394ecc5
3
+ size 15984
checkpoint-300/rng_state_2.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:599882a30c163a5a2a000c4e74b320ecc4a55aa1b079882fd66aa3d2559d19e7
3
+ size 15984
checkpoint-300/rng_state_3.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:567c3b482c209c2778fc017e39a38642c488edda20673ef29f571ef7177ad81e
3
+ size 15984
checkpoint-300/rng_state_4.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:0f9ffe9a916e778423aaed4ec842923c9ccfdd3d7a4fbad10dc6a3bfc278fb8e
3
+ size 15984
checkpoint-300/rng_state_5.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:c7ede8a81aa3c780fb9c3cb57537752a782c4aed1dcecb7aafd6ca5a7ea90252
3
+ size 15984
checkpoint-300/rng_state_6.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:5b1c5c0c0afa907d332467e631e6cee80ba476689aa0caa77689ca273d83b3e4
3
+ size 15984
checkpoint-300/rng_state_7.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:73025ac422abb13303ee974109cf39f6f848de7f7013e828d04aa4e2ec0e6757
3
+ size 15984
checkpoint-300/scheduler.pt ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:1b15c0ac6aed8c96934519c3374aefe8fdd7061431343a569b99174193586897
3
+ size 1064
checkpoint-300/special_tokens_map.json ADDED
@@ -0,0 +1,30 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "additional_special_tokens": [
3
+ "▁<PRE>",
4
+ "▁<MID>",
5
+ "▁<SUF>",
6
+ "▁<EOT>"
7
+ ],
8
+ "bos_token": {
9
+ "content": "<s>",
10
+ "lstrip": false,
11
+ "normalized": false,
12
+ "rstrip": false,
13
+ "single_word": false
14
+ },
15
+ "eos_token": {
16
+ "content": "</s>",
17
+ "lstrip": false,
18
+ "normalized": false,
19
+ "rstrip": false,
20
+ "single_word": false
21
+ },
22
+ "pad_token": "</s>",
23
+ "unk_token": {
24
+ "content": "<unk>",
25
+ "lstrip": false,
26
+ "normalized": false,
27
+ "rstrip": false,
28
+ "single_word": false
29
+ }
30
+ }
checkpoint-300/tokenizer.json ADDED
The diff for this file is too large to render. See raw diff
 
checkpoint-300/tokenizer_config.json ADDED
@@ -0,0 +1,87 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "add_bos_token": true,
3
+ "add_eos_token": false,
4
+ "added_tokens_decoder": {
5
+ "0": {
6
+ "content": "<unk>",
7
+ "lstrip": false,
8
+ "normalized": false,
9
+ "rstrip": false,
10
+ "single_word": false,
11
+ "special": true
12
+ },
13
+ "1": {
14
+ "content": "<s>",
15
+ "lstrip": false,
16
+ "normalized": false,
17
+ "rstrip": false,
18
+ "single_word": false,
19
+ "special": true
20
+ },
21
+ "2": {
22
+ "content": "</s>",
23
+ "lstrip": false,
24
+ "normalized": false,
25
+ "rstrip": false,
26
+ "single_word": false,
27
+ "special": true
28
+ },
29
+ "32007": {
30
+ "content": "▁<PRE>",
31
+ "lstrip": false,
32
+ "normalized": false,
33
+ "rstrip": false,
34
+ "single_word": false,
35
+ "special": true
36
+ },
37
+ "32008": {
38
+ "content": "▁<SUF>",
39
+ "lstrip": false,
40
+ "normalized": false,
41
+ "rstrip": false,
42
+ "single_word": false,
43
+ "special": true
44
+ },
45
+ "32009": {
46
+ "content": "▁<MID>",
47
+ "lstrip": false,
48
+ "normalized": false,
49
+ "rstrip": false,
50
+ "single_word": false,
51
+ "special": true
52
+ },
53
+ "32010": {
54
+ "content": "▁<EOT>",
55
+ "lstrip": false,
56
+ "normalized": false,
57
+ "rstrip": false,
58
+ "single_word": false,
59
+ "special": true
60
+ }
61
+ },
62
+ "additional_special_tokens": [
63
+ "▁<PRE>",
64
+ "▁<MID>",
65
+ "▁<SUF>",
66
+ "▁<EOT>"
67
+ ],
68
+ "bos_token": "<s>",
69
+ "chat_template": "{% if messages[0]['role'] == 'system' %}{% set system_message = messages[0]['content'] %}{% endif %}{% for message in messages %}{% set content = message['content'] %}{% if loop.index0 == 0 and system_message is defined %}{% set content = '<<SYS>>\n' + system_message + '\n<</SYS>>\n\n' + message['content'] %}{% endif %}{% if message['role'] == 'user' %}{{ '<s>' + '[INST] ' + content + ' [/INST]' }}{% elif message['role'] == 'assistant' %}{{ ' ' + content + ' ' + '</s>' }}{% endif %}{% endfor %}",
70
+ "clean_up_tokenization_spaces": false,
71
+ "eos_token": "</s>",
72
+ "eot_token": "▁<EOT>",
73
+ "extra_special_tokens": {},
74
+ "fill_token": "<FILL_ME>",
75
+ "legacy": null,
76
+ "middle_token": "▁<MID>",
77
+ "model_max_length": 1000000000000000019884624838656,
78
+ "pad_token": "</s>",
79
+ "padding_side": "right",
80
+ "prefix_token": "▁<PRE>",
81
+ "sp_model_kwargs": {},
82
+ "split_special_tokens": false,
83
+ "suffix_token": "▁<SUF>",
84
+ "tokenizer_class": "CodeLlamaTokenizer",
85
+ "unk_token": "<unk>",
86
+ "use_default_system_prompt": false
87
+ }
checkpoint-300/trainer_state.json ADDED
@@ -0,0 +1,579 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "best_metric": null,
3
+ "best_model_checkpoint": null,
4
+ "epoch": 0.24620434961017645,
5
+ "eval_steps": 50,
6
+ "global_step": 300,
7
+ "is_hyper_param_search": false,
8
+ "is_local_process_zero": true,
9
+ "is_world_process_zero": true,
10
+ "log_history": [
11
+ {
12
+ "epoch": 0.008206811653672548,
13
+ "grad_norm": 0.07778492569923401,
14
+ "learning_rate": 4.999451708687114e-06,
15
+ "logits/chosen": -2.053281307220459,
16
+ "logits/rejected": -2.495474338531494,
17
+ "logps/chosen": -0.3126755356788635,
18
+ "logps/rejected": -0.3312620520591736,
19
+ "loss": 7.6211,
20
+ "rewards/accuracies": 0.44999998807907104,
21
+ "rewards/chosen": -0.4690132737159729,
22
+ "rewards/margins": 0.027879873290657997,
23
+ "rewards/rejected": -0.49689316749572754,
24
+ "step": 10
25
+ },
26
+ {
27
+ "epoch": 0.016413623307345096,
28
+ "grad_norm": 0.07773654907941818,
29
+ "learning_rate": 4.997807075247147e-06,
30
+ "logits/chosen": -2.0624098777770996,
31
+ "logits/rejected": -2.4424185752868652,
32
+ "logps/chosen": -0.26926660537719727,
33
+ "logps/rejected": -0.2978014051914215,
34
+ "loss": 7.5195,
35
+ "rewards/accuracies": 0.48750001192092896,
36
+ "rewards/chosen": -0.4038998484611511,
37
+ "rewards/margins": 0.04280223697423935,
38
+ "rewards/rejected": -0.44670209288597107,
39
+ "step": 20
40
+ },
41
+ {
42
+ "epoch": 0.024620434961017644,
43
+ "grad_norm": 0.07357177883386612,
44
+ "learning_rate": 4.9950668210706795e-06,
45
+ "logits/chosen": -2.068427562713623,
46
+ "logits/rejected": -2.486642360687256,
47
+ "logps/chosen": -0.29993391036987305,
48
+ "logps/rejected": -0.34360918402671814,
49
+ "loss": 7.4913,
50
+ "rewards/accuracies": 0.4749999940395355,
51
+ "rewards/chosen": -0.4499008059501648,
52
+ "rewards/margins": 0.06551288068294525,
53
+ "rewards/rejected": -0.5154137015342712,
54
+ "step": 30
55
+ },
56
+ {
57
+ "epoch": 0.03282724661469019,
58
+ "grad_norm": 0.14212799072265625,
59
+ "learning_rate": 4.9912321481237616e-06,
60
+ "logits/chosen": -2.015650987625122,
61
+ "logits/rejected": -2.3838727474212646,
62
+ "logps/chosen": -0.2911723852157593,
63
+ "logps/rejected": -0.30521970987319946,
64
+ "loss": 7.5217,
65
+ "rewards/accuracies": 0.48750001192092896,
66
+ "rewards/chosen": -0.4367586076259613,
67
+ "rewards/margins": 0.021070968359708786,
68
+ "rewards/rejected": -0.4578295648097992,
69
+ "step": 40
70
+ },
71
+ {
72
+ "epoch": 0.04103405826836274,
73
+ "grad_norm": 0.08107248693704605,
74
+ "learning_rate": 4.986304738420684e-06,
75
+ "logits/chosen": -2.1150989532470703,
76
+ "logits/rejected": -2.4338631629943848,
77
+ "logps/chosen": -0.26249754428863525,
78
+ "logps/rejected": -0.3132360577583313,
79
+ "loss": 7.519,
80
+ "rewards/accuracies": 0.5375000238418579,
81
+ "rewards/chosen": -0.3937462866306305,
82
+ "rewards/margins": 0.07610772550106049,
83
+ "rewards/rejected": -0.4698540270328522,
84
+ "step": 50
85
+ },
86
+ {
87
+ "epoch": 0.04103405826836274,
88
+ "eval_logits/chosen": -2.0232737064361572,
89
+ "eval_logits/rejected": -2.4952735900878906,
90
+ "eval_logps/chosen": -0.27974528074264526,
91
+ "eval_logps/rejected": -0.3420677185058594,
92
+ "eval_loss": 0.9291417598724365,
93
+ "eval_rewards/accuracies": 0.49494948983192444,
94
+ "eval_rewards/chosen": -0.41961798071861267,
95
+ "eval_rewards/margins": 0.09348361939191818,
96
+ "eval_rewards/rejected": -0.5131015777587891,
97
+ "eval_runtime": 26.0563,
98
+ "eval_samples_per_second": 30.242,
99
+ "eval_steps_per_second": 3.799,
100
+ "step": 50
101
+ },
102
+ {
103
+ "epoch": 0.04924086992203529,
104
+ "grad_norm": 0.06815352290868759,
105
+ "learning_rate": 4.980286753286196e-06,
106
+ "logits/chosen": -1.9890680313110352,
107
+ "logits/rejected": -2.3848204612731934,
108
+ "logps/chosen": -0.26213228702545166,
109
+ "logps/rejected": -0.31342557072639465,
110
+ "loss": 7.432,
111
+ "rewards/accuracies": 0.512499988079071,
112
+ "rewards/chosen": -0.3931984603404999,
113
+ "rewards/margins": 0.0769399031996727,
114
+ "rewards/rejected": -0.4701383709907532,
115
+ "step": 60
116
+ },
117
+ {
118
+ "epoch": 0.057447681575707836,
119
+ "grad_norm": 0.06748568266630173,
120
+ "learning_rate": 4.973180832407471e-06,
121
+ "logits/chosen": -2.070542812347412,
122
+ "logits/rejected": -2.3977038860321045,
123
+ "logps/chosen": -0.24570491909980774,
124
+ "logps/rejected": -0.3655605912208557,
125
+ "loss": 7.35,
126
+ "rewards/accuracies": 0.5874999761581421,
127
+ "rewards/chosen": -0.3685573935508728,
128
+ "rewards/margins": 0.17978355288505554,
129
+ "rewards/rejected": -0.548340916633606,
130
+ "step": 70
131
+ },
132
+ {
133
+ "epoch": 0.06565449322938038,
134
+ "grad_norm": 0.10909309983253479,
135
+ "learning_rate": 4.964990092676263e-06,
136
+ "logits/chosen": -2.2012317180633545,
137
+ "logits/rejected": -2.346029758453369,
138
+ "logps/chosen": -0.2279246598482132,
139
+ "logps/rejected": -0.35396742820739746,
140
+ "loss": 7.5082,
141
+ "rewards/accuracies": 0.6499999761581421,
142
+ "rewards/chosen": -0.341886967420578,
143
+ "rewards/margins": 0.18906418979167938,
144
+ "rewards/rejected": -0.5309511423110962,
145
+ "step": 80
146
+ },
147
+ {
148
+ "epoch": 0.07386130488305294,
149
+ "grad_norm": 0.05977805703878403,
150
+ "learning_rate": 4.9557181268217225e-06,
151
+ "logits/chosen": -2.0719449520111084,
152
+ "logits/rejected": -2.4491190910339355,
153
+ "logps/chosen": -0.2503294348716736,
154
+ "logps/rejected": -0.29939892888069153,
155
+ "loss": 7.5129,
156
+ "rewards/accuracies": 0.4625000059604645,
157
+ "rewards/chosen": -0.37549418210983276,
158
+ "rewards/margins": 0.07360419631004333,
159
+ "rewards/rejected": -0.4490983486175537,
160
+ "step": 90
161
+ },
162
+ {
163
+ "epoch": 0.08206811653672548,
164
+ "grad_norm": 0.051751479506492615,
165
+ "learning_rate": 4.9453690018345144e-06,
166
+ "logits/chosen": -2.0634045600891113,
167
+ "logits/rejected": -2.458428382873535,
168
+ "logps/chosen": -0.24033495783805847,
169
+ "logps/rejected": -0.29080909490585327,
170
+ "loss": 7.4432,
171
+ "rewards/accuracies": 0.5249999761581421,
172
+ "rewards/chosen": -0.3605024516582489,
173
+ "rewards/margins": 0.07571124285459518,
174
+ "rewards/rejected": -0.4362136721611023,
175
+ "step": 100
176
+ },
177
+ {
178
+ "epoch": 0.08206811653672548,
179
+ "eval_logits/chosen": -2.0207154750823975,
180
+ "eval_logits/rejected": -2.486215353012085,
181
+ "eval_logps/chosen": -0.2376101016998291,
182
+ "eval_logps/rejected": -0.32593628764152527,
183
+ "eval_loss": 0.9085211753845215,
184
+ "eval_rewards/accuracies": 0.5353535413742065,
185
+ "eval_rewards/chosen": -0.35641518235206604,
186
+ "eval_rewards/margins": 0.13248924911022186,
187
+ "eval_rewards/rejected": -0.4889043867588043,
188
+ "eval_runtime": 26.0119,
189
+ "eval_samples_per_second": 30.294,
190
+ "eval_steps_per_second": 3.806,
191
+ "step": 100
192
+ },
193
+ {
194
+ "epoch": 0.09027492819039803,
195
+ "grad_norm": 0.06007291004061699,
196
+ "learning_rate": 4.933947257182901e-06,
197
+ "logits/chosen": -2.1248741149902344,
198
+ "logits/rejected": -2.409808874130249,
199
+ "logps/chosen": -0.2354653775691986,
200
+ "logps/rejected": -0.30269068479537964,
201
+ "loss": 7.317,
202
+ "rewards/accuracies": 0.5249999761581421,
203
+ "rewards/chosen": -0.3531980812549591,
204
+ "rewards/margins": 0.10083796828985214,
205
+ "rewards/rejected": -0.45403605699539185,
206
+ "step": 110
207
+ },
208
+ {
209
+ "epoch": 0.09848173984407058,
210
+ "grad_norm": 0.055738095194101334,
211
+ "learning_rate": 4.921457902821578e-06,
212
+ "logits/chosen": -2.0635311603546143,
213
+ "logits/rejected": -2.4297730922698975,
214
+ "logps/chosen": -0.2315257489681244,
215
+ "logps/rejected": -0.33639490604400635,
216
+ "loss": 7.2775,
217
+ "rewards/accuracies": 0.612500011920929,
218
+ "rewards/chosen": -0.3472886383533478,
219
+ "rewards/margins": 0.15730372071266174,
220
+ "rewards/rejected": -0.5045923590660095,
221
+ "step": 120
222
+ },
223
+ {
224
+ "epoch": 0.10668855149774313,
225
+ "grad_norm": 0.07971248030662537,
226
+ "learning_rate": 4.907906416994146e-06,
227
+ "logits/chosen": -2.07852840423584,
228
+ "logits/rejected": -2.4043469429016113,
229
+ "logps/chosen": -0.20596058666706085,
230
+ "logps/rejected": -0.33416762948036194,
231
+ "loss": 7.336,
232
+ "rewards/accuracies": 0.637499988079071,
233
+ "rewards/chosen": -0.3089408874511719,
234
+ "rewards/margins": 0.19231058657169342,
235
+ "rewards/rejected": -0.5012514591217041,
236
+ "step": 130
237
+ },
238
+ {
239
+ "epoch": 0.11489536315141567,
240
+ "grad_norm": 0.08581534773111343,
241
+ "learning_rate": 4.893298743830168e-06,
242
+ "logits/chosen": -2.115981340408325,
243
+ "logits/rejected": -2.5363636016845703,
244
+ "logps/chosen": -0.22111928462982178,
245
+ "logps/rejected": -0.3136863708496094,
246
+ "loss": 7.2892,
247
+ "rewards/accuracies": 0.550000011920929,
248
+ "rewards/chosen": -0.33167898654937744,
249
+ "rewards/margins": 0.1388506144285202,
250
+ "rewards/rejected": -0.47052955627441406,
251
+ "step": 140
252
+ },
253
+ {
254
+ "epoch": 0.12310217480508823,
255
+ "grad_norm": 0.06293604522943497,
256
+ "learning_rate": 4.8776412907378845e-06,
257
+ "logits/chosen": -2.070842742919922,
258
+ "logits/rejected": -2.4669342041015625,
259
+ "logps/chosen": -0.20812074840068817,
260
+ "logps/rejected": -0.29536327719688416,
261
+ "loss": 7.26,
262
+ "rewards/accuracies": 0.5874999761581421,
263
+ "rewards/chosen": -0.31218111515045166,
264
+ "rewards/margins": 0.13086381554603577,
265
+ "rewards/rejected": -0.4430449604988098,
266
+ "step": 150
267
+ },
268
+ {
269
+ "epoch": 0.12310217480508823,
270
+ "eval_logits/chosen": -2.062544822692871,
271
+ "eval_logits/rejected": -2.5318312644958496,
272
+ "eval_logps/chosen": -0.2108660489320755,
273
+ "eval_logps/rejected": -0.3196176588535309,
274
+ "eval_loss": 0.8929102420806885,
275
+ "eval_rewards/accuracies": 0.5555555820465088,
276
+ "eval_rewards/chosen": -0.31629908084869385,
277
+ "eval_rewards/margins": 0.1631273776292801,
278
+ "eval_rewards/rejected": -0.47942644357681274,
279
+ "eval_runtime": 26.0407,
280
+ "eval_samples_per_second": 30.26,
281
+ "eval_steps_per_second": 3.802,
282
+ "step": 150
283
+ },
284
+ {
285
+ "epoch": 0.13130898645876077,
286
+ "grad_norm": 0.06755395233631134,
287
+ "learning_rate": 4.860940925593703e-06,
288
+ "logits/chosen": -2.187638998031616,
289
+ "logits/rejected": -2.4928510189056396,
290
+ "logps/chosen": -0.2070399969816208,
291
+ "logps/rejected": -0.30727890133857727,
292
+ "loss": 7.1947,
293
+ "rewards/accuracies": 0.550000011920929,
294
+ "rewards/chosen": -0.3105599880218506,
295
+ "rewards/margins": 0.1503583937883377,
296
+ "rewards/rejected": -0.4609183669090271,
297
+ "step": 160
298
+ },
299
+ {
300
+ "epoch": 0.1395157981124333,
301
+ "grad_norm": 0.08956371247768402,
302
+ "learning_rate": 4.84320497372973e-06,
303
+ "logits/chosen": -2.0751285552978516,
304
+ "logits/rejected": -2.478673219680786,
305
+ "logps/chosen": -0.18197472393512726,
306
+ "logps/rejected": -0.2756109833717346,
307
+ "loss": 7.1774,
308
+ "rewards/accuracies": 0.612500011920929,
309
+ "rewards/chosen": -0.2729620933532715,
310
+ "rewards/margins": 0.14045441150665283,
311
+ "rewards/rejected": -0.41341647505760193,
312
+ "step": 170
313
+ },
314
+ {
315
+ "epoch": 0.14772260976610588,
316
+ "grad_norm": 0.07708129286766052,
317
+ "learning_rate": 4.824441214720629e-06,
318
+ "logits/chosen": -2.113537311553955,
319
+ "logits/rejected": -2.530677556991577,
320
+ "logps/chosen": -0.20599500834941864,
321
+ "logps/rejected": -0.2911488711833954,
322
+ "loss": 7.1722,
323
+ "rewards/accuracies": 0.512499988079071,
324
+ "rewards/chosen": -0.308992475271225,
325
+ "rewards/margins": 0.1277308166027069,
326
+ "rewards/rejected": -0.4367233216762543,
327
+ "step": 180
328
+ },
329
+ {
330
+ "epoch": 0.15592942141977842,
331
+ "grad_norm": 0.0884585976600647,
332
+ "learning_rate": 4.804657878971252e-06,
333
+ "logits/chosen": -2.151444673538208,
334
+ "logits/rejected": -2.559861898422241,
335
+ "logps/chosen": -0.2093551605939865,
336
+ "logps/rejected": -0.2878231108188629,
337
+ "loss": 7.1186,
338
+ "rewards/accuracies": 0.5249999761581421,
339
+ "rewards/chosen": -0.31403273344039917,
340
+ "rewards/margins": 0.11770190298557281,
341
+ "rewards/rejected": -0.4317346513271332,
342
+ "step": 190
343
+ },
344
+ {
345
+ "epoch": 0.16413623307345096,
346
+ "grad_norm": 0.09445559978485107,
347
+ "learning_rate": 4.783863644106502e-06,
348
+ "logits/chosen": -2.278620481491089,
349
+ "logits/rejected": -2.5897645950317383,
350
+ "logps/chosen": -0.18631704151630402,
351
+ "logps/rejected": -0.3201253116130829,
352
+ "loss": 7.082,
353
+ "rewards/accuracies": 0.574999988079071,
354
+ "rewards/chosen": -0.2794755697250366,
355
+ "rewards/margins": 0.2007124423980713,
356
+ "rewards/rejected": -0.4801879823207855,
357
+ "step": 200
358
+ },
359
+ {
360
+ "epoch": 0.16413623307345096,
361
+ "eval_logits/chosen": -2.1718955039978027,
362
+ "eval_logits/rejected": -2.6710257530212402,
363
+ "eval_logps/chosen": -0.20382821559906006,
364
+ "eval_logps/rejected": -0.3390556573867798,
365
+ "eval_loss": 0.8775798678398132,
366
+ "eval_rewards/accuracies": 0.5858585834503174,
367
+ "eval_rewards/chosen": -0.3057423532009125,
368
+ "eval_rewards/margins": 0.20284107327461243,
369
+ "eval_rewards/rejected": -0.5085834264755249,
370
+ "eval_runtime": 26.0531,
371
+ "eval_samples_per_second": 30.246,
372
+ "eval_steps_per_second": 3.8,
373
+ "step": 200
374
+ },
375
+ {
376
+ "epoch": 0.1723430447271235,
377
+ "grad_norm": 0.11077430099248886,
378
+ "learning_rate": 4.762067631165049e-06,
379
+ "logits/chosen": -2.2566323280334473,
380
+ "logits/rejected": -2.621065378189087,
381
+ "logps/chosen": -0.18663282692432404,
382
+ "logps/rejected": -0.290865957736969,
383
+ "loss": 7.1321,
384
+ "rewards/accuracies": 0.5,
385
+ "rewards/chosen": -0.27994924783706665,
386
+ "rewards/margins": 0.15634974837303162,
387
+ "rewards/rejected": -0.43629899621009827,
388
+ "step": 210
389
+ },
390
+ {
391
+ "epoch": 0.18054985638079607,
392
+ "grad_norm": 0.15500974655151367,
393
+ "learning_rate": 4.7392794005985324e-06,
394
+ "logits/chosen": -2.27781343460083,
395
+ "logits/rejected": -2.700369358062744,
396
+ "logps/chosen": -0.21367880702018738,
397
+ "logps/rejected": -0.31559067964553833,
398
+ "loss": 6.9886,
399
+ "rewards/accuracies": 0.5874999761581421,
400
+ "rewards/chosen": -0.3205181956291199,
401
+ "rewards/margins": 0.15286779403686523,
402
+ "rewards/rejected": -0.4733859896659851,
403
+ "step": 220
404
+ },
405
+ {
406
+ "epoch": 0.1887566680344686,
407
+ "grad_norm": 0.12770676612854004,
408
+ "learning_rate": 4.715508948078037e-06,
409
+ "logits/chosen": -2.216815710067749,
410
+ "logits/rejected": -2.759458541870117,
411
+ "logps/chosen": -0.21546092629432678,
412
+ "logps/rejected": -0.34664005041122437,
413
+ "loss": 6.966,
414
+ "rewards/accuracies": 0.574999988079071,
415
+ "rewards/chosen": -0.32319143414497375,
416
+ "rewards/margins": 0.196768656373024,
417
+ "rewards/rejected": -0.5199600458145142,
418
+ "step": 230
419
+ },
420
+ {
421
+ "epoch": 0.19696347968814115,
422
+ "grad_norm": 0.15062908828258514,
423
+ "learning_rate": 4.690766700109659e-06,
424
+ "logits/chosen": -2.2262110710144043,
425
+ "logits/rejected": -2.7840607166290283,
426
+ "logps/chosen": -0.2078159749507904,
427
+ "logps/rejected": -0.4006090760231018,
428
+ "loss": 7.012,
429
+ "rewards/accuracies": 0.625,
430
+ "rewards/chosen": -0.3117239773273468,
431
+ "rewards/margins": 0.2891896665096283,
432
+ "rewards/rejected": -0.6009136438369751,
433
+ "step": 240
434
+ },
435
+ {
436
+ "epoch": 0.2051702913418137,
437
+ "grad_norm": 0.24995267391204834,
438
+ "learning_rate": 4.665063509461098e-06,
439
+ "logits/chosen": -2.4198288917541504,
440
+ "logits/rejected": -2.8148205280303955,
441
+ "logps/chosen": -0.23191122710704803,
442
+ "logps/rejected": -0.38251757621765137,
443
+ "loss": 6.7812,
444
+ "rewards/accuracies": 0.5375000238418579,
445
+ "rewards/chosen": -0.34786686301231384,
446
+ "rewards/margins": 0.2259095013141632,
447
+ "rewards/rejected": -0.573776364326477,
448
+ "step": 250
449
+ },
450
+ {
451
+ "epoch": 0.2051702913418137,
452
+ "eval_logits/chosen": -2.3532145023345947,
453
+ "eval_logits/rejected": -2.9015841484069824,
454
+ "eval_logps/chosen": -0.22620753943920135,
455
+ "eval_logps/rejected": -0.4290919005870819,
456
+ "eval_loss": 0.8434350490570068,
457
+ "eval_rewards/accuracies": 0.5959596037864685,
458
+ "eval_rewards/chosen": -0.33931130170822144,
459
+ "eval_rewards/margins": 0.304326593875885,
460
+ "eval_rewards/rejected": -0.6436378955841064,
461
+ "eval_runtime": 26.012,
462
+ "eval_samples_per_second": 30.294,
463
+ "eval_steps_per_second": 3.806,
464
+ "step": 250
465
+ },
466
+ {
467
+ "epoch": 0.21337710299548626,
468
+ "grad_norm": 0.22134838998317719,
469
+ "learning_rate": 4.638410650401267e-06,
470
+ "logits/chosen": -2.4054629802703857,
471
+ "logits/rejected": -2.8117618560791016,
472
+ "logps/chosen": -0.20882606506347656,
473
+ "logps/rejected": -0.41059261560440063,
474
+ "loss": 6.6024,
475
+ "rewards/accuracies": 0.5625,
476
+ "rewards/chosen": -0.31323909759521484,
477
+ "rewards/margins": 0.3026497960090637,
478
+ "rewards/rejected": -0.6158889532089233,
479
+ "step": 260
480
+ },
481
+ {
482
+ "epoch": 0.2215839146491588,
483
+ "grad_norm": 0.23838171362876892,
484
+ "learning_rate": 4.610819813755038e-06,
485
+ "logits/chosen": -2.534034490585327,
486
+ "logits/rejected": -2.846797227859497,
487
+ "logps/chosen": -0.2372482568025589,
488
+ "logps/rejected": -0.493452787399292,
489
+ "loss": 6.7377,
490
+ "rewards/accuracies": 0.612500011920929,
491
+ "rewards/chosen": -0.35587236285209656,
492
+ "rewards/margins": 0.38430681824684143,
493
+ "rewards/rejected": -0.740179181098938,
494
+ "step": 270
495
+ },
496
+ {
497
+ "epoch": 0.22979072630283134,
498
+ "grad_norm": 0.2903882563114166,
499
+ "learning_rate": 4.582303101775249e-06,
500
+ "logits/chosen": -2.4838695526123047,
501
+ "logits/rejected": -2.8494999408721924,
502
+ "logps/chosen": -0.23487380146980286,
503
+ "logps/rejected": -0.5447143316268921,
504
+ "loss": 6.6463,
505
+ "rewards/accuracies": 0.6875,
506
+ "rewards/chosen": -0.3523106873035431,
507
+ "rewards/margins": 0.4647606909275055,
508
+ "rewards/rejected": -0.8170714378356934,
509
+ "step": 280
510
+ },
511
+ {
512
+ "epoch": 0.23799753795650389,
513
+ "grad_norm": 0.2977660596370697,
514
+ "learning_rate": 4.55287302283426e-06,
515
+ "logits/chosen": -2.539785861968994,
516
+ "logits/rejected": -2.922631025314331,
517
+ "logps/chosen": -0.2749824821949005,
518
+ "logps/rejected": -0.5817859768867493,
519
+ "loss": 6.2424,
520
+ "rewards/accuracies": 0.5249999761581421,
521
+ "rewards/chosen": -0.41247373819351196,
522
+ "rewards/margins": 0.4602052569389343,
523
+ "rewards/rejected": -0.8726789355278015,
524
+ "step": 290
525
+ },
526
+ {
527
+ "epoch": 0.24620434961017645,
528
+ "grad_norm": 0.388954222202301,
529
+ "learning_rate": 4.522542485937369e-06,
530
+ "logits/chosen": -2.6039352416992188,
531
+ "logits/rejected": -2.8011627197265625,
532
+ "logps/chosen": -0.37122753262519836,
533
+ "logps/rejected": -0.6376734972000122,
534
+ "loss": 6.3458,
535
+ "rewards/accuracies": 0.5375000238418579,
536
+ "rewards/chosen": -0.5568413138389587,
537
+ "rewards/margins": 0.39966899156570435,
538
+ "rewards/rejected": -0.9565103650093079,
539
+ "step": 300
540
+ },
541
+ {
542
+ "epoch": 0.24620434961017645,
543
+ "eval_logits/chosen": -2.448641061782837,
544
+ "eval_logits/rejected": -2.8639307022094727,
545
+ "eval_logps/chosen": -0.35992980003356934,
546
+ "eval_logps/rejected": -0.7961164712905884,
547
+ "eval_loss": 0.7593368887901306,
548
+ "eval_rewards/accuracies": 0.6060606241226196,
549
+ "eval_rewards/chosen": -0.5398945808410645,
550
+ "eval_rewards/margins": 0.6542800664901733,
551
+ "eval_rewards/rejected": -1.1941747665405273,
552
+ "eval_runtime": 26.0378,
553
+ "eval_samples_per_second": 30.264,
554
+ "eval_steps_per_second": 3.802,
555
+ "step": 300
556
+ }
557
+ ],
558
+ "logging_steps": 10,
559
+ "max_steps": 1500,
560
+ "num_input_tokens_seen": 0,
561
+ "num_train_epochs": 2,
562
+ "save_steps": 50,
563
+ "stateful_callbacks": {
564
+ "TrainerControl": {
565
+ "args": {
566
+ "should_epoch_stop": false,
567
+ "should_evaluate": false,
568
+ "should_log": false,
569
+ "should_save": true,
570
+ "should_training_stop": false
571
+ },
572
+ "attributes": {}
573
+ }
574
+ },
575
+ "total_flos": 1.0895498913670758e+18,
576
+ "train_batch_size": 1,
577
+ "trial_name": null,
578
+ "trial_params": null
579
+ }
checkpoint-300/training_args.bin ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:bf8d909f02a88dcbf5916c80de1d265aeb2f9b3de2e848a27a137cea4e04d256
3
+ size 7224
checkpoint-300/zero_to_fp32.py ADDED
@@ -0,0 +1,674 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ #!/usr/bin/env python
2
+
3
+ # Copyright (c) Microsoft Corporation.
4
+ # SPDX-License-Identifier: Apache-2.0
5
+
6
+ # DeepSpeed Team
7
+
8
+ # This script extracts fp32 consolidated weights from a zero 1, 2 and 3 DeepSpeed checkpoints. It gets
9
+ # copied into the top level checkpoint dir, so the user can easily do the conversion at any point in
10
+ # the future. Once extracted, the weights don't require DeepSpeed and can be used in any
11
+ # application.
12
+ #
13
+ # example:
14
+ # python zero_to_fp32.py . output_dir/
15
+ # or
16
+ # python zero_to_fp32.py . output_dir/ --safe_serialization
17
+
18
+ import argparse
19
+ import torch
20
+ import glob
21
+ import math
22
+ import os
23
+ import re
24
+ import json
25
+ from tqdm import tqdm
26
+ from collections import OrderedDict
27
+ from dataclasses import dataclass
28
+
29
+ # while this script doesn't use deepspeed to recover data, since the checkpoints are pickled with
30
+ # DeepSpeed data structures it has to be available in the current python environment.
31
+ from deepspeed.utils import logger
32
+ from deepspeed.checkpoint.constants import (DS_VERSION, OPTIMIZER_STATE_DICT, SINGLE_PARTITION_OF_FP32_GROUPS,
33
+ FP32_FLAT_GROUPS, ZERO_STAGE, PARTITION_COUNT, PARAM_SHAPES, BUFFER_NAMES,
34
+ FROZEN_PARAM_SHAPES, FROZEN_PARAM_FRAGMENTS)
35
+
36
+
37
+ @dataclass
38
+ class zero_model_state:
39
+ buffers: dict()
40
+ param_shapes: dict()
41
+ shared_params: list
42
+ ds_version: int
43
+ frozen_param_shapes: dict()
44
+ frozen_param_fragments: dict()
45
+
46
+
47
+ debug = 0
48
+
49
+ # load to cpu
50
+ device = torch.device('cpu')
51
+
52
+
53
+ def atoi(text):
54
+ return int(text) if text.isdigit() else text
55
+
56
+
57
+ def natural_keys(text):
58
+ '''
59
+ alist.sort(key=natural_keys) sorts in human order
60
+ http://nedbatchelder.com/blog/200712/human_sorting.html
61
+ (See Toothy's implementation in the comments)
62
+ '''
63
+ return [atoi(c) for c in re.split(r'(\d+)', text)]
64
+
65
+
66
+ def get_model_state_file(checkpoint_dir, zero_stage):
67
+ if not os.path.isdir(checkpoint_dir):
68
+ raise FileNotFoundError(f"Directory '{checkpoint_dir}' doesn't exist")
69
+
70
+ # there should be only one file
71
+ if zero_stage <= 2:
72
+ file = os.path.join(checkpoint_dir, "mp_rank_00_model_states.pt")
73
+ elif zero_stage == 3:
74
+ file = os.path.join(checkpoint_dir, "zero_pp_rank_0_mp_rank_00_model_states.pt")
75
+
76
+ if not os.path.exists(file):
77
+ raise FileNotFoundError(f"can't find model states file at '{file}'")
78
+
79
+ return file
80
+
81
+
82
+ def get_checkpoint_files(checkpoint_dir, glob_pattern):
83
+ # XXX: need to test that this simple glob rule works for multi-node setup too
84
+ ckpt_files = sorted(glob.glob(os.path.join(checkpoint_dir, glob_pattern)), key=natural_keys)
85
+
86
+ if len(ckpt_files) == 0:
87
+ raise FileNotFoundError(f"can't find {glob_pattern} files in directory '{checkpoint_dir}'")
88
+
89
+ return ckpt_files
90
+
91
+
92
+ def get_optim_files(checkpoint_dir):
93
+ return get_checkpoint_files(checkpoint_dir, "*_optim_states.pt")
94
+
95
+
96
+ def get_model_state_files(checkpoint_dir):
97
+ return get_checkpoint_files(checkpoint_dir, "*_model_states.pt")
98
+
99
+
100
+ def parse_model_states(files):
101
+ zero_model_states = []
102
+ for file in files:
103
+ state_dict = torch.load(file, map_location=device)
104
+
105
+ if BUFFER_NAMES not in state_dict:
106
+ raise ValueError(f"{file} is not a model state checkpoint")
107
+ buffer_names = state_dict[BUFFER_NAMES]
108
+ if debug:
109
+ print("Found buffers:", buffer_names)
110
+
111
+ # recover just the buffers while restoring them to fp32 if they were saved in fp16
112
+ buffers = {k: v.float() for k, v in state_dict["module"].items() if k in buffer_names}
113
+ param_shapes = state_dict[PARAM_SHAPES]
114
+
115
+ # collect parameters that are included in param_shapes
116
+ param_names = []
117
+ for s in param_shapes:
118
+ for name in s.keys():
119
+ param_names.append(name)
120
+
121
+ # update with frozen parameters
122
+ frozen_param_shapes = state_dict.get(FROZEN_PARAM_SHAPES, None)
123
+ if frozen_param_shapes is not None:
124
+ if debug:
125
+ print(f"Found frozen_param_shapes: {frozen_param_shapes}")
126
+ param_names += list(frozen_param_shapes.keys())
127
+
128
+ # handle shared params
129
+ shared_params = [[k, v] for k, v in state_dict["shared_params"].items()]
130
+
131
+ ds_version = state_dict.get(DS_VERSION, None)
132
+
133
+ frozen_param_fragments = state_dict.get(FROZEN_PARAM_FRAGMENTS, None)
134
+
135
+ z_model_state = zero_model_state(buffers=buffers,
136
+ param_shapes=param_shapes,
137
+ shared_params=shared_params,
138
+ ds_version=ds_version,
139
+ frozen_param_shapes=frozen_param_shapes,
140
+ frozen_param_fragments=frozen_param_fragments)
141
+ zero_model_states.append(z_model_state)
142
+
143
+ return zero_model_states
144
+
145
+
146
+ def parse_optim_states(files, ds_checkpoint_dir):
147
+ total_files = len(files)
148
+ state_dicts = []
149
+ for f in files:
150
+ state_dict = torch.load(f, map_location=device)
151
+ # immediately discard the potentially huge 2 optimizer states as we only care for fp32 master weights
152
+ # and also handle the case where it was already removed by another helper script
153
+ state_dict["optimizer_state_dict"].pop("optimizer_state_dict", None)
154
+ state_dicts.append(state_dict)
155
+
156
+ if not ZERO_STAGE in state_dicts[0][OPTIMIZER_STATE_DICT]:
157
+ raise ValueError(f"{files[0]} is not a zero checkpoint")
158
+ zero_stage = state_dicts[0][OPTIMIZER_STATE_DICT][ZERO_STAGE]
159
+ world_size = state_dicts[0][OPTIMIZER_STATE_DICT][PARTITION_COUNT]
160
+
161
+ # For ZeRO-2 each param group can have different partition_count as data parallelism for expert
162
+ # parameters can be different from data parallelism for non-expert parameters. So we can just
163
+ # use the max of the partition_count to get the dp world_size.
164
+
165
+ if type(world_size) is list:
166
+ world_size = max(world_size)
167
+
168
+ if world_size != total_files:
169
+ raise ValueError(
170
+ f"Expected {world_size} of '*_optim_states.pt' under '{ds_checkpoint_dir}' but found {total_files} files. "
171
+ "Possibly due to an overwrite of an old checkpoint, or a checkpoint didn't get saved by one or more processes."
172
+ )
173
+
174
+ # the groups are named differently in each stage
175
+ if zero_stage <= 2:
176
+ fp32_groups_key = SINGLE_PARTITION_OF_FP32_GROUPS
177
+ elif zero_stage == 3:
178
+ fp32_groups_key = FP32_FLAT_GROUPS
179
+ else:
180
+ raise ValueError(f"unknown zero stage {zero_stage}")
181
+
182
+ if zero_stage <= 2:
183
+ fp32_flat_groups = [state_dicts[i][OPTIMIZER_STATE_DICT][fp32_groups_key] for i in range(len(state_dicts))]
184
+ elif zero_stage == 3:
185
+ # if there is more than one param group, there will be multiple flattened tensors - one
186
+ # flattened tensor per group - for simplicity merge them into a single tensor
187
+ #
188
+ # XXX: could make the script more memory efficient for when there are multiple groups - it
189
+ # will require matching the sub-lists of param_shapes for each param group flattened tensor
190
+
191
+ fp32_flat_groups = [
192
+ torch.cat(state_dicts[i][OPTIMIZER_STATE_DICT][fp32_groups_key], 0) for i in range(len(state_dicts))
193
+ ]
194
+
195
+ return zero_stage, world_size, fp32_flat_groups
196
+
197
+
198
+ def _get_fp32_state_dict_from_zero_checkpoint(ds_checkpoint_dir, exclude_frozen_parameters):
199
+ """
200
+ Returns fp32 state_dict reconstructed from ds checkpoint
201
+
202
+ Args:
203
+ - ``ds_checkpoint_dir``: path to the deepspeed checkpoint folder (where the optimizer files are)
204
+
205
+ """
206
+ print(f"Processing zero checkpoint '{ds_checkpoint_dir}'")
207
+
208
+ optim_files = get_optim_files(ds_checkpoint_dir)
209
+ zero_stage, world_size, fp32_flat_groups = parse_optim_states(optim_files, ds_checkpoint_dir)
210
+ print(f"Detected checkpoint of type zero stage {zero_stage}, world_size: {world_size}")
211
+
212
+ model_files = get_model_state_files(ds_checkpoint_dir)
213
+
214
+ zero_model_states = parse_model_states(model_files)
215
+ print(f'Parsing checkpoint created by deepspeed=={zero_model_states[0].ds_version}')
216
+
217
+ if zero_stage <= 2:
218
+ return _get_fp32_state_dict_from_zero2_checkpoint(world_size, fp32_flat_groups, zero_model_states,
219
+ exclude_frozen_parameters)
220
+ elif zero_stage == 3:
221
+ return _get_fp32_state_dict_from_zero3_checkpoint(world_size, fp32_flat_groups, zero_model_states,
222
+ exclude_frozen_parameters)
223
+
224
+
225
+ def _zero2_merge_frozen_params(state_dict, zero_model_states):
226
+ if zero_model_states[0].frozen_param_shapes is None or len(zero_model_states[0].frozen_param_shapes) == 0:
227
+ return
228
+
229
+ frozen_param_shapes = zero_model_states[0].frozen_param_shapes
230
+ frozen_param_fragments = zero_model_states[0].frozen_param_fragments
231
+
232
+ if debug:
233
+ num_elem = sum(s.numel() for s in frozen_param_shapes.values())
234
+ print(f'rank 0: {FROZEN_PARAM_SHAPES}.numel = {num_elem}')
235
+
236
+ wanted_params = len(frozen_param_shapes)
237
+ wanted_numel = sum(s.numel() for s in frozen_param_shapes.values())
238
+ avail_numel = sum([p.numel() for p in frozen_param_fragments.values()])
239
+ print(f'Frozen params: Have {avail_numel} numels to process.')
240
+ print(f'Frozen params: Need {wanted_numel} numels in {wanted_params} params')
241
+
242
+ total_params = 0
243
+ total_numel = 0
244
+ for name, shape in frozen_param_shapes.items():
245
+ total_params += 1
246
+ unpartitioned_numel = shape.numel()
247
+ total_numel += unpartitioned_numel
248
+
249
+ state_dict[name] = frozen_param_fragments[name]
250
+
251
+ if debug:
252
+ print(f"{name} full shape: {shape} unpartitioned numel {unpartitioned_numel} ")
253
+
254
+ print(f"Reconstructed Frozen fp32 state dict with {total_params} params {total_numel} elements")
255
+
256
+
257
+ def _has_callable(obj, fn):
258
+ attr = getattr(obj, fn, None)
259
+ return callable(attr)
260
+
261
+
262
+ def _zero2_merge_trainable_params(state_dict, world_size, fp32_flat_groups, zero_model_states):
263
+ param_shapes = zero_model_states[0].param_shapes
264
+
265
+ # Reconstruction protocol:
266
+ #
267
+ # XXX: document this
268
+
269
+ if debug:
270
+ for i in range(world_size):
271
+ for j in range(len(fp32_flat_groups[0])):
272
+ print(f"{FP32_FLAT_GROUPS}[{i}][{j}].shape={fp32_flat_groups[i][j].shape}")
273
+
274
+ # XXX: memory usage doubles here (zero2)
275
+ num_param_groups = len(fp32_flat_groups[0])
276
+ merged_single_partition_of_fp32_groups = []
277
+ for i in range(num_param_groups):
278
+ merged_partitions = [sd[i] for sd in fp32_flat_groups]
279
+ full_single_fp32_vector = torch.cat(merged_partitions, 0)
280
+ merged_single_partition_of_fp32_groups.append(full_single_fp32_vector)
281
+ avail_numel = sum(
282
+ [full_single_fp32_vector.numel() for full_single_fp32_vector in merged_single_partition_of_fp32_groups])
283
+
284
+ if debug:
285
+ wanted_params = sum([len(shapes) for shapes in param_shapes])
286
+ wanted_numel = sum([sum(shape.numel() for shape in shapes.values()) for shapes in param_shapes])
287
+ # not asserting if there is a mismatch due to possible padding
288
+ print(f"Have {avail_numel} numels to process.")
289
+ print(f"Need {wanted_numel} numels in {wanted_params} params.")
290
+
291
+ # params
292
+ # XXX: for huge models that can't fit into the host's RAM we will have to recode this to support
293
+ # out-of-core computing solution
294
+ total_numel = 0
295
+ total_params = 0
296
+ for shapes, full_single_fp32_vector in zip(param_shapes, merged_single_partition_of_fp32_groups):
297
+ offset = 0
298
+ avail_numel = full_single_fp32_vector.numel()
299
+ for name, shape in shapes.items():
300
+
301
+ unpartitioned_numel = shape.numel() if _has_callable(shape, 'numel') else math.prod(shape)
302
+ total_numel += unpartitioned_numel
303
+ total_params += 1
304
+
305
+ if debug:
306
+ print(f"{name} full shape: {shape} unpartitioned numel {unpartitioned_numel} ")
307
+ state_dict[name] = full_single_fp32_vector.narrow(0, offset, unpartitioned_numel).view(shape)
308
+ offset += unpartitioned_numel
309
+
310
+ # Z2 started to align to 2*world_size to improve nccl performance. Therefore both offset and
311
+ # avail_numel can differ by anywhere between 0..2*world_size. Due to two unrelated complex
312
+ # paddings performed in the code it's almost impossible to predict the exact numbers w/o the
313
+ # live optimizer object, so we are checking that the numbers are within the right range
314
+ align_to = 2 * world_size
315
+
316
+ def zero2_align(x):
317
+ return align_to * math.ceil(x / align_to)
318
+
319
+ if debug:
320
+ print(f"original offset={offset}, avail_numel={avail_numel}")
321
+
322
+ offset = zero2_align(offset)
323
+ avail_numel = zero2_align(avail_numel)
324
+
325
+ if debug:
326
+ print(f"aligned offset={offset}, avail_numel={avail_numel}")
327
+
328
+ # Sanity check
329
+ if offset != avail_numel:
330
+ raise ValueError(f"consumed {offset} numels out of {avail_numel} - something is wrong")
331
+
332
+ print(f"Reconstructed fp32 state dict with {total_params} params {total_numel} elements")
333
+
334
+
335
+ def _get_fp32_state_dict_from_zero2_checkpoint(world_size, fp32_flat_groups, zero_model_states,
336
+ exclude_frozen_parameters):
337
+ state_dict = OrderedDict()
338
+
339
+ # buffers
340
+ buffers = zero_model_states[0].buffers
341
+ state_dict.update(buffers)
342
+ if debug:
343
+ print(f"added {len(buffers)} buffers")
344
+
345
+ if not exclude_frozen_parameters:
346
+ _zero2_merge_frozen_params(state_dict, zero_model_states)
347
+
348
+ _zero2_merge_trainable_params(state_dict, world_size, fp32_flat_groups, zero_model_states)
349
+
350
+ # recover shared parameters
351
+ for pair in zero_model_states[0].shared_params:
352
+ if pair[1] in state_dict:
353
+ state_dict[pair[0]] = state_dict[pair[1]]
354
+
355
+ return state_dict
356
+
357
+
358
+ def zero3_partitioned_param_info(unpartitioned_numel, world_size):
359
+ remainder = unpartitioned_numel % world_size
360
+ padding_numel = (world_size - remainder) if remainder else 0
361
+ partitioned_numel = math.ceil(unpartitioned_numel / world_size)
362
+ return partitioned_numel, padding_numel
363
+
364
+
365
+ def _zero3_merge_frozen_params(state_dict, world_size, zero_model_states):
366
+ if zero_model_states[0].frozen_param_shapes is None or len(zero_model_states[0].frozen_param_shapes) == 0:
367
+ return
368
+
369
+ if debug:
370
+ for i in range(world_size):
371
+ num_elem = sum(s.numel() for s in zero_model_states[i].frozen_param_fragments.values())
372
+ print(f'rank {i}: {FROZEN_PARAM_SHAPES}.numel = {num_elem}')
373
+
374
+ frozen_param_shapes = zero_model_states[0].frozen_param_shapes
375
+ wanted_params = len(frozen_param_shapes)
376
+ wanted_numel = sum(s.numel() for s in frozen_param_shapes.values())
377
+ avail_numel = sum([p.numel() for p in zero_model_states[0].frozen_param_fragments.values()]) * world_size
378
+ print(f'Frozen params: Have {avail_numel} numels to process.')
379
+ print(f'Frozen params: Need {wanted_numel} numels in {wanted_params} params')
380
+
381
+ total_params = 0
382
+ total_numel = 0
383
+ for name, shape in zero_model_states[0].frozen_param_shapes.items():
384
+ total_params += 1
385
+ unpartitioned_numel = shape.numel()
386
+ total_numel += unpartitioned_numel
387
+
388
+ param_frags = tuple(model_state.frozen_param_fragments[name] for model_state in zero_model_states)
389
+ state_dict[name] = torch.cat(param_frags, 0).narrow(0, 0, unpartitioned_numel).view(shape)
390
+
391
+ partitioned_numel, partitioned_padding_numel = zero3_partitioned_param_info(unpartitioned_numel, world_size)
392
+
393
+ if debug:
394
+ print(
395
+ f"Frozen params: {total_params} {name} full shape: {shape} partition0 numel={partitioned_numel} partitioned_padding_numel={partitioned_padding_numel}"
396
+ )
397
+
398
+ print(f"Reconstructed Frozen fp32 state dict with {total_params} params {total_numel} elements")
399
+
400
+
401
+ def _zero3_merge_trainable_params(state_dict, world_size, fp32_flat_groups, zero_model_states):
402
+ param_shapes = zero_model_states[0].param_shapes
403
+ avail_numel = fp32_flat_groups[0].numel() * world_size
404
+ # Reconstruction protocol: For zero3 we need to zip the partitions together at boundary of each
405
+ # param, re-consolidating each param, while dealing with padding if any
406
+
407
+ # merge list of dicts, preserving order
408
+ param_shapes = {k: v for d in param_shapes for k, v in d.items()}
409
+
410
+ if debug:
411
+ for i in range(world_size):
412
+ print(f"{FP32_FLAT_GROUPS}[{i}].shape={fp32_flat_groups[i].shape}")
413
+
414
+ wanted_params = len(param_shapes)
415
+ wanted_numel = sum(shape.numel() for shape in param_shapes.values())
416
+ # not asserting if there is a mismatch due to possible padding
417
+ avail_numel = fp32_flat_groups[0].numel() * world_size
418
+ print(f"Trainable params: Have {avail_numel} numels to process.")
419
+ print(f"Trainable params: Need {wanted_numel} numels in {wanted_params} params.")
420
+
421
+ # params
422
+ # XXX: for huge models that can't fit into the host's RAM we will have to recode this to support
423
+ # out-of-core computing solution
424
+ offset = 0
425
+ total_numel = 0
426
+ total_params = 0
427
+ for name, shape in tqdm(param_shapes.items(), desc='Gathering Sharded Weights'):
428
+ unpartitioned_numel = shape.numel()
429
+ total_numel += unpartitioned_numel
430
+ total_params += 1
431
+ partitioned_numel, partitioned_padding_numel = zero3_partitioned_param_info(unpartitioned_numel, world_size)
432
+
433
+ if debug:
434
+ print(
435
+ f"Trainable params: {total_params} {name} full shape: {shape} partition0 numel={partitioned_numel} partitioned_padding_numel={partitioned_padding_numel}"
436
+ )
437
+
438
+ # XXX: memory usage doubles here
439
+ state_dict[name] = torch.cat(
440
+ tuple(fp32_flat_groups[i].narrow(0, offset, partitioned_numel) for i in range(world_size)),
441
+ 0).narrow(0, 0, unpartitioned_numel).view(shape)
442
+ offset += partitioned_numel
443
+
444
+ offset *= world_size
445
+
446
+ # Sanity check
447
+ if offset != avail_numel:
448
+ raise ValueError(f"consumed {offset} numels out of {avail_numel} - something is wrong")
449
+
450
+ print(f"Reconstructed Trainable fp32 state dict with {total_params} params {total_numel} elements")
451
+
452
+
453
+ def _get_fp32_state_dict_from_zero3_checkpoint(world_size, fp32_flat_groups, zero_model_states,
454
+ exclude_frozen_parameters):
455
+ state_dict = OrderedDict()
456
+
457
+ # buffers
458
+ buffers = zero_model_states[0].buffers
459
+ state_dict.update(buffers)
460
+ if debug:
461
+ print(f"added {len(buffers)} buffers")
462
+
463
+ if not exclude_frozen_parameters:
464
+ _zero3_merge_frozen_params(state_dict, world_size, zero_model_states)
465
+
466
+ _zero3_merge_trainable_params(state_dict, world_size, fp32_flat_groups, zero_model_states)
467
+
468
+ # recover shared parameters
469
+ for pair in zero_model_states[0].shared_params:
470
+ if pair[1] in state_dict:
471
+ state_dict[pair[0]] = state_dict[pair[1]]
472
+
473
+ return state_dict
474
+
475
+
476
+ def get_fp32_state_dict_from_zero_checkpoint(checkpoint_dir, tag=None, exclude_frozen_parameters=False):
477
+ """
478
+ Convert ZeRO 2 or 3 checkpoint into a single fp32 consolidated state_dict that can be loaded with
479
+ ``load_state_dict()`` and used for training without DeepSpeed or shared with others, for example
480
+ via a model hub.
481
+
482
+ Args:
483
+ - ``checkpoint_dir``: path to the desired checkpoint folder
484
+ - ``tag``: checkpoint tag used as a unique identifier for checkpoint. If not provided will attempt to load tag in 'latest' file. e.g., ``global_step14``
485
+ - ``exclude_frozen_parameters``: exclude frozen parameters
486
+
487
+ Returns:
488
+ - pytorch ``state_dict``
489
+
490
+ Note: this approach may not work if your application doesn't have sufficient free CPU memory and
491
+ you may need to use the offline approach using the ``zero_to_fp32.py`` script that is saved with
492
+ the checkpoint.
493
+
494
+ A typical usage might be ::
495
+
496
+ from deepspeed.utils.zero_to_fp32 import get_fp32_state_dict_from_zero_checkpoint
497
+ # do the training and checkpoint saving
498
+ state_dict = get_fp32_state_dict_from_zero_checkpoint(checkpoint_dir) # already on cpu
499
+ model = model.cpu() # move to cpu
500
+ model.load_state_dict(state_dict)
501
+ # submit to model hub or save the model to share with others
502
+
503
+ In this example the ``model`` will no longer be usable in the deepspeed context of the same
504
+ application. i.e. you will need to re-initialize the deepspeed engine, since
505
+ ``model.load_state_dict(state_dict)`` will remove all the deepspeed magic from it.
506
+
507
+ If you want it all done for you, use ``load_state_dict_from_zero_checkpoint`` instead.
508
+
509
+ """
510
+ if tag is None:
511
+ latest_path = os.path.join(checkpoint_dir, 'latest')
512
+ if os.path.isfile(latest_path):
513
+ with open(latest_path, 'r') as fd:
514
+ tag = fd.read().strip()
515
+ else:
516
+ raise ValueError(f"Unable to find 'latest' file at {latest_path}")
517
+
518
+ ds_checkpoint_dir = os.path.join(checkpoint_dir, tag)
519
+
520
+ if not os.path.isdir(ds_checkpoint_dir):
521
+ raise FileNotFoundError(f"Directory '{ds_checkpoint_dir}' doesn't exist")
522
+
523
+ return _get_fp32_state_dict_from_zero_checkpoint(ds_checkpoint_dir, exclude_frozen_parameters)
524
+
525
+
526
+ def convert_zero_checkpoint_to_fp32_state_dict(checkpoint_dir,
527
+ output_dir,
528
+ max_shard_size="5GB",
529
+ safe_serialization=False,
530
+ tag=None,
531
+ exclude_frozen_parameters=False):
532
+ """
533
+ Convert ZeRO 2 or 3 checkpoint into a single fp32 consolidated ``state_dict`` file that can be
534
+ loaded with ``torch.load(file)`` + ``load_state_dict()`` and used for training without DeepSpeed.
535
+
536
+ Args:
537
+ - ``checkpoint_dir``: path to the desired checkpoint folder. (one that contains the tag-folder, like ``global_step14``)
538
+ - ``output_dir``: directory to the pytorch fp32 state_dict output files
539
+ - ``max_shard_size``: the maximum size for a checkpoint before being sharded, default value is 5GB
540
+ - ``safe_serialization``: whether to save the model using `safetensors` or the traditional PyTorch way (that uses `pickle`).
541
+ - ``tag``: checkpoint tag used as a unique identifier for checkpoint. If not provided will attempt to load tag in the file named ``latest`` in the checkpoint folder, e.g., ``global_step14``
542
+ - ``exclude_frozen_parameters``: exclude frozen parameters
543
+ """
544
+ # Dependency pre-check
545
+ if safe_serialization:
546
+ try:
547
+ from safetensors.torch import save_file
548
+ except ImportError:
549
+ print('If you want to use `safe_serialization`, please `pip install safetensors`')
550
+ raise
551
+ if max_shard_size is not None:
552
+ try:
553
+ from huggingface_hub import split_torch_state_dict_into_shards
554
+ except ImportError:
555
+ print('If you want to use `max_shard_size`, please `pip install huggingface_hub`')
556
+ raise
557
+
558
+ # Convert zero checkpoint to state_dict
559
+ state_dict = get_fp32_state_dict_from_zero_checkpoint(checkpoint_dir, tag, exclude_frozen_parameters)
560
+
561
+ # Shard the model if it is too big.
562
+ weights_name = "model.safetensors" if safe_serialization else "pytorch_model.bin"
563
+ if max_shard_size is not None:
564
+ filename_pattern = weights_name.replace(".bin", "{suffix}.bin").replace(".safetensors", "{suffix}.safetensors")
565
+ state_dict_split = split_torch_state_dict_into_shards(state_dict,
566
+ filename_pattern=filename_pattern,
567
+ max_shard_size=max_shard_size)
568
+ else:
569
+ from collections import namedtuple
570
+ StateDictSplit = namedtuple("StateDictSplit", ["is_sharded", "filename_to_tensors"])
571
+ state_dict_split = StateDictSplit(is_sharded=False,
572
+ filename_to_tensors={weights_name: list(state_dict.keys())})
573
+
574
+ # Save the model
575
+ filename_to_tensors = state_dict_split.filename_to_tensors.items()
576
+ for shard_file, tensors in tqdm(filename_to_tensors, desc="Saving checkpoint shards"):
577
+ shard = {tensor: state_dict[tensor].contiguous() for tensor in tensors}
578
+ output_path = os.path.join(output_dir, shard_file)
579
+ if safe_serialization:
580
+ save_file(shard, output_path, metadata={"format": "pt"})
581
+ else:
582
+ torch.save(shard, output_path)
583
+
584
+ # Save index if sharded
585
+ if state_dict_split.is_sharded:
586
+ index = {
587
+ "metadata": state_dict_split.metadata,
588
+ "weight_map": state_dict_split.tensor_to_filename,
589
+ }
590
+ save_index_file = "model.safetensors.index.json" if safe_serialization else "pytorch_model.bin.index.json"
591
+ save_index_file = os.path.join(output_dir, save_index_file)
592
+ with open(save_index_file, "w", encoding="utf-8") as f:
593
+ content = json.dumps(index, indent=2, sort_keys=True) + "\n"
594
+ f.write(content)
595
+
596
+
597
+ def load_state_dict_from_zero_checkpoint(model, checkpoint_dir, tag=None):
598
+ """
599
+ 1. Put the provided model to cpu
600
+ 2. Convert ZeRO 2 or 3 checkpoint into a single fp32 consolidated ``state_dict``
601
+ 3. Load it into the provided model
602
+
603
+ Args:
604
+ - ``model``: the model object to update
605
+ - ``checkpoint_dir``: path to the desired checkpoint folder. (one that contains the tag-folder, like ``global_step14``)
606
+ - ``tag``: checkpoint tag used as a unique identifier for checkpoint. If not provided will attempt to load tag in the file named ``latest`` in the checkpoint folder, e.g., ``global_step14``
607
+
608
+ Returns:
609
+ - ``model`: modified model
610
+
611
+ Make sure you have plenty of CPU memory available before you call this function. If you don't
612
+ have enough use the ``zero_to_fp32.py`` utility to do the conversion. You will find it
613
+ conveniently placed for you in the checkpoint folder.
614
+
615
+ A typical usage might be ::
616
+
617
+ from deepspeed.utils.zero_to_fp32 import load_state_dict_from_zero_checkpoint
618
+ model = load_state_dict_from_zero_checkpoint(trainer.model, checkpoint_dir)
619
+ # submit to model hub or save the model to share with others
620
+
621
+ Note, that once this was run, the ``model`` will no longer be usable in the deepspeed context
622
+ of the same application. i.e. you will need to re-initialize the deepspeed engine, since
623
+ ``model.load_state_dict(state_dict)`` will remove all the deepspeed magic from it.
624
+
625
+ """
626
+ logger.info(f"Extracting fp32 weights")
627
+ state_dict = get_fp32_state_dict_from_zero_checkpoint(checkpoint_dir, tag)
628
+
629
+ logger.info(f"Overwriting model with fp32 weights")
630
+ model = model.cpu()
631
+ model.load_state_dict(state_dict, strict=False)
632
+
633
+ return model
634
+
635
+
636
+ if __name__ == "__main__":
637
+ parser = argparse.ArgumentParser()
638
+ parser.add_argument("checkpoint_dir",
639
+ type=str,
640
+ help="path to the desired checkpoint folder, e.g., path/checkpoint-12")
641
+ parser.add_argument("output_dir",
642
+ type=str,
643
+ help="directory to the pytorch fp32 state_dict output files"
644
+ "(e.g. path/checkpoint-12-output/)")
645
+ parser.add_argument(
646
+ "--max_shard_size",
647
+ type=str,
648
+ default="5GB",
649
+ help="The maximum size for a checkpoint before being sharded. Checkpoints shard will then be each of size"
650
+ "lower than this size. If expressed as a string, needs to be digits followed by a unit (like `5MB`"
651
+ "We default it to 5GB in order for models to be able to run easily on free-tier google colab instances"
652
+ "without CPU OOM issues.")
653
+ parser.add_argument(
654
+ "--safe_serialization",
655
+ default=False,
656
+ action='store_true',
657
+ help="Whether to save the model using `safetensors` or the traditional PyTorch way (that uses `pickle`).")
658
+ parser.add_argument("-t",
659
+ "--tag",
660
+ type=str,
661
+ default=None,
662
+ help="checkpoint tag used as a unique identifier for checkpoint. e.g., global_step1")
663
+ parser.add_argument("--exclude_frozen_parameters", action='store_true', help="exclude frozen parameters")
664
+ parser.add_argument("-d", "--debug", action='store_true', help="enable debug")
665
+ args = parser.parse_args()
666
+
667
+ debug = args.debug
668
+
669
+ convert_zero_checkpoint_to_fp32_state_dict(args.checkpoint_dir,
670
+ args.output_dir,
671
+ max_shard_size=args.max_shard_size,
672
+ safe_serialization=args.safe_serialization,
673
+ tag=args.tag,
674
+ exclude_frozen_parameters=args.exclude_frozen_parameters)