propet commited on
Commit
4a0b35d
·
1 Parent(s): 118a736

Initial commit

Browse files
README.md ADDED
@@ -0,0 +1,37 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ library_name: stable-baselines3
3
+ tags:
4
+ - PandaReachDense-v2
5
+ - deep-reinforcement-learning
6
+ - reinforcement-learning
7
+ - stable-baselines3
8
+ model-index:
9
+ - name: A2C
10
+ results:
11
+ - task:
12
+ type: reinforcement-learning
13
+ name: reinforcement-learning
14
+ dataset:
15
+ name: PandaReachDense-v2
16
+ type: PandaReachDense-v2
17
+ metrics:
18
+ - type: mean_reward
19
+ value: -5.98 +/- 0.96
20
+ name: mean_reward
21
+ verified: false
22
+ ---
23
+
24
+ # **A2C** Agent playing **PandaReachDense-v2**
25
+ This is a trained model of a **A2C** agent playing **PandaReachDense-v2**
26
+ using the [stable-baselines3 library](https://github.com/DLR-RM/stable-baselines3).
27
+
28
+ ## Usage (with Stable-baselines3)
29
+ TODO: Add your code
30
+
31
+
32
+ ```python
33
+ from stable_baselines3 import ...
34
+ from huggingface_sb3 import load_from_hub
35
+
36
+ ...
37
+ ```
a2c-PandaReachDense-v2.zip ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:275250757a91b594b45f39217da648f44c683fe53bca47e44cde3266c7701d62
3
+ size 108029
a2c-PandaReachDense-v2/_stable_baselines3_version ADDED
@@ -0,0 +1 @@
 
 
1
+ 1.7.0
a2c-PandaReachDense-v2/data ADDED
@@ -0,0 +1,94 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "policy_class": {
3
+ ":type:": "<class 'abc.ABCMeta'>",
4
+ ":serialized:": "gAWVRQAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMG011bHRpSW5wdXRBY3RvckNyaXRpY1BvbGljeZSTlC4=",
5
+ "__module__": "stable_baselines3.common.policies",
6
+ "__doc__": "\n MultiInputActorClass policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space (Tuple)\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Uses the CombinedExtractor\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ",
7
+ "__init__": "<function MultiInputActorCriticPolicy.__init__ at 0x7f31e9718670>",
8
+ "__abstractmethods__": "frozenset()",
9
+ "_abc_impl": "<_abc._abc_data object at 0x7f31e9719680>"
10
+ },
11
+ "verbose": 1,
12
+ "policy_kwargs": {
13
+ ":type:": "<class 'dict'>",
14
+ ":serialized:": "gAWVgQAAAAAAAAB9lCiMD29wdGltaXplcl9jbGFzc5SME3RvcmNoLm9wdGltLnJtc3Byb3CUjAdSTVNwcm9wlJOUjBBvcHRpbWl6ZXJfa3dhcmdzlH2UKIwFYWxwaGGURz/vrhR64UeujANlcHOURz7k+LWI42jxjAx3ZWlnaHRfZGVjYXmUSwB1dS4=",
15
+ "optimizer_class": "<class 'torch.optim.rmsprop.RMSprop'>",
16
+ "optimizer_kwargs": {
17
+ "alpha": 0.99,
18
+ "eps": 1e-05,
19
+ "weight_decay": 0
20
+ }
21
+ },
22
+ "observation_space": {
23
+ ":type:": "<class 'gym.spaces.dict.Dict'>",
24
+ ":serialized:": "gAWVUgMAAAAAAACMD2d5bS5zcGFjZXMuZGljdJSMBERpY3SUk5QpgZR9lCiMBnNwYWNlc5SMC2NvbGxlY3Rpb25zlIwLT3JkZXJlZERpY3SUk5QpUpQojA1hY2hpZXZlZF9nb2FslIwOZ3ltLnNwYWNlcy5ib3iUjANCb3iUk5QpgZR9lCiMBWR0eXBllIwFbnVtcHmUaBCTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYowGX3NoYXBllEsDhZSMA2xvd5SMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYMAAAAAAAAAAAAIMEAACDBAAAgwZRoFUsDhZSMAUOUdJRSlIwEaGlnaJRoHSiWDAAAAAAAAAAAACBBAAAgQQAAIEGUaBVLA4WUaCB0lFKUjA1ib3VuZGVkX2JlbG93lGgdKJYDAAAAAAAAAAEBAZRoEowCYjGUiYiHlFKUKEsDjAF8lE5OTkr/////Sv////9LAHSUYksDhZRoIHSUUpSMDWJvdW5kZWRfYWJvdmWUaB0olgMAAAAAAAAAAQEBlGgsSwOFlGggdJRSlIwKX25wX3JhbmRvbZROdWKMDGRlc2lyZWRfZ29hbJRoDSmBlH2UKGgQaBVoGEsDhZRoGmgdKJYMAAAAAAAAAAAAIMEAACDBAAAgwZRoFUsDhZRoIHSUUpRoI2gdKJYMAAAAAAAAAAAAIEEAACBBAAAgQZRoFUsDhZRoIHSUUpRoKGgdKJYDAAAAAAAAAAEBAZRoLEsDhZRoIHSUUpRoMmgdKJYDAAAAAAAAAAEBAZRoLEsDhZRoIHSUUpRoN051YowLb2JzZXJ2YXRpb26UaA0pgZR9lChoEGgVaBhLBoWUaBpoHSiWGAAAAAAAAAAAACDBAAAgwQAAIMEAACDBAAAgwQAAIMGUaBVLBoWUaCB0lFKUaCNoHSiWGAAAAAAAAAAAACBBAAAgQQAAIEEAACBBAAAgQQAAIEGUaBVLBoWUaCB0lFKUaChoHSiWBgAAAAAAAAABAQEBAQGUaCxLBoWUaCB0lFKUaDJoHSiWBgAAAAAAAAABAQEBAQGUaCxLBoWUaCB0lFKUaDdOdWJ1aBhOaBBOaDdOdWIu",
25
+ "spaces": "OrderedDict([('achieved_goal', Box([-10. -10. -10.], [10. 10. 10.], (3,), float32)), ('desired_goal', Box([-10. -10. -10.], [10. 10. 10.], (3,), float32)), ('observation', Box([-10. -10. -10. -10. -10. -10.], [10. 10. 10. 10. 10. 10.], (6,), float32))])",
26
+ "_shape": null,
27
+ "dtype": null,
28
+ "_np_random": null
29
+ },
30
+ "action_space": {
31
+ ":type:": "<class 'gym.spaces.box.Box'>",
32
+ ":serialized:": "gAWVbQEAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLA4WUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWDAAAAAAAAAAAAIC/AACAvwAAgL+UaApLA4WUjAFDlHSUUpSMBGhpZ2iUaBIolgwAAAAAAAAAAACAPwAAgD8AAIA/lGgKSwOFlGgVdJRSlIwNYm91bmRlZF9iZWxvd5RoEiiWAwAAAAAAAAABAQGUaAeMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLA4WUaBV0lFKUjA1ib3VuZGVkX2Fib3ZllGgSKJYDAAAAAAAAAAEBAZRoIUsDhZRoFXSUUpSMCl9ucF9yYW5kb22UTnViLg==",
33
+ "dtype": "float32",
34
+ "_shape": [
35
+ 3
36
+ ],
37
+ "low": "[-1. -1. -1.]",
38
+ "high": "[1. 1. 1.]",
39
+ "bounded_below": "[ True True True]",
40
+ "bounded_above": "[ True True True]",
41
+ "_np_random": null
42
+ },
43
+ "n_envs": 4,
44
+ "num_timesteps": 3500000,
45
+ "_total_timesteps": 3500000,
46
+ "_num_timesteps_at_start": 0,
47
+ "seed": null,
48
+ "action_noise": null,
49
+ "start_time": 1678990783839295414,
50
+ "learning_rate": 0.0003,
51
+ "tensorboard_log": null,
52
+ "lr_schedule": {
53
+ ":type:": "<class 'function'>",
54
+ ":serialized:": "gAWVwwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOS9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZSMBGZ1bmOUS4JDAgABlIwDdmFslIWUKXSUUpR9lCiMC19fcGFja2FnZV9flIwYc3RhYmxlX2Jhc2VsaW5lczMuY29tbW9ulIwIX19uYW1lX1+UjB5zdGFibGVfYmFzZWxpbmVzMy5jb21tb24udXRpbHOUjAhfX2ZpbGVfX5SMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOS9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZR1Tk5oAIwQX21ha2VfZW1wdHlfY2VsbJSTlClSlIWUdJRSlIwcY2xvdWRwaWNrbGUuY2xvdWRwaWNrbGVfZmFzdJSMEl9mdW5jdGlvbl9zZXRzdGF0ZZSTlGgffZR9lChoFmgNjAxfX3F1YWxuYW1lX1+UjBljb25zdGFudF9mbi48bG9jYWxzPi5mdW5jlIwPX19hbm5vdGF0aW9uc19flH2UjA5fX2t3ZGVmYXVsdHNfX5ROjAxfX2RlZmF1bHRzX1+UTowKX19tb2R1bGVfX5RoF4wHX19kb2NfX5ROjAtfX2Nsb3N1cmVfX5RoAIwKX21ha2VfY2VsbJSTlEc/M6kqMFUyYYWUUpSFlIwXX2Nsb3VkcGlja2xlX3N1Ym1vZHVsZXOUXZSMC19fZ2xvYmFsc19flH2UdYaUhlIwLg=="
55
+ },
56
+ "_last_obs": {
57
+ ":type:": "<class 'collections.OrderedDict'>",
58
+ ":serialized:": "gAWVuwEAAAAAAACMC2NvbGxlY3Rpb25zlIwLT3JkZXJlZERpY3SUk5QpUpQojA1hY2hpZXZlZF9nb2FslIwSbnVtcHkuY29yZS5udW1lcmljlIwLX2Zyb21idWZmZXKUk5QoljAAAAAAAAAAAg21Pr7AFb4xzmQ/Ag21Pr7AFb4xzmQ/Ag21Pr7AFb4xzmQ/Ag21Pr7AFb4xzmQ/lIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksESwOGlIwBQ5R0lFKUjAxkZXNpcmVkX2dvYWyUaAcoljAAAAAAAAAAI0aMP7ePkT+8wUK/UG6LP26rXr91nmQ/flWqP+Y6Ir6R3qW/Zf3XPyMNsr9249M/lGgOSwRLA4aUaBJ0lFKUjAtvYnNlcnZhdGlvbpRoByiWYAAAAAAAAAACDbU+vsAVvjHOZD96RrY8IYQrvGJcET0CDbU+vsAVvjHOZD96RrY8IYQrvGJcET0CDbU+vsAVvjHOZD96RrY8IYQrvGJcET0CDbU+vsAVvjHOZD96RrY8IYQrvGJcET2UaA5LBEsGhpRoEnSUUpR1Lg==",
59
+ "achieved_goal": "[[ 0.35361487 -0.14624307 0.89377123]\n [ 0.35361487 -0.14624307 0.89377123]\n [ 0.35361487 -0.14624307 0.89377123]\n [ 0.35361487 -0.14624307 0.89377123]]",
60
+ "desired_goal": "[[ 1.0958904 1.1371983 -0.76076865]\n [ 1.089304 -0.8698033 0.89304286]\n [ 1.330734 -0.1584278 -1.2958547 ]\n [ 1.6874205 -1.3910259 1.655379 ]]",
61
+ "observation": "[[ 0.35361487 -0.14624307 0.89377123 0.0222504 -0.01046851 0.03548849]\n [ 0.35361487 -0.14624307 0.89377123 0.0222504 -0.01046851 0.03548849]\n [ 0.35361487 -0.14624307 0.89377123 0.0222504 -0.01046851 0.03548849]\n [ 0.35361487 -0.14624307 0.89377123 0.0222504 -0.01046851 0.03548849]]"
62
+ },
63
+ "_last_episode_starts": {
64
+ ":type:": "<class 'numpy.ndarray'>",
65
+ ":serialized:": "gAWVdwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYEAAAAAAAAAAEBAQGUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSwSFlIwBQ5R0lFKULg=="
66
+ },
67
+ "_last_original_obs": {
68
+ ":type:": "<class 'collections.OrderedDict'>",
69
+ ":serialized:": "gAWVuwEAAAAAAACMC2NvbGxlY3Rpb25zlIwLT3JkZXJlZERpY3SUk5QpUpQojA1hY2hpZXZlZF9nb2FslIwSbnVtcHkuY29yZS5udW1lcmljlIwLX2Zyb21idWZmZXKUk5QoljAAAAAAAAAA6nIdPRlsGqxDI0o+6nIdPRlsGqxDI0o+6nIdPRlsGqxDI0o+6nIdPRlsGqxDI0o+lIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksESwOGlIwBQ5R0lFKUjAxkZXNpcmVkX2dvYWyUaAcoljAAAAAAAAAAh4fIPTQ/1LoDF3w+TseZPV7jXLzJpAY+ihAAvsFONL16ONs98KP8O5EYp73Mtbw9lGgOSwRLA4aUaBJ0lFKUjAtvYnNlcnZhdGlvbpRoByiWYAAAAAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAACUaA5LBEsGhpRoEnSUUpR1Lg==",
70
+ "achieved_goal": "[[ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]]",
71
+ "desired_goal": "[[ 0.09791475 -0.00161932 0.24618153]\n [ 0.07508717 -0.01348194 0.13148798]\n [-0.12506309 -0.04402042 0.10704131]\n [ 0.00770997 -0.08158983 0.09214363]]",
72
+ "observation": "[[ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]]"
73
+ },
74
+ "_episode_num": 0,
75
+ "use_sde": false,
76
+ "sde_sample_freq": -1,
77
+ "_current_progress_remaining": 0.0,
78
+ "ep_info_buffer": {
79
+ ":type:": "<class 'collections.deque'>",
80
+ ":serialized:": "gAWVHRAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMIPWAeMuWDEsCUhpRSlIwBbJRLMowBdJRHQMMW5LYwqRV1fZQoaAZoCWgPQwjlKEAUzHgZwJSGlFKUaBVLMmgWR0DDFqeNipeedX2UKGgGaAloD0MIotXJGYp7E8CUhpRSlGgVSzJoFkdAwxZeUYbbUXV9lChoBmgJaA9DCCaOPBBZRAbAlIaUUpRoFUsyaBZHQMMWNrVe8f51fZQoaAZoCWgPQwi45o7+l7MgwJSGlFKUaBVLMmgWR0DDFyBnWattdX2UKGgGaAloD0MInDV4X5U7FsCUhpRSlGgVSzJoFkdAwxbjPszEaXV9lChoBmgJaA9DCOIgIcoX1A3AlIaUUpRoFUsyaBZHQMMWmhikO7R1fZQoaAZoCWgPQwgzox8Np0wNwJSGlFKUaBVLMmgWR0DDFnJ6D5CXdX2UKGgGaAloD0MIO/vKg/TUFsCUhpRSlGgVSzJoFkdAwxdZvZyuIXV9lChoBmgJaA9DCB2wq8lT1h7AlIaUUpRoFUsyaBZHQMMXHKj8DSx1fZQoaAZoCWgPQwjxLawb7+4UwJSGlFKUaBVLMmgWR0DDFtNqYZ2qdX2UKGgGaAloD0MIUDqRYKqZEMCUhpRSlGgVSzJoFkdAwxaryrgfl3V9lChoBmgJaA9DCGZs6GZ/SCPAlIaUUpRoFUsyaBZHQMMXj9xhlUZ1fZQoaAZoCWgPQwjJHww8924XwJSGlFKUaBVLMmgWR0DDF1Kur6tUdX2UKGgGaAloD0MIMQxYchUbFcCUhpRSlGgVSzJoFkdAwxcJdSl3yXV9lChoBmgJaA9DCGsPe6GArQ7AlIaUUpRoFUsyaBZHQMMW4c+aBqd1fZQoaAZoCWgPQwigiEUMOywUwJSGlFKUaBVLMmgWR0DDF8XSF49pdX2UKGgGaAloD0MImGiQgqeAHcCUhpRSlGgVSzJoFkdAwxeIr7O3UnV9lChoBmgJaA9DCPEtrBvvHhTAlIaUUpRoFUsyaBZHQMMXP3QMQVd1fZQoaAZoCWgPQwi3XtODgmIRwJSGlFKUaBVLMmgWR0DDFxfLmp2mdX2UKGgGaAloD0MISpuqe2RzEsCUhpRSlGgVSzJoFkdAwxf/P8hs7HV9lChoBmgJaA9DCGO1+X/VERfAlIaUUpRoFUsyaBZHQMMXwhXr+o91fZQoaAZoCWgPQwhATwMGSe8TwJSGlFKUaBVLMmgWR0DDF3jY9Pk8dX2UKGgGaAloD0MI/MbXnlnSEMCUhpRSlGgVSzJoFkdAwxdRL7oB73V9lChoBmgJaA9DCKRRgZNtIAfAlIaUUpRoFUsyaBZHQMMYNBC+lCV1fZQoaAZoCWgPQwiIg4QoX8ATwJSGlFKUaBVLMmgWR0DDF/bfR/mUdX2UKGgGaAloD0MIV5boLLOYFMCUhpRSlGgVSzJoFkdAwxetoN/e+HV9lChoBmgJaA9DCG9/Lhoyng/AlIaUUpRoFUsyaBZHQMMXhgOSW7h1fZQoaAZoCWgPQwiAft+/eXESwJSGlFKUaBVLMmgWR0DDGGu6I3zddX2UKGgGaAloD0MIRuuoaoIIE8CUhpRSlGgVSzJoFkdAwxgujqv/znV9lChoBmgJaA9DCHHK3HwjeiLAlIaUUpRoFUsyaBZHQMMX5VCw8nx1fZQoaAZoCWgPQwhAprVpbJ8WwJSGlFKUaBVLMmgWR0DDF72k8A7xdX2UKGgGaAloD0MIXb9gN2wzIMCUhpRSlGgVSzJoFkdAwxil5HmRvHV9lChoBmgJaA9DCKHzGrtE1RHAlIaUUpRoFUsyaBZHQMMYaR2KVIJ1fZQoaAZoCWgPQwgkJqjhW1gSwJSGlFKUaBVLMmgWR0DDGCAGOdXldX2UKGgGaAloD0MI0xbX+ExWFMCUhpRSlGgVSzJoFkdAwxf4hwl0HXV9lChoBmgJaA9DCB0EHa1qaRHAlIaUUpRoFUsyaBZHQMMZADmbLEF1fZQoaAZoCWgPQwhqoWRyaqcSwJSGlFKUaBVLMmgWR0DDGMM2cawVdX2UKGgGaAloD0MIGuHtQQgIE8CUhpRSlGgVSzJoFkdAwxh6IC2c8XV9lChoBmgJaA9DCAuW6gJeFhbAlIaUUpRoFUsyaBZHQMMYUp3PiUB1fZQoaAZoCWgPQwiJeyx96CIUwJSGlFKUaBVLMmgWR0DDGVnseGO/dX2UKGgGaAloD0MIRn2SO2wCE8CUhpRSlGgVSzJoFkdAwxkc3l0YCXV9lChoBmgJaA9DCO0NvjCZWhnAlIaUUpRoFUsyaBZHQMMY08J+lTF1fZQoaAZoCWgPQwhqvHSTGKQYwJSGlFKUaBVLMmgWR0DDGKxBmf5DdX2UKGgGaAloD0MI1EM0uoN4EMCUhpRSlGgVSzJoFkdAwxmz6fJ3gXV9lChoBmgJaA9DCLPviuB/+xPAlIaUUpRoFUsyaBZHQMMZdxv3rUt1fZQoaAZoCWgPQwhWgzC3e9kPwJSGlFKUaBVLMmgWR0DDGS4G4ZuRdX2UKGgGaAloD0MIIcuCiT+6H8CUhpRSlGgVSzJoFkdAwxkGhZha1XV9lChoBmgJaA9DCIvh6gCIOxXAlIaUUpRoFUsyaBZHQMMaDR/d69l1fZQoaAZoCWgPQwhBKzBkdWMgwJSGlFKUaBVLMmgWR0DDGdApvxYrdX2UKGgGaAloD0MISRRa1v2DEMCUhpRSlGgVSzJoFkdAwxmHFc6eXnV9lChoBmgJaA9DCIi4OZUMEB/AlIaUUpRoFUsyaBZHQMMZX5NoJzF1fZQoaAZoCWgPQwjYEByXcXMQwJSGlFKUaBVLMmgWR0DDGmZ8UmD2dX2UKGgGaAloD0MIbR6Hwfw1HMCUhpRSlGgVSzJoFkdAwxopjKgZj3V9lChoBmgJaA9DCDYjg9xFKBLAlIaUUpRoFUsyaBZHQMMZ4HqeK9B1fZQoaAZoCWgPQwg3ABsQIT4XwJSGlFKUaBVLMmgWR0DDGbj9OymidX2UKGgGaAloD0MIYp6VtOLLGsCUhpRSlGgVSzJoFkdAwxrEcMEzPHV9lChoBmgJaA9DCMU7wJMWLg7AlIaUUpRoFUsyaBZHQMMah3dKujh1fZQoaAZoCWgPQwhN2H4yxg8gwJSGlFKUaBVLMmgWR0DDGj57zCk5dX2UKGgGaAloD0MIrrt5qkMOGsCUhpRSlGgVSzJoFkdAwxoXBacI7nV9lChoBmgJaA9DCFjiAWVT3hTAlIaUUpRoFUsyaBZHQMMbJyFPBSF1fZQoaAZoCWgPQwjM1CR4Q9ofwJSGlFKUaBVLMmgWR0DDGuoq3EyddX2UKGgGaAloD0MIs3kcBvOXHMCUhpRSlGgVSzJoFkdAwxqhGViWmnV9lChoBmgJaA9DCJtUNNb+bhjAlIaUUpRoFUsyaBZHQMMaeZiVjZt1fZQoaAZoCWgPQwhKDAIrhxYawJSGlFKUaBVLMmgWR0DDG4hQvYe1dX2UKGgGaAloD0MIeCl1yTh2FsCUhpRSlGgVSzJoFkdAwxtLXWe6I3V9lChoBmgJaA9DCDtT6LzG3h3AlIaUUpRoFUsyaBZHQMMbAlNDc/N1fZQoaAZoCWgPQwhHqu/8oqwhwJSGlFKUaBVLMmgWR0DDGtrZ6D5CdX2UKGgGaAloD0MIA9AoXfoHE8CUhpRSlGgVSzJoFkdAwxvoe+VTrHV9lChoBmgJaA9DCAItXcE2OiPAlIaUUpRoFUsyaBZHQMMbq3pGFzx1fZQoaAZoCWgPQwi3YRQEj18ZwJSGlFKUaBVLMmgWR0DDG2Jsj3VTdX2UKGgGaAloD0MI0XZM3ZU9HMCUhpRSlGgVSzJoFkdAwxs68QI2O3V9lChoBmgJaA9DCDc0ZacfhBXAlIaUUpRoFUsyaBZHQMMcKp0fYBh1fZQoaAZoCWgPQwiTpkHRPEAcwJSGlFKUaBVLMmgWR0DDG+1zbN8mdX2UKGgGaAloD0MIjIF1HD80HsCUhpRSlGgVSzJoFkdAwxukOby6MHV9lChoBmgJaA9DCO+P96qVWRzAlIaUUpRoFUsyaBZHQMMbfI/A0sR1fZQoaAZoCWgPQwgvUFJgAewYwJSGlFKUaBVLMmgWR0DDHGewzLwGdX2UKGgGaAloD0MIINPaNLZnG8CUhpRSlGgVSzJoFkdAwxwqgieNDXV9lChoBmgJaA9DCM0Ew7mG2RfAlIaUUpRoFUsyaBZHQMMb4XwsoUl1fZQoaAZoCWgPQwjH9IQlHlAhwJSGlFKUaBVLMmgWR0DDG7nXNC7cdX2UKGgGaAloD0MI0o+GU+bGFsCUhpRSlGgVSzJoFkdAwxyfx0dRznV9lChoBmgJaA9DCB9Hc2Tl9yDAlIaUUpRoFUsyaBZHQMMcYpp35et1fZQoaAZoCWgPQwgsLLgf8LAfwJSGlFKUaBVLMmgWR0DDHBlb9qDcdX2UKGgGaAloD0MIpUxqaANAF8CUhpRSlGgVSzJoFkdAwxvxsWO6unV9lChoBmgJaA9DCEDc1avIiBrAlIaUUpRoFUsyaBZHQMMc23eN1hd1fZQoaAZoCWgPQwi5cYv5ubEYwJSGlFKUaBVLMmgWR0DDHJ5o24usdX2UKGgGaAloD0MIsHYU56iLIMCUhpRSlGgVSzJoFkdAwxxVOgQHzHV9lChoBmgJaA9DCH7IW65+XBnAlIaUUpRoFUsyaBZHQMMcLaHKwIN1fZQoaAZoCWgPQwhHcY46Os4UwJSGlFKUaBVLMmgWR0DDHRwsf7rLdX2UKGgGaAloD0MIti3KbJCpEsCUhpRSlGgVSzJoFkdAwxzfDpC8e3V9lChoBmgJaA9DCHUDBd7JJw3AlIaUUpRoFUsyaBZHQMMcldrO7g91fZQoaAZoCWgPQwjoo4y4AFQcwJSGlFKUaBVLMmgWR0DDHG5Hf/FSdX2UKGgGaAloD0MIKNU+HY/JEcCUhpRSlGgVSzJoFkdAwx1eX/HYH3V9lChoBmgJaA9DCGGInL6eHxnAlIaUUpRoFUsyaBZHQMMdIUqpcX51fZQoaAZoCWgPQwjFy9O5osQSwJSGlFKUaBVLMmgWR0DDHNgffXPJdX2UKGgGaAloD0MI3/3xXrVCF8CUhpRSlGgVSzJoFkdAwxywfXf643V9lChoBmgJaA9DCBgkfVpF/xDAlIaUUpRoFUsyaBZHQMMdnHscABF1fZQoaAZoCWgPQwiGyypsBpgawJSGlFKUaBVLMmgWR0DDHV9PBSDRdX2UKGgGaAloD0MIUwYOaOnaE8CUhpRSlGgVSzJoFkdAwx0WFUyYX3V9lChoBmgJaA9DCM2RlV8Gkx3AlIaUUpRoFUsyaBZHQMMc7mn4wh51ZS4="
81
+ },
82
+ "ep_success_buffer": {
83
+ ":type:": "<class 'collections.deque'>",
84
+ ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="
85
+ },
86
+ "_n_updates": 175000,
87
+ "n_steps": 5,
88
+ "gamma": 0.99,
89
+ "gae_lambda": 1.0,
90
+ "ent_coef": 0.0,
91
+ "vf_coef": 0.5,
92
+ "max_grad_norm": 0.5,
93
+ "normalize_advantage": false
94
+ }
a2c-PandaReachDense-v2/policy.optimizer.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:256a303f63a6f575a5e1f05b77927d22ad2671ce6a4b01493e307d0235e9f00c
3
+ size 44734
a2c-PandaReachDense-v2/policy.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:e1f6f6e7e7253c3933ce9f2224bf2680fecf3f34e430eb782e9d6eb554c6e00c
3
+ size 46014
a2c-PandaReachDense-v2/pytorch_variables.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:d030ad8db708280fcae77d87e973102039acd23a11bdecc3db8eb6c0ac940ee1
3
+ size 431
a2c-PandaReachDense-v2/system_info.txt ADDED
@@ -0,0 +1,7 @@
 
 
 
 
 
 
 
 
1
+ - OS: Linux-5.10.147+-x86_64-with-glibc2.31 # 1 SMP Sat Dec 10 16:00:40 UTC 2022
2
+ - Python: 3.9.16
3
+ - Stable-Baselines3: 1.7.0
4
+ - PyTorch: 1.13.1+cu116
5
+ - GPU Enabled: True
6
+ - Numpy: 1.22.4
7
+ - Gym: 0.21.0
config.json ADDED
@@ -0,0 +1 @@
 
 
1
+ {"policy_class": {":type:": "<class 'abc.ABCMeta'>", ":serialized:": "gAWVRQAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMG011bHRpSW5wdXRBY3RvckNyaXRpY1BvbGljeZSTlC4=", "__module__": "stable_baselines3.common.policies", "__doc__": "\n MultiInputActorClass policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space (Tuple)\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Uses the CombinedExtractor\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ", "__init__": "<function MultiInputActorCriticPolicy.__init__ at 0x7f31e9718670>", "__abstractmethods__": "frozenset()", "_abc_impl": "<_abc._abc_data object at 0x7f31e9719680>"}, "verbose": 1, "policy_kwargs": {":type:": "<class 'dict'>", ":serialized:": "gAWVgQAAAAAAAAB9lCiMD29wdGltaXplcl9jbGFzc5SME3RvcmNoLm9wdGltLnJtc3Byb3CUjAdSTVNwcm9wlJOUjBBvcHRpbWl6ZXJfa3dhcmdzlH2UKIwFYWxwaGGURz/vrhR64UeujANlcHOURz7k+LWI42jxjAx3ZWlnaHRfZGVjYXmUSwB1dS4=", "optimizer_class": "<class 'torch.optim.rmsprop.RMSprop'>", "optimizer_kwargs": {"alpha": 0.99, "eps": 1e-05, "weight_decay": 0}}, "observation_space": {":type:": "<class 'gym.spaces.dict.Dict'>", ":serialized:": "gAWVUgMAAAAAAACMD2d5bS5zcGFjZXMuZGljdJSMBERpY3SUk5QpgZR9lCiMBnNwYWNlc5SMC2NvbGxlY3Rpb25zlIwLT3JkZXJlZERpY3SUk5QpUpQojA1hY2hpZXZlZF9nb2FslIwOZ3ltLnNwYWNlcy5ib3iUjANCb3iUk5QpgZR9lCiMBWR0eXBllIwFbnVtcHmUaBCTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYowGX3NoYXBllEsDhZSMA2xvd5SMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYMAAAAAAAAAAAAIMEAACDBAAAgwZRoFUsDhZSMAUOUdJRSlIwEaGlnaJRoHSiWDAAAAAAAAAAAACBBAAAgQQAAIEGUaBVLA4WUaCB0lFKUjA1ib3VuZGVkX2JlbG93lGgdKJYDAAAAAAAAAAEBAZRoEowCYjGUiYiHlFKUKEsDjAF8lE5OTkr/////Sv////9LAHSUYksDhZRoIHSUUpSMDWJvdW5kZWRfYWJvdmWUaB0olgMAAAAAAAAAAQEBlGgsSwOFlGggdJRSlIwKX25wX3JhbmRvbZROdWKMDGRlc2lyZWRfZ29hbJRoDSmBlH2UKGgQaBVoGEsDhZRoGmgdKJYMAAAAAAAAAAAAIMEAACDBAAAgwZRoFUsDhZRoIHSUUpRoI2gdKJYMAAAAAAAAAAAAIEEAACBBAAAgQZRoFUsDhZRoIHSUUpRoKGgdKJYDAAAAAAAAAAEBAZRoLEsDhZRoIHSUUpRoMmgdKJYDAAAAAAAAAAEBAZRoLEsDhZRoIHSUUpRoN051YowLb2JzZXJ2YXRpb26UaA0pgZR9lChoEGgVaBhLBoWUaBpoHSiWGAAAAAAAAAAAACDBAAAgwQAAIMEAACDBAAAgwQAAIMGUaBVLBoWUaCB0lFKUaCNoHSiWGAAAAAAAAAAAACBBAAAgQQAAIEEAACBBAAAgQQAAIEGUaBVLBoWUaCB0lFKUaChoHSiWBgAAAAAAAAABAQEBAQGUaCxLBoWUaCB0lFKUaDJoHSiWBgAAAAAAAAABAQEBAQGUaCxLBoWUaCB0lFKUaDdOdWJ1aBhOaBBOaDdOdWIu", "spaces": "OrderedDict([('achieved_goal', Box([-10. -10. -10.], [10. 10. 10.], (3,), float32)), ('desired_goal', Box([-10. -10. -10.], [10. 10. 10.], (3,), float32)), ('observation', Box([-10. -10. -10. -10. -10. -10.], [10. 10. 10. 10. 10. 10.], (6,), float32))])", "_shape": null, "dtype": null, "_np_random": null}, "action_space": {":type:": "<class 'gym.spaces.box.Box'>", ":serialized:": "gAWVbQEAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLA4WUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWDAAAAAAAAAAAAIC/AACAvwAAgL+UaApLA4WUjAFDlHSUUpSMBGhpZ2iUaBIolgwAAAAAAAAAAACAPwAAgD8AAIA/lGgKSwOFlGgVdJRSlIwNYm91bmRlZF9iZWxvd5RoEiiWAwAAAAAAAAABAQGUaAeMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLA4WUaBV0lFKUjA1ib3VuZGVkX2Fib3ZllGgSKJYDAAAAAAAAAAEBAZRoIUsDhZRoFXSUUpSMCl9ucF9yYW5kb22UTnViLg==", "dtype": "float32", "_shape": [3], "low": "[-1. -1. -1.]", "high": "[1. 1. 1.]", "bounded_below": "[ True True True]", "bounded_above": "[ True True True]", "_np_random": null}, "n_envs": 4, "num_timesteps": 3500000, "_total_timesteps": 3500000, "_num_timesteps_at_start": 0, "seed": null, "action_noise": null, "start_time": 1678990783839295414, "learning_rate": 0.0003, "tensorboard_log": null, "lr_schedule": {":type:": "<class 'function'>", ":serialized:": "gAWVwwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOS9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZSMBGZ1bmOUS4JDAgABlIwDdmFslIWUKXSUUpR9lCiMC19fcGFja2FnZV9flIwYc3RhYmxlX2Jhc2VsaW5lczMuY29tbW9ulIwIX19uYW1lX1+UjB5zdGFibGVfYmFzZWxpbmVzMy5jb21tb24udXRpbHOUjAhfX2ZpbGVfX5SMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOS9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZR1Tk5oAIwQX21ha2VfZW1wdHlfY2VsbJSTlClSlIWUdJRSlIwcY2xvdWRwaWNrbGUuY2xvdWRwaWNrbGVfZmFzdJSMEl9mdW5jdGlvbl9zZXRzdGF0ZZSTlGgffZR9lChoFmgNjAxfX3F1YWxuYW1lX1+UjBljb25zdGFudF9mbi48bG9jYWxzPi5mdW5jlIwPX19hbm5vdGF0aW9uc19flH2UjA5fX2t3ZGVmYXVsdHNfX5ROjAxfX2RlZmF1bHRzX1+UTowKX19tb2R1bGVfX5RoF4wHX19kb2NfX5ROjAtfX2Nsb3N1cmVfX5RoAIwKX21ha2VfY2VsbJSTlEc/M6kqMFUyYYWUUpSFlIwXX2Nsb3VkcGlja2xlX3N1Ym1vZHVsZXOUXZSMC19fZ2xvYmFsc19flH2UdYaUhlIwLg=="}, "_last_obs": {":type:": "<class 'collections.OrderedDict'>", ":serialized:": "gAWVuwEAAAAAAACMC2NvbGxlY3Rpb25zlIwLT3JkZXJlZERpY3SUk5QpUpQojA1hY2hpZXZlZF9nb2FslIwSbnVtcHkuY29yZS5udW1lcmljlIwLX2Zyb21idWZmZXKUk5QoljAAAAAAAAAAAg21Pr7AFb4xzmQ/Ag21Pr7AFb4xzmQ/Ag21Pr7AFb4xzmQ/Ag21Pr7AFb4xzmQ/lIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksESwOGlIwBQ5R0lFKUjAxkZXNpcmVkX2dvYWyUaAcoljAAAAAAAAAAI0aMP7ePkT+8wUK/UG6LP26rXr91nmQ/flWqP+Y6Ir6R3qW/Zf3XPyMNsr9249M/lGgOSwRLA4aUaBJ0lFKUjAtvYnNlcnZhdGlvbpRoByiWYAAAAAAAAAACDbU+vsAVvjHOZD96RrY8IYQrvGJcET0CDbU+vsAVvjHOZD96RrY8IYQrvGJcET0CDbU+vsAVvjHOZD96RrY8IYQrvGJcET0CDbU+vsAVvjHOZD96RrY8IYQrvGJcET2UaA5LBEsGhpRoEnSUUpR1Lg==", "achieved_goal": "[[ 0.35361487 -0.14624307 0.89377123]\n [ 0.35361487 -0.14624307 0.89377123]\n [ 0.35361487 -0.14624307 0.89377123]\n [ 0.35361487 -0.14624307 0.89377123]]", "desired_goal": "[[ 1.0958904 1.1371983 -0.76076865]\n [ 1.089304 -0.8698033 0.89304286]\n [ 1.330734 -0.1584278 -1.2958547 ]\n [ 1.6874205 -1.3910259 1.655379 ]]", "observation": "[[ 0.35361487 -0.14624307 0.89377123 0.0222504 -0.01046851 0.03548849]\n [ 0.35361487 -0.14624307 0.89377123 0.0222504 -0.01046851 0.03548849]\n [ 0.35361487 -0.14624307 0.89377123 0.0222504 -0.01046851 0.03548849]\n [ 0.35361487 -0.14624307 0.89377123 0.0222504 -0.01046851 0.03548849]]"}, "_last_episode_starts": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVdwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYEAAAAAAAAAAEBAQGUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSwSFlIwBQ5R0lFKULg=="}, "_last_original_obs": {":type:": "<class 'collections.OrderedDict'>", ":serialized:": "gAWVuwEAAAAAAACMC2NvbGxlY3Rpb25zlIwLT3JkZXJlZERpY3SUk5QpUpQojA1hY2hpZXZlZF9nb2FslIwSbnVtcHkuY29yZS5udW1lcmljlIwLX2Zyb21idWZmZXKUk5QoljAAAAAAAAAA6nIdPRlsGqxDI0o+6nIdPRlsGqxDI0o+6nIdPRlsGqxDI0o+6nIdPRlsGqxDI0o+lIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksESwOGlIwBQ5R0lFKUjAxkZXNpcmVkX2dvYWyUaAcoljAAAAAAAAAAh4fIPTQ/1LoDF3w+TseZPV7jXLzJpAY+ihAAvsFONL16ONs98KP8O5EYp73Mtbw9lGgOSwRLA4aUaBJ0lFKUjAtvYnNlcnZhdGlvbpRoByiWYAAAAAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAACUaA5LBEsGhpRoEnSUUpR1Lg==", "achieved_goal": "[[ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]]", "desired_goal": "[[ 0.09791475 -0.00161932 0.24618153]\n [ 0.07508717 -0.01348194 0.13148798]\n [-0.12506309 -0.04402042 0.10704131]\n [ 0.00770997 -0.08158983 0.09214363]]", "observation": "[[ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]]"}, "_episode_num": 0, "use_sde": false, "sde_sample_freq": -1, "_current_progress_remaining": 0.0, "ep_info_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVHRAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMIPWAeMuWDEsCUhpRSlIwBbJRLMowBdJRHQMMW5LYwqRV1fZQoaAZoCWgPQwjlKEAUzHgZwJSGlFKUaBVLMmgWR0DDFqeNipeedX2UKGgGaAloD0MIotXJGYp7E8CUhpRSlGgVSzJoFkdAwxZeUYbbUXV9lChoBmgJaA9DCCaOPBBZRAbAlIaUUpRoFUsyaBZHQMMWNrVe8f51fZQoaAZoCWgPQwi45o7+l7MgwJSGlFKUaBVLMmgWR0DDFyBnWattdX2UKGgGaAloD0MInDV4X5U7FsCUhpRSlGgVSzJoFkdAwxbjPszEaXV9lChoBmgJaA9DCOIgIcoX1A3AlIaUUpRoFUsyaBZHQMMWmhikO7R1fZQoaAZoCWgPQwgzox8Np0wNwJSGlFKUaBVLMmgWR0DDFnJ6D5CXdX2UKGgGaAloD0MIO/vKg/TUFsCUhpRSlGgVSzJoFkdAwxdZvZyuIXV9lChoBmgJaA9DCB2wq8lT1h7AlIaUUpRoFUsyaBZHQMMXHKj8DSx1fZQoaAZoCWgPQwjxLawb7+4UwJSGlFKUaBVLMmgWR0DDFtNqYZ2qdX2UKGgGaAloD0MIUDqRYKqZEMCUhpRSlGgVSzJoFkdAwxaryrgfl3V9lChoBmgJaA9DCGZs6GZ/SCPAlIaUUpRoFUsyaBZHQMMXj9xhlUZ1fZQoaAZoCWgPQwjJHww8924XwJSGlFKUaBVLMmgWR0DDF1Kur6tUdX2UKGgGaAloD0MIMQxYchUbFcCUhpRSlGgVSzJoFkdAwxcJdSl3yXV9lChoBmgJaA9DCGsPe6GArQ7AlIaUUpRoFUsyaBZHQMMW4c+aBqd1fZQoaAZoCWgPQwigiEUMOywUwJSGlFKUaBVLMmgWR0DDF8XSF49pdX2UKGgGaAloD0MImGiQgqeAHcCUhpRSlGgVSzJoFkdAwxeIr7O3UnV9lChoBmgJaA9DCPEtrBvvHhTAlIaUUpRoFUsyaBZHQMMXP3QMQVd1fZQoaAZoCWgPQwi3XtODgmIRwJSGlFKUaBVLMmgWR0DDFxfLmp2mdX2UKGgGaAloD0MISpuqe2RzEsCUhpRSlGgVSzJoFkdAwxf/P8hs7HV9lChoBmgJaA9DCGO1+X/VERfAlIaUUpRoFUsyaBZHQMMXwhXr+o91fZQoaAZoCWgPQwhATwMGSe8TwJSGlFKUaBVLMmgWR0DDF3jY9Pk8dX2UKGgGaAloD0MI/MbXnlnSEMCUhpRSlGgVSzJoFkdAwxdRL7oB73V9lChoBmgJaA9DCKRRgZNtIAfAlIaUUpRoFUsyaBZHQMMYNBC+lCV1fZQoaAZoCWgPQwiIg4QoX8ATwJSGlFKUaBVLMmgWR0DDF/bfR/mUdX2UKGgGaAloD0MIV5boLLOYFMCUhpRSlGgVSzJoFkdAwxetoN/e+HV9lChoBmgJaA9DCG9/Lhoyng/AlIaUUpRoFUsyaBZHQMMXhgOSW7h1fZQoaAZoCWgPQwiAft+/eXESwJSGlFKUaBVLMmgWR0DDGGu6I3zddX2UKGgGaAloD0MIRuuoaoIIE8CUhpRSlGgVSzJoFkdAwxgujqv/znV9lChoBmgJaA9DCHHK3HwjeiLAlIaUUpRoFUsyaBZHQMMX5VCw8nx1fZQoaAZoCWgPQwhAprVpbJ8WwJSGlFKUaBVLMmgWR0DDF72k8A7xdX2UKGgGaAloD0MIXb9gN2wzIMCUhpRSlGgVSzJoFkdAwxil5HmRvHV9lChoBmgJaA9DCKHzGrtE1RHAlIaUUpRoFUsyaBZHQMMYaR2KVIJ1fZQoaAZoCWgPQwgkJqjhW1gSwJSGlFKUaBVLMmgWR0DDGCAGOdXldX2UKGgGaAloD0MI0xbX+ExWFMCUhpRSlGgVSzJoFkdAwxf4hwl0HXV9lChoBmgJaA9DCB0EHa1qaRHAlIaUUpRoFUsyaBZHQMMZADmbLEF1fZQoaAZoCWgPQwhqoWRyaqcSwJSGlFKUaBVLMmgWR0DDGMM2cawVdX2UKGgGaAloD0MIGuHtQQgIE8CUhpRSlGgVSzJoFkdAwxh6IC2c8XV9lChoBmgJaA9DCAuW6gJeFhbAlIaUUpRoFUsyaBZHQMMYUp3PiUB1fZQoaAZoCWgPQwiJeyx96CIUwJSGlFKUaBVLMmgWR0DDGVnseGO/dX2UKGgGaAloD0MIRn2SO2wCE8CUhpRSlGgVSzJoFkdAwxkc3l0YCXV9lChoBmgJaA9DCO0NvjCZWhnAlIaUUpRoFUsyaBZHQMMY08J+lTF1fZQoaAZoCWgPQwhqvHSTGKQYwJSGlFKUaBVLMmgWR0DDGKxBmf5DdX2UKGgGaAloD0MI1EM0uoN4EMCUhpRSlGgVSzJoFkdAwxmz6fJ3gXV9lChoBmgJaA9DCLPviuB/+xPAlIaUUpRoFUsyaBZHQMMZdxv3rUt1fZQoaAZoCWgPQwhWgzC3e9kPwJSGlFKUaBVLMmgWR0DDGS4G4ZuRdX2UKGgGaAloD0MIIcuCiT+6H8CUhpRSlGgVSzJoFkdAwxkGhZha1XV9lChoBmgJaA9DCIvh6gCIOxXAlIaUUpRoFUsyaBZHQMMaDR/d69l1fZQoaAZoCWgPQwhBKzBkdWMgwJSGlFKUaBVLMmgWR0DDGdApvxYrdX2UKGgGaAloD0MISRRa1v2DEMCUhpRSlGgVSzJoFkdAwxmHFc6eXnV9lChoBmgJaA9DCIi4OZUMEB/AlIaUUpRoFUsyaBZHQMMZX5NoJzF1fZQoaAZoCWgPQwjYEByXcXMQwJSGlFKUaBVLMmgWR0DDGmZ8UmD2dX2UKGgGaAloD0MIbR6Hwfw1HMCUhpRSlGgVSzJoFkdAwxopjKgZj3V9lChoBmgJaA9DCDYjg9xFKBLAlIaUUpRoFUsyaBZHQMMZ4HqeK9B1fZQoaAZoCWgPQwg3ABsQIT4XwJSGlFKUaBVLMmgWR0DDGbj9OymidX2UKGgGaAloD0MIYp6VtOLLGsCUhpRSlGgVSzJoFkdAwxrEcMEzPHV9lChoBmgJaA9DCMU7wJMWLg7AlIaUUpRoFUsyaBZHQMMah3dKujh1fZQoaAZoCWgPQwhN2H4yxg8gwJSGlFKUaBVLMmgWR0DDGj57zCk5dX2UKGgGaAloD0MIrrt5qkMOGsCUhpRSlGgVSzJoFkdAwxoXBacI7nV9lChoBmgJaA9DCFjiAWVT3hTAlIaUUpRoFUsyaBZHQMMbJyFPBSF1fZQoaAZoCWgPQwjM1CR4Q9ofwJSGlFKUaBVLMmgWR0DDGuoq3EyddX2UKGgGaAloD0MIs3kcBvOXHMCUhpRSlGgVSzJoFkdAwxqhGViWmnV9lChoBmgJaA9DCJtUNNb+bhjAlIaUUpRoFUsyaBZHQMMaeZiVjZt1fZQoaAZoCWgPQwhKDAIrhxYawJSGlFKUaBVLMmgWR0DDG4hQvYe1dX2UKGgGaAloD0MIeCl1yTh2FsCUhpRSlGgVSzJoFkdAwxtLXWe6I3V9lChoBmgJaA9DCDtT6LzG3h3AlIaUUpRoFUsyaBZHQMMbAlNDc/N1fZQoaAZoCWgPQwhHqu/8oqwhwJSGlFKUaBVLMmgWR0DDGtrZ6D5CdX2UKGgGaAloD0MIA9AoXfoHE8CUhpRSlGgVSzJoFkdAwxvoe+VTrHV9lChoBmgJaA9DCAItXcE2OiPAlIaUUpRoFUsyaBZHQMMbq3pGFzx1fZQoaAZoCWgPQwi3YRQEj18ZwJSGlFKUaBVLMmgWR0DDG2Jsj3VTdX2UKGgGaAloD0MI0XZM3ZU9HMCUhpRSlGgVSzJoFkdAwxs68QI2O3V9lChoBmgJaA9DCDc0ZacfhBXAlIaUUpRoFUsyaBZHQMMcKp0fYBh1fZQoaAZoCWgPQwiTpkHRPEAcwJSGlFKUaBVLMmgWR0DDG+1zbN8mdX2UKGgGaAloD0MIjIF1HD80HsCUhpRSlGgVSzJoFkdAwxukOby6MHV9lChoBmgJaA9DCO+P96qVWRzAlIaUUpRoFUsyaBZHQMMbfI/A0sR1fZQoaAZoCWgPQwgvUFJgAewYwJSGlFKUaBVLMmgWR0DDHGewzLwGdX2UKGgGaAloD0MIINPaNLZnG8CUhpRSlGgVSzJoFkdAwxwqgieNDXV9lChoBmgJaA9DCM0Ew7mG2RfAlIaUUpRoFUsyaBZHQMMb4XwsoUl1fZQoaAZoCWgPQwjH9IQlHlAhwJSGlFKUaBVLMmgWR0DDG7nXNC7cdX2UKGgGaAloD0MI0o+GU+bGFsCUhpRSlGgVSzJoFkdAwxyfx0dRznV9lChoBmgJaA9DCB9Hc2Tl9yDAlIaUUpRoFUsyaBZHQMMcYpp35et1fZQoaAZoCWgPQwgsLLgf8LAfwJSGlFKUaBVLMmgWR0DDHBlb9qDcdX2UKGgGaAloD0MIpUxqaANAF8CUhpRSlGgVSzJoFkdAwxvxsWO6unV9lChoBmgJaA9DCEDc1avIiBrAlIaUUpRoFUsyaBZHQMMc23eN1hd1fZQoaAZoCWgPQwi5cYv5ubEYwJSGlFKUaBVLMmgWR0DDHJ5o24usdX2UKGgGaAloD0MIsHYU56iLIMCUhpRSlGgVSzJoFkdAwxxVOgQHzHV9lChoBmgJaA9DCH7IW65+XBnAlIaUUpRoFUsyaBZHQMMcLaHKwIN1fZQoaAZoCWgPQwhHcY46Os4UwJSGlFKUaBVLMmgWR0DDHRwsf7rLdX2UKGgGaAloD0MIti3KbJCpEsCUhpRSlGgVSzJoFkdAwxzfDpC8e3V9lChoBmgJaA9DCHUDBd7JJw3AlIaUUpRoFUsyaBZHQMMcldrO7g91fZQoaAZoCWgPQwjoo4y4AFQcwJSGlFKUaBVLMmgWR0DDHG5Hf/FSdX2UKGgGaAloD0MIKNU+HY/JEcCUhpRSlGgVSzJoFkdAwx1eX/HYH3V9lChoBmgJaA9DCGGInL6eHxnAlIaUUpRoFUsyaBZHQMMdIUqpcX51fZQoaAZoCWgPQwjFy9O5osQSwJSGlFKUaBVLMmgWR0DDHNgffXPJdX2UKGgGaAloD0MI3/3xXrVCF8CUhpRSlGgVSzJoFkdAwxywfXf643V9lChoBmgJaA9DCBgkfVpF/xDAlIaUUpRoFUsyaBZHQMMdnHscABF1fZQoaAZoCWgPQwiGyypsBpgawJSGlFKUaBVLMmgWR0DDHV9PBSDRdX2UKGgGaAloD0MIUwYOaOnaE8CUhpRSlGgVSzJoFkdAwx0WFUyYX3V9lChoBmgJaA9DCM2RlV8Gkx3AlIaUUpRoFUsyaBZHQMMc7mn4wh51ZS4="}, "ep_success_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="}, "_n_updates": 175000, "n_steps": 5, "gamma": 0.99, "gae_lambda": 1.0, "ent_coef": 0.0, "vf_coef": 0.5, "max_grad_norm": 0.5, "normalize_advantage": false, "system_info": {"OS": "Linux-5.10.147+-x86_64-with-glibc2.31 # 1 SMP Sat Dec 10 16:00:40 UTC 2022", "Python": "3.9.16", "Stable-Baselines3": "1.7.0", "PyTorch": "1.13.1+cu116", "GPU Enabled": "True", "Numpy": "1.22.4", "Gym": "0.21.0"}}
replay.mp4 ADDED
Binary file (991 kB). View file
 
results.json ADDED
@@ -0,0 +1 @@
 
 
1
+ {"mean_reward": -5.984324496984482, "std_reward": 0.9597499305142952, "is_deterministic": true, "n_eval_episodes": 10, "eval_datetime": "2023-03-16T21:08:35.713570"}
vec_normalize.pkl ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:c0b0879ba9acd74c49d3f8d6f0ac19ab49fecba21216a479ef88ca25ed6d3867
3
+ size 3056