Update app.py
Browse files
app.py
CHANGED
@@ -1,112 +1,11 @@
|
|
1 |
-
import
|
2 |
-
from tensorflow.keras.utils import img_to_array,load_img
|
3 |
-
from keras.models import load_model
|
4 |
-
import numpy as np
|
5 |
|
6 |
-
|
7 |
-
|
8 |
-
model = load_model(model_path) # Load the model here
|
9 |
|
10 |
-
def
|
|
|
|
|
11 |
|
12 |
-
|
13 |
-
|
14 |
-
img = load_img(image_file, target_size=(224, 224)) # Use load_img from tensorflow.keras.utils
|
15 |
-
img_array = img_to_array(img)
|
16 |
-
img_array = np.expand_dims(img_array, axis=0) # Add batch dimension
|
17 |
-
img_array = img_array / 255.0 # Normalize the image
|
18 |
-
|
19 |
-
# Predict the class
|
20 |
-
predictions = model.predict(img_array) # Use the loaded model here
|
21 |
-
predicted_class = np.argmax(predictions[0])
|
22 |
-
|
23 |
-
# Get the predicted class label
|
24 |
-
predicted_label = all_labels[predicted_class]
|
25 |
-
|
26 |
-
# Print the predicted label to the console
|
27 |
-
|
28 |
-
if predicted_label=='Peach Healthy':
|
29 |
-
predicted_label = predicted_label = """<h3 align="center">Peach Healthy</h3><br><br>
|
30 |
-
<center>No need use Pesticides</center>"""
|
31 |
-
elif predicted_label=='Peach Bacterial Spot':
|
32 |
-
predicted_label = """
|
33 |
-
<style>
|
34 |
-
li{
|
35 |
-
font-size: 15px;
|
36 |
-
margin-left: 90px;
|
37 |
-
margin-top: 15px;
|
38 |
-
margin-bottom: 15px;
|
39 |
-
}
|
40 |
-
h4{
|
41 |
-
font-size: 17px;
|
42 |
-
margin-top: 15px;
|
43 |
-
}
|
44 |
-
h4:hover{
|
45 |
-
cursor: pointer;
|
46 |
-
}
|
47 |
-
|
48 |
-
h3:hover{
|
49 |
-
cursor: pointer;
|
50 |
-
color: blue;
|
51 |
-
transform: scale(1.3);
|
52 |
-
}
|
53 |
-
.note{
|
54 |
-
text-align: center;
|
55 |
-
font-size: 16px;
|
56 |
-
}
|
57 |
-
p{
|
58 |
-
font-size: 13px;
|
59 |
-
text-align: center;
|
60 |
-
}
|
61 |
-
|
62 |
-
</style>
|
63 |
-
<h3><center><b>Peach Bacterial Spot</b></center></h3>
|
64 |
-
<h4>PESTICIDES TO BE USED:</h4>
|
65 |
-
<ul>
|
66 |
-
<li>1. Copper oxychloride (Kocide)</li>
|
67 |
-
<li>2. Streptomycin (Streptomycin sulfate)</li>
|
68 |
-
<li>3. Tetracycline (Agrimycin)</li>
|
69 |
-
<li>4. Oxytetracycline (Terramycin)</li>
|
70 |
-
|
71 |
-
|
72 |
-
</ul>
|
73 |
-
<p class="note"><b>* * * IMPORTANT NOTE * * *</b></p>
|
74 |
-
<p>Be sure to follow local regulations and guidelines for application</p>
|
75 |
-
|
76 |
-
|
77 |
-
"""
|
78 |
-
|
79 |
-
|
80 |
-
|
81 |
-
else:
|
82 |
-
predicted_label = """<h3 align="center">Choose Correct image</h3><br><br>
|
83 |
-
"""
|
84 |
-
|
85 |
-
return predicted_label
|
86 |
-
|
87 |
-
|
88 |
-
except Exception as e:
|
89 |
-
print(f"Error: {e}")
|
90 |
-
return None
|
91 |
-
|
92 |
-
# List of class labels
|
93 |
-
all_labels = [
|
94 |
-
'Peach Healthy',
|
95 |
-
'Peach Bacterial Spot'
|
96 |
-
]
|
97 |
-
|
98 |
-
# Define the Gradio interface
|
99 |
-
def gradio_predict(image_file):
|
100 |
-
return predict_disease(image_file, model, all_labels) # Pass the model to the function
|
101 |
-
|
102 |
-
# Create a Gradio interface
|
103 |
-
gr_interface = gr.Interface(
|
104 |
-
fn=gradio_predict, # Function to call for predictions
|
105 |
-
inputs=gr.Image(type="filepath"), # Upload image as file path
|
106 |
-
outputs="html", # Output will be the class label as text
|
107 |
-
title="Peach Disease Predictor",
|
108 |
-
description="Upload an image of a plant to predict the disease.",
|
109 |
-
)
|
110 |
-
|
111 |
-
# Launch the Gradio app
|
112 |
-
gr_interface.launch()
|
|
|
1 |
+
import requests
|
|
|
|
|
|
|
2 |
|
3 |
+
API_URL = "https://api-inference.huggingface.co/models/your-username/your-model-name"
|
4 |
+
headers = {"Authorization": "Bearer YOUR_HUGGINGFACE_TOKEN"}
|
|
|
5 |
|
6 |
+
def query(payload):
|
7 |
+
response = requests.post(API_URL, headers=headers, json=payload)
|
8 |
+
return response.json()
|
9 |
|
10 |
+
data = query({"inputs": "your input text"})
|
11 |
+
print(data)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|