project21 commited on
Commit
811c528
·
verified ·
1 Parent(s): 8625f8f

Update app.py

Browse files
Files changed (1) hide show
  1. app.py +8 -109
app.py CHANGED
@@ -1,112 +1,11 @@
1
- import gradio as gr
2
- from tensorflow.keras.utils import img_to_array,load_img
3
- from keras.models import load_model
4
- import numpy as np
5
 
6
- # Load the pre-trained model from the local path
7
- model_path = 'peach.h5'
8
- model = load_model(model_path) # Load the model here
9
 
10
- def predict_disease(image_file, model, all_labels):
 
 
11
 
12
- try:
13
- # Load and preprocess the image
14
- img = load_img(image_file, target_size=(224, 224)) # Use load_img from tensorflow.keras.utils
15
- img_array = img_to_array(img)
16
- img_array = np.expand_dims(img_array, axis=0) # Add batch dimension
17
- img_array = img_array / 255.0 # Normalize the image
18
-
19
- # Predict the class
20
- predictions = model.predict(img_array) # Use the loaded model here
21
- predicted_class = np.argmax(predictions[0])
22
-
23
- # Get the predicted class label
24
- predicted_label = all_labels[predicted_class]
25
-
26
- # Print the predicted label to the console
27
-
28
- if predicted_label=='Peach Healthy':
29
- predicted_label = predicted_label = """<h3 align="center">Peach Healthy</h3><br><br>
30
- <center>No need use Pesticides</center>"""
31
- elif predicted_label=='Peach Bacterial Spot':
32
- predicted_label = """
33
- <style>
34
- li{
35
- font-size: 15px;
36
- margin-left: 90px;
37
- margin-top: 15px;
38
- margin-bottom: 15px;
39
- }
40
- h4{
41
- font-size: 17px;
42
- margin-top: 15px;
43
- }
44
- h4:hover{
45
- cursor: pointer;
46
- }
47
-
48
- h3:hover{
49
- cursor: pointer;
50
- color: blue;
51
- transform: scale(1.3);
52
- }
53
- .note{
54
- text-align: center;
55
- font-size: 16px;
56
- }
57
- p{
58
- font-size: 13px;
59
- text-align: center;
60
- }
61
-
62
- </style>
63
- <h3><center><b>Peach Bacterial Spot</b></center></h3>
64
- <h4>PESTICIDES TO BE USED:</h4>
65
- <ul>
66
- <li>1. Copper oxychloride (Kocide)</li>
67
- <li>2. Streptomycin (Streptomycin sulfate)</li>
68
- <li>3. Tetracycline (Agrimycin)</li>
69
- <li>4. Oxytetracycline (Terramycin)</li>
70
-
71
-
72
- </ul>
73
- <p class="note"><b>* * * IMPORTANT NOTE * * *</b></p>
74
- <p>Be sure to follow local regulations and guidelines for application</p>
75
-
76
-
77
- """
78
-
79
-
80
-
81
- else:
82
- predicted_label = """<h3 align="center">Choose Correct image</h3><br><br>
83
- """
84
-
85
- return predicted_label
86
-
87
-
88
- except Exception as e:
89
- print(f"Error: {e}")
90
- return None
91
-
92
- # List of class labels
93
- all_labels = [
94
- 'Peach Healthy',
95
- 'Peach Bacterial Spot'
96
- ]
97
-
98
- # Define the Gradio interface
99
- def gradio_predict(image_file):
100
- return predict_disease(image_file, model, all_labels) # Pass the model to the function
101
-
102
- # Create a Gradio interface
103
- gr_interface = gr.Interface(
104
- fn=gradio_predict, # Function to call for predictions
105
- inputs=gr.Image(type="filepath"), # Upload image as file path
106
- outputs="html", # Output will be the class label as text
107
- title="Peach Disease Predictor",
108
- description="Upload an image of a plant to predict the disease.",
109
- )
110
-
111
- # Launch the Gradio app
112
- gr_interface.launch()
 
1
+ import requests
 
 
 
2
 
3
+ API_URL = "https://api-inference.huggingface.co/models/your-username/your-model-name"
4
+ headers = {"Authorization": "Bearer YOUR_HUGGINGFACE_TOKEN"}
 
5
 
6
+ def query(payload):
7
+ response = requests.post(API_URL, headers=headers, json=payload)
8
+ return response.json()
9
 
10
+ data = query({"inputs": "your input text"})
11
+ print(data)