professorf commited on
Commit
1fce6e3
·
1 Parent(s): b82dd96

update model card README.md

Browse files
Files changed (1) hide show
  1. README.md +34 -34
README.md CHANGED
@@ -17,9 +17,9 @@ should probably proofread and complete it, then remove this comment. -->
17
 
18
  This model is a fine-tuned version of [distilbert-base-uncased](https://huggingface.co/distilbert-base-uncased) on an unknown dataset.
19
  It achieves the following results on the evaluation set:
20
- - Loss: 0.9616
21
  - Accuracy: 0.5103
22
- - F1: 0.4983
23
 
24
  ## Model description
25
 
@@ -50,41 +50,41 @@ The following hyperparameters were used during training:
50
 
51
  | Training Loss | Epoch | Step | Validation Loss | Accuracy | F1 |
52
  |:-------------:|:-----:|:----:|:---------------:|:--------:|:------:|
53
- | 1.5782 | 1.0 | 15 | 1.4989 | 0.3448 | 0.2657 |
54
- | 1.5021 | 2.0 | 30 | 1.4732 | 0.3655 | 0.2645 |
55
- | 1.4674 | 3.0 | 45 | 1.4384 | 0.3448 | 0.2525 |
56
- | 1.4277 | 4.0 | 60 | 1.4140 | 0.3517 | 0.2751 |
57
- | 1.4341 | 5.0 | 75 | 1.3905 | 0.3379 | 0.2546 |
58
- | 1.3698 | 6.0 | 90 | 1.3697 | 0.3724 | 0.2936 |
59
- | 1.4233 | 7.0 | 105 | 1.3196 | 0.3862 | 0.3073 |
60
- | 1.3112 | 8.0 | 120 | 1.3048 | 0.4552 | 0.3958 |
61
- | 1.372 | 9.0 | 135 | 1.2548 | 0.4138 | 0.3385 |
62
- | 1.3284 | 10.0 | 150 | 1.2020 | 0.4759 | 0.4287 |
63
- | 1.2412 | 11.0 | 165 | 1.1672 | 0.4966 | 0.4594 |
64
- | 1.2508 | 12.0 | 180 | 1.1453 | 0.4897 | 0.4740 |
65
- | 1.1843 | 13.0 | 195 | 1.1172 | 0.4966 | 0.4784 |
66
- | 1.1694 | 14.0 | 210 | 1.1006 | 0.4966 | 0.4785 |
67
- | 1.1438 | 15.0 | 225 | 1.0763 | 0.5034 | 0.4851 |
68
- | 1.1066 | 16.0 | 240 | 1.0603 | 0.5034 | 0.4815 |
69
- | 1.1357 | 17.0 | 255 | 1.0435 | 0.5034 | 0.4821 |
70
- | 1.0352 | 18.0 | 270 | 1.0358 | 0.5034 | 0.4803 |
71
- | 1.1355 | 19.0 | 285 | 1.0183 | 0.5103 | 0.4941 |
72
- | 1.063 | 20.0 | 300 | 1.0063 | 0.5103 | 0.4957 |
73
- | 1.0329 | 21.0 | 315 | 0.9960 | 0.5103 | 0.4989 |
74
- | 1.063 | 22.0 | 330 | 0.9867 | 0.5103 | 0.4989 |
75
- | 1.0289 | 23.0 | 345 | 0.9821 | 0.5103 | 0.4980 |
76
- | 1.0624 | 24.0 | 360 | 0.9816 | 0.5103 | 0.4942 |
77
- | 1.0404 | 25.0 | 375 | 0.9723 | 0.5103 | 0.4939 |
78
- | 0.9791 | 26.0 | 390 | 0.9693 | 0.5103 | 0.4985 |
79
- | 1.0365 | 27.0 | 405 | 0.9663 | 0.5103 | 0.4980 |
80
- | 1.0129 | 28.0 | 420 | 0.9637 | 0.5103 | 0.5002 |
81
- | 0.9844 | 29.0 | 435 | 0.9617 | 0.5103 | 0.4997 |
82
- | 1.0049 | 30.0 | 450 | 0.9616 | 0.5103 | 0.4983 |
83
 
84
 
85
  ### Framework versions
86
 
87
  - Transformers 4.24.0
88
- - Pytorch 1.13.1
89
- - Datasets 2.6.1
90
  - Tokenizers 0.11.0
 
17
 
18
  This model is a fine-tuned version of [distilbert-base-uncased](https://huggingface.co/distilbert-base-uncased) on an unknown dataset.
19
  It achieves the following results on the evaluation set:
20
+ - Loss: 0.9814
21
  - Accuracy: 0.5103
22
+ - F1: 0.4950
23
 
24
  ## Model description
25
 
 
50
 
51
  | Training Loss | Epoch | Step | Validation Loss | Accuracy | F1 |
52
  |:-------------:|:-----:|:----:|:---------------:|:--------:|:------:|
53
+ | 1.5871 | 1.0 | 15 | 1.4971 | 0.3379 | 0.1821 |
54
+ | 1.4995 | 2.0 | 30 | 1.4588 | 0.3379 | 0.1707 |
55
+ | 1.464 | 3.0 | 45 | 1.4251 | 0.3655 | 0.2870 |
56
+ | 1.4105 | 4.0 | 60 | 1.4027 | 0.3793 | 0.2899 |
57
+ | 1.4269 | 5.0 | 75 | 1.3798 | 0.3793 | 0.2899 |
58
+ | 1.3835 | 6.0 | 90 | 1.3425 | 0.3724 | 0.3087 |
59
+ | 1.3885 | 7.0 | 105 | 1.3041 | 0.4069 | 0.3515 |
60
+ | 1.3286 | 8.0 | 120 | 1.3004 | 0.4621 | 0.4450 |
61
+ | 1.3572 | 9.0 | 135 | 1.2621 | 0.4345 | 0.3903 |
62
+ | 1.3176 | 10.0 | 150 | 1.2033 | 0.4552 | 0.4250 |
63
+ | 1.2509 | 11.0 | 165 | 1.1942 | 0.5034 | 0.4755 |
64
+ | 1.2781 | 12.0 | 180 | 1.1689 | 0.4828 | 0.4651 |
65
+ | 1.2156 | 13.0 | 195 | 1.1438 | 0.5034 | 0.4837 |
66
+ | 1.1518 | 14.0 | 210 | 1.1187 | 0.5034 | 0.4844 |
67
+ | 1.161 | 15.0 | 225 | 1.1013 | 0.5034 | 0.4858 |
68
+ | 1.1377 | 16.0 | 240 | 1.0882 | 0.5034 | 0.4796 |
69
+ | 1.1634 | 17.0 | 255 | 1.0692 | 0.5034 | 0.4860 |
70
+ | 1.0666 | 18.0 | 270 | 1.0591 | 0.5034 | 0.4772 |
71
+ | 1.1358 | 19.0 | 285 | 1.0455 | 0.5034 | 0.4736 |
72
+ | 1.1118 | 20.0 | 300 | 1.0313 | 0.5034 | 0.4872 |
73
+ | 1.0367 | 21.0 | 315 | 1.0228 | 0.5034 | 0.4853 |
74
+ | 1.0781 | 22.0 | 330 | 1.0106 | 0.5034 | 0.4857 |
75
+ | 1.0346 | 23.0 | 345 | 1.0034 | 0.5034 | 0.4935 |
76
+ | 1.1015 | 24.0 | 360 | 1.0032 | 0.5034 | 0.4806 |
77
+ | 1.0147 | 25.0 | 375 | 0.9911 | 0.5103 | 0.4903 |
78
+ | 1.0144 | 26.0 | 390 | 0.9856 | 0.5103 | 0.4972 |
79
+ | 1.022 | 27.0 | 405 | 0.9835 | 0.5103 | 0.4982 |
80
+ | 1.0218 | 28.0 | 420 | 0.9821 | 0.5103 | 0.4955 |
81
+ | 1.0173 | 29.0 | 435 | 0.9811 | 0.5103 | 0.4950 |
82
+ | 1.0241 | 30.0 | 450 | 0.9814 | 0.5103 | 0.4950 |
83
 
84
 
85
  ### Framework versions
86
 
87
  - Transformers 4.24.0
88
+ - Pytorch 2.0.0
89
+ - Datasets 2.10.1
90
  - Tokenizers 0.11.0