Update README.md
Browse files
README.md
CHANGED
@@ -8,7 +8,7 @@ tags:
|
|
8 |
|
9 |
---
|
10 |
|
11 |
-
#
|
12 |
|
13 |
This is a [sentence-transformers](https://www.SBERT.net) model: It maps sentences & paragraphs to a 768 dimensional dense vector space and can be used for tasks like clustering or semantic search.
|
14 |
|
@@ -79,51 +79,3 @@ print(sentence_embeddings)
|
|
79 |
|
80 |
For an automated evaluation of this model, see the *Sentence Embeddings Benchmark*: [https://seb.sbert.net](https://seb.sbert.net?model_name={MODEL_NAME})
|
81 |
|
82 |
-
|
83 |
-
## Training
|
84 |
-
The model was trained with the parameters:
|
85 |
-
|
86 |
-
**DataLoader**:
|
87 |
-
|
88 |
-
`sentence_transformers.datasets.NoDuplicatesDataLoader.NoDuplicatesDataLoader` of length 21875 with parameters:
|
89 |
-
```
|
90 |
-
{'batch_size': 16}
|
91 |
-
```
|
92 |
-
|
93 |
-
**Loss**:
|
94 |
-
|
95 |
-
`sentence_transformers.losses.MultipleNegativesRankingLoss.MultipleNegativesRankingLoss` with parameters:
|
96 |
-
```
|
97 |
-
{'scale': 20.0, 'similarity_fct': 'cos_sim'}
|
98 |
-
```
|
99 |
-
|
100 |
-
Parameters of the fit()-Method:
|
101 |
-
```
|
102 |
-
{
|
103 |
-
"epochs": 1,
|
104 |
-
"evaluation_steps": 0,
|
105 |
-
"evaluator": "NoneType",
|
106 |
-
"max_grad_norm": 1,
|
107 |
-
"optimizer_class": "<class 'torch.optim.adamw.AdamW'>",
|
108 |
-
"optimizer_params": {
|
109 |
-
"lr": 1.25e-05
|
110 |
-
},
|
111 |
-
"scheduler": "WarmupLinear",
|
112 |
-
"steps_per_epoch": null,
|
113 |
-
"warmup_steps": 1093,
|
114 |
-
"weight_decay": 0.09
|
115 |
-
}
|
116 |
-
```
|
117 |
-
|
118 |
-
|
119 |
-
## Full Model Architecture
|
120 |
-
```
|
121 |
-
SentenceTransformer(
|
122 |
-
(0): Transformer({'max_seq_length': 512, 'do_lower_case': False}) with Transformer model: BertModel
|
123 |
-
(1): Pooling({'word_embedding_dimension': 768, 'pooling_mode_cls_token': False, 'pooling_mode_mean_tokens': True, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False})
|
124 |
-
)
|
125 |
-
```
|
126 |
-
|
127 |
-
## Citing & Authors
|
128 |
-
|
129 |
-
<!--- Describe where people can find more information -->
|
|
|
8 |
|
9 |
---
|
10 |
|
11 |
+
# singularity_retriever_v1
|
12 |
|
13 |
This is a [sentence-transformers](https://www.SBERT.net) model: It maps sentences & paragraphs to a 768 dimensional dense vector space and can be used for tasks like clustering or semantic search.
|
14 |
|
|
|
79 |
|
80 |
For an automated evaluation of this model, see the *Sentence Embeddings Benchmark*: [https://seb.sbert.net](https://seb.sbert.net?model_name={MODEL_NAME})
|
81 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|