prodm93 commited on
Commit
ee9bc32
·
1 Parent(s): ddbd48f

Update README.md

Browse files
Files changed (1) hide show
  1. README.md +1 -49
README.md CHANGED
@@ -8,7 +8,7 @@ tags:
8
 
9
  ---
10
 
11
- # {MODEL_NAME}
12
 
13
  This is a [sentence-transformers](https://www.SBERT.net) model: It maps sentences & paragraphs to a 768 dimensional dense vector space and can be used for tasks like clustering or semantic search.
14
 
@@ -79,51 +79,3 @@ print(sentence_embeddings)
79
 
80
  For an automated evaluation of this model, see the *Sentence Embeddings Benchmark*: [https://seb.sbert.net](https://seb.sbert.net?model_name={MODEL_NAME})
81
 
82
-
83
- ## Training
84
- The model was trained with the parameters:
85
-
86
- **DataLoader**:
87
-
88
- `sentence_transformers.datasets.NoDuplicatesDataLoader.NoDuplicatesDataLoader` of length 21875 with parameters:
89
- ```
90
- {'batch_size': 16}
91
- ```
92
-
93
- **Loss**:
94
-
95
- `sentence_transformers.losses.MultipleNegativesRankingLoss.MultipleNegativesRankingLoss` with parameters:
96
- ```
97
- {'scale': 20.0, 'similarity_fct': 'cos_sim'}
98
- ```
99
-
100
- Parameters of the fit()-Method:
101
- ```
102
- {
103
- "epochs": 1,
104
- "evaluation_steps": 0,
105
- "evaluator": "NoneType",
106
- "max_grad_norm": 1,
107
- "optimizer_class": "<class 'torch.optim.adamw.AdamW'>",
108
- "optimizer_params": {
109
- "lr": 1.25e-05
110
- },
111
- "scheduler": "WarmupLinear",
112
- "steps_per_epoch": null,
113
- "warmup_steps": 1093,
114
- "weight_decay": 0.09
115
- }
116
- ```
117
-
118
-
119
- ## Full Model Architecture
120
- ```
121
- SentenceTransformer(
122
- (0): Transformer({'max_seq_length': 512, 'do_lower_case': False}) with Transformer model: BertModel
123
- (1): Pooling({'word_embedding_dimension': 768, 'pooling_mode_cls_token': False, 'pooling_mode_mean_tokens': True, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False})
124
- )
125
- ```
126
-
127
- ## Citing & Authors
128
-
129
- <!--- Describe where people can find more information -->
 
8
 
9
  ---
10
 
11
+ # singularity_retriever_v1
12
 
13
  This is a [sentence-transformers](https://www.SBERT.net) model: It maps sentences & paragraphs to a 768 dimensional dense vector space and can be used for tasks like clustering or semantic search.
14
 
 
79
 
80
  For an automated evaluation of this model, see the *Sentence Embeddings Benchmark*: [https://seb.sbert.net](https://seb.sbert.net?model_name={MODEL_NAME})
81