prithvinambiar
commited on
Commit
•
d311bad
1
Parent(s):
09345b7
First Unit Deep RL Course
Browse files- .gitattributes +1 -0
- MlpPolicy.zip +3 -0
- MlpPolicy/_stable_baselines3_version +1 -0
- MlpPolicy/data +94 -0
- MlpPolicy/policy.optimizer.pth +3 -0
- MlpPolicy/policy.pth +3 -0
- MlpPolicy/pytorch_variables.pth +3 -0
- MlpPolicy/system_info.txt +7 -0
- README.md +28 -0
- config.json +1 -0
- replay.mp4 +3 -0
- results.json +1 -0
.gitattributes
CHANGED
@@ -25,3 +25,4 @@ saved_model/**/* filter=lfs diff=lfs merge=lfs -text
|
|
25 |
*.zip filter=lfs diff=lfs merge=lfs -text
|
26 |
*.zstandard filter=lfs diff=lfs merge=lfs -text
|
27 |
*tfevents* filter=lfs diff=lfs merge=lfs -text
|
|
|
|
25 |
*.zip filter=lfs diff=lfs merge=lfs -text
|
26 |
*.zstandard filter=lfs diff=lfs merge=lfs -text
|
27 |
*tfevents* filter=lfs diff=lfs merge=lfs -text
|
28 |
+
*.mp4 filter=lfs diff=lfs merge=lfs -text
|
MlpPolicy.zip
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:258000a983219db8fdafe027fab96c92959633888abf4fe09eb8eaf37ff3f42c
|
3 |
+
size 144097
|
MlpPolicy/_stable_baselines3_version
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
1.5.0
|
MlpPolicy/data
ADDED
@@ -0,0 +1,94 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"policy_class": {
|
3 |
+
":type:": "<class 'abc.ABCMeta'>",
|
4 |
+
":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==",
|
5 |
+
"__module__": "stable_baselines3.common.policies",
|
6 |
+
"__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param sde_net_arch: Network architecture for extracting features\n when using gSDE. If None, the latent features from the policy will be used.\n Pass an empty list to use the states as features.\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ",
|
7 |
+
"__init__": "<function ActorCriticPolicy.__init__ at 0x7f98b1eb3680>",
|
8 |
+
"_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x7f98b1eb3710>",
|
9 |
+
"reset_noise": "<function ActorCriticPolicy.reset_noise at 0x7f98b1eb37a0>",
|
10 |
+
"_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x7f98b1eb3830>",
|
11 |
+
"_build": "<function ActorCriticPolicy._build at 0x7f98b1eb38c0>",
|
12 |
+
"forward": "<function ActorCriticPolicy.forward at 0x7f98b1eb3950>",
|
13 |
+
"_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x7f98b1eb39e0>",
|
14 |
+
"_predict": "<function ActorCriticPolicy._predict at 0x7f98b1eb3a70>",
|
15 |
+
"evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x7f98b1eb3b00>",
|
16 |
+
"get_distribution": "<function ActorCriticPolicy.get_distribution at 0x7f98b1eb3b90>",
|
17 |
+
"predict_values": "<function ActorCriticPolicy.predict_values at 0x7f98b1eb3c20>",
|
18 |
+
"__abstractmethods__": "frozenset()",
|
19 |
+
"_abc_impl": "<_abc_data object at 0x7f98b1ef79c0>"
|
20 |
+
},
|
21 |
+
"verbose": 1,
|
22 |
+
"policy_kwargs": {},
|
23 |
+
"observation_space": {
|
24 |
+
":type:": "<class 'gym.spaces.box.Box'>",
|
25 |
+
":serialized:": "gAWVnwEAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLCIWUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWIAAAAAAAAAAAAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/5RoCksIhZSMAUOUdJRSlIwEaGlnaJRoEiiWIAAAAAAAAAAAAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAf5RoCksIhZRoFXSUUpSMDWJvdW5kZWRfYmVsb3eUaBIolggAAAAAAAAAAAAAAAAAAACUaAeMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLCIWUaBV0lFKUjA1ib3VuZGVkX2Fib3ZllGgSKJYIAAAAAAAAAAAAAAAAAAAAlGghSwiFlGgVdJRSlIwKX25wX3JhbmRvbZROdWIu",
|
26 |
+
"dtype": "float32",
|
27 |
+
"_shape": [
|
28 |
+
8
|
29 |
+
],
|
30 |
+
"low": "[-inf -inf -inf -inf -inf -inf -inf -inf]",
|
31 |
+
"high": "[inf inf inf inf inf inf inf inf]",
|
32 |
+
"bounded_below": "[False False False False False False False False]",
|
33 |
+
"bounded_above": "[False False False False False False False False]",
|
34 |
+
"_np_random": null
|
35 |
+
},
|
36 |
+
"action_space": {
|
37 |
+
":type:": "<class 'gym.spaces.discrete.Discrete'>",
|
38 |
+
":serialized:": "gAWVggAAAAAAAACME2d5bS5zcGFjZXMuZGlzY3JldGWUjAhEaXNjcmV0ZZSTlCmBlH2UKIwBbpRLBIwGX3NoYXBllCmMBWR0eXBllIwFbnVtcHmUaAeTlIwCaTiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYowKX25wX3JhbmRvbZROdWIu",
|
39 |
+
"n": 4,
|
40 |
+
"_shape": [],
|
41 |
+
"dtype": "int64",
|
42 |
+
"_np_random": null
|
43 |
+
},
|
44 |
+
"n_envs": 16,
|
45 |
+
"num_timesteps": 524288,
|
46 |
+
"_total_timesteps": 500000,
|
47 |
+
"_num_timesteps_at_start": 0,
|
48 |
+
"seed": null,
|
49 |
+
"action_noise": null,
|
50 |
+
"start_time": 1651689068.346115,
|
51 |
+
"learning_rate": 0.0003,
|
52 |
+
"tensorboard_log": null,
|
53 |
+
"lr_schedule": {
|
54 |
+
":type:": "<class 'function'>",
|
55 |
+
":serialized:": "gAWVvwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwNX2J1aWx0aW5fdHlwZZSTlIwKTGFtYmRhVHlwZZSFlFKUKGgCjAhDb2RlVHlwZZSFlFKUKEsBSwBLAUsBSxNDBIgAUwCUToWUKYwBX5SFlIxIL3Vzci9sb2NhbC9saWIvcHl0aG9uMy43L2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lIwEZnVuY5RLgEMCAAGUjAN2YWyUhZQpdJRSlH2UKIwLX19wYWNrYWdlX1+UjBhzdGFibGVfYmFzZWxpbmVzMy5jb21tb26UjAhfX25hbWVfX5SMHnN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi51dGlsc5SMCF9fZmlsZV9flIxIL3Vzci9sb2NhbC9saWIvcHl0aG9uMy43L2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaCB9lH2UKGgXaA6MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgYjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz8zqSowVTJhhZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"
|
56 |
+
},
|
57 |
+
"_last_obs": {
|
58 |
+
":type:": "<class 'numpy.ndarray'>",
|
59 |
+
":serialized:": "gAWVdQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYAAgAAAAAAAG7/k76910A8cp3wujmA5Tj/MsG9v2kSOgAAgD8AAIA/0OyDPq5V1zvguQW7QMOiuDKFdT3Iyxk6AACAPwAAgD+NmZC99rh0ulqbj7vjUb04p8/puklXOjoAAIA/AACAP52qYL6KOi48pyayOhKWo7ih5K29WATWuQAAgD8AAIA/QFa1PvdEU70wuVk9/vIqPP9Rgb4A/mE9AACAPwAAgD9zBgY+j1VEO1b9YTrx7To3X9rjPEvLlbkAAIA/AACAP82QXb09aHs/5WOxvcSjk74/8iO8rDYnvQAAAAAAAAAA+lxFvinPC7xTcPO71R6luSElgj0B7pI6AACAPwAAgD+mpK29XANLuh2BezuEVS029RnJuBjbkLoAAIA/AACAP7Vymr48gz49lsXCPcNcr73VEmy7yX4jPAAAAAAAAAAA2nOTvVwnS7o+4Wc5EbEbMmBearsc4Ya4AACAPwAAgD92HJG+vJKePwIU+L492S++XXGLvkrAOr4AAAAAAAAAANqVsL17cIq6KtRaujRdCrb2DAc7I0d2OQAAgD8AAIA/M537vdeDarvKG/49gXZBvAo3N71HDxY+AACAPwAAgD8AAOe7bXImPpecpT0AOUC+SMv8PILIz70AAAAAAAAAAJpnoryFA5O5E+puu4khMbYXPsi6VmGhNQAAgD8AAIA/lIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksQSwiGlIwBQ5R0lFKULg=="
|
60 |
+
},
|
61 |
+
"_last_episode_starts": {
|
62 |
+
":type:": "<class 'numpy.ndarray'>",
|
63 |
+
":serialized:": "gAWVgwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSxCFlIwBQ5R0lFKULg=="
|
64 |
+
},
|
65 |
+
"_last_original_obs": null,
|
66 |
+
"_episode_num": 0,
|
67 |
+
"use_sde": false,
|
68 |
+
"sde_sample_freq": -1,
|
69 |
+
"_current_progress_remaining": -0.04857599999999995,
|
70 |
+
"ep_info_buffer": {
|
71 |
+
":type:": "<class 'collections.deque'>",
|
72 |
+
":serialized:": "gAWVeBAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMI7x8L0SEsYECUhpRSlIwBbJRN6AOMAXSUR0CJ433vhIe6dX2UKGgGaAloD0MI3xXB/1ZkYECUhpRSlGgVTegDaBZHQInmixxDLKV1fZQoaAZoCWgPQwgYPiKmRBFSQJSGlFKUaBVN6ANoFkdAifAwqqfe13V9lChoBmgJaA9DCPrRcMrc9WJAlIaUUpRoFU3oA2gWR0CJ9XN47ihndX2UKGgGaAloD0MIwK+RJAgGX0CUhpRSlGgVTegDaBZHQIn5g5DJEIB1fZQoaAZoCWgPQwjh0Fs8vBcnwJSGlFKUaBVNOgFoFkdAigpTFVDKHXV9lChoBmgJaA9DCNCdYP91DFtAlIaUUpRoFU3oA2gWR0CKJonVG0/odX2UKGgGaAloD0MIeomxTL9lYECUhpRSlGgVTegDaBZHQIosF8qnWJ91fZQoaAZoCWgPQwjlR/yKNf5dQJSGlFKUaBVN6ANoFkdAiiykLYwqRXV9lChoBmgJaA9DCEeNCTGXmmJAlIaUUpRoFU3oA2gWR0CKSSVvddmhdX2UKGgGaAloD0MIq5Se6SVrYECUhpRSlGgVTegDaBZHQIpNTyauwHJ1fZQoaAZoCWgPQwg7/gsEAdxdQJSGlFKUaBVN6ANoFkdAik+r6UJOWXV9lChoBmgJaA9DCAx4mWGjHFlAlIaUUpRoFU3oA2gWR0CKWeuLaVUudX2UKGgGaAloD0MI6BIOvcWYXkCUhpRSlGgVTegDaBZHQIpek5hjOLR1fZQoaAZoCWgPQwjequtQTapgQJSGlFKUaBVN6ANoFkdAimHdhiLEUHV9lChoBmgJaA9DCFCqfToeCFlAlIaUUpRoFU3oA2gWR0CKZRjXnQpndX2UKGgGaAloD0MINpIE4QrAW0CUhpRSlGgVTegDaBZHQIpmGNR3u/l1fZQoaAZoCWgPQwiSrwRSYkRcQJSGlFKUaBVN6ANoFkdAim1e4Cp3o3V9lChoBmgJaA9DCG1TPC6qiTdAlIaUUpRoFUv4aBZHQIp3duWKMvR1fZQoaAZoCWgPQwiqfxDJkI9eQJSGlFKUaBVN6ANoFkdAineyYG+sYHV9lChoBmgJaA9DCM0iFFtBpGFAlIaUUpRoFU3oA2gWR0CKfJs3Q2MsdX2UKGgGaAloD0MIy5wui4ldKcCUhpRSlGgVTRsBaBZHQIp/etEG7jF1fZQoaAZoCWgPQwiQ3Jp0W49eQJSGlFKUaBVN6ANoFkdAioBrk0aZQnV9lChoBmgJaA9DCHizBu+rl1pAlIaUUpRoFU3oA2gWR0CKj/9Q40djdX2UKGgGaAloD0MIhnMNMzT7X0CUhpRSlGgVTegDaBZHQItm2aMJhOR1fZQoaAZoCWgPQwjuPsdHi/dfQJSGlFKUaBVN6ANoFkdAi2vILofSyHV9lChoBmgJaA9DCMFVnkDYtFhAlIaUUpRoFU3oA2gWR0CLbEXhOxjbdX2UKGgGaAloD0MIYkm5+xyXW0CUhpRSlGgVTegDaBZHQIuF7rzGxUx1fZQoaAZoCWgPQwimRBK9jC9gQJSGlFKUaBVN6ANoFkdAi4msyJsO5XV9lChoBmgJaA9DCLWJk/sdclxAlIaUUpRoFU3oA2gWR0CLi/V1fVqfdX2UKGgGaAloD0MIprqAlxlWCUCUhpRSlGgVTUsBaBZHQIuPq/wiJO51fZQoaAZoCWgPQwi+9sySgMlqQJSGlFKUaBVNZQFoFkdAi6FJAdGRWHV9lChoBmgJaA9DCNNqSNxjP2BAlIaUUpRoFU3oA2gWR0CLp04mTkhidX2UKGgGaAloD0MILPNWXYeHYECUhpRSlGgVTegDaBZHQIuqWZ5Rjz91fZQoaAZoCWgPQwgqdF5jF6JiQJSGlFKUaBVN6ANoFkdAi6sjDCP6sXV9lChoBmgJaA9DCJwzorQ36WBAlIaUUpRoFU3oA2gWR0CLsd9zfaYedX2UKGgGaAloD0MIYAMixJXQX0CUhpRSlGgVTegDaBZHQIu69Sl3yI51fZQoaAZoCWgPQwjON6J7VkBgQJSGlFKUaBVN6ANoFkdAi7svMjeKsXV9lChoBmgJaA9DCE0PCkrRbGBAlIaUUpRoFU3oA2gWR0CLv6qpcX3ydX2UKGgGaAloD0MIRb3g05z8WkCUhpRSlGgVTegDaBZHQIvCIOWjXWh1fZQoaAZoCWgPQwjKUuv9RisXwJSGlFKUaBVNOQFoFkdAi8KWnbZezHV9lChoBmgJaA9DCDTaqiSyjldAlIaUUpRoFU3oA2gWR0CLwuDqW1MNdX2UKGgGaAloD0MIfa1LjdBXW0CUhpRSlGgVTegDaBZHQIvOAJC0F8p1fZQoaAZoCWgPQwjSVE/mH/0twJSGlFKUaBVNMQFoFkdAi+KLkS26TXV9lChoBmgJaA9DCGaGjbJ+DmJAlIaUUpRoFU3oA2gWR0CL5UKl54W2dX2UKGgGaAloD0MIev1JfO5MXECUhpRSlGgVTegDaBZHQIwBIR7JGON1fZQoaAZoCWgPQwj4F0FjpnRjQJSGlFKUaBVN6ANoFkdAjATWU8mrsHV9lChoBmgJaA9DCPJfIAiQkVtAlIaUUpRoFU3oA2gWR0CMBtoouwotdX2UKGgGaAloD0MI1zTvOEWRWUCUhpRSlGgVTegDaBZHQIwJK08eS0V1fZQoaAZoCWgPQwjIe9XKBFhiQJSGlFKUaBVN6ANoFkdAjBXlVT72tnV9lChoBmgJaA9DCL9k48EWSyZAlIaUUpRoFUvEaBZHQIwWGaF23a11fZQoaAZoCWgPQwgS+wRQjO1fQJSGlFKUaBVN6ANoFkdAjBirAgxJunV9lChoBmgJaA9DCKzgtyHG+VtAlIaUUpRoFU3oA2gWR0CMGV9LHuJDdX2UKGgGaAloD0MI1uHoKt2rYkCUhpRSlGgVTegDaBZHQIwfmGwiaAp1fZQoaAZoCWgPQwhqFJLM6g1eQJSGlFKUaBVN6ANoFkdAjCg/8/D+BHV9lChoBmgJaA9DCIwsmWP5nmNAlIaUUpRoFU3oA2gWR0CMKHKaG5+ZdX2UKGgGaAloD0MI8uzyrQ9DRkCUhpRSlGgVS8loFkdAjCx86/7BPHV9lChoBmgJaA9DCK34hsJnFWFAlIaUUpRoFU3oA2gWR0CMLLw9aEBbdX2UKGgGaAloD0MIZsHEH0WKWUCUhpRSlGgVTegDaBZHQIwvIC8vmHR1fZQoaAZoCWgPQwiIZTOHJO1iQJSGlFKUaBVN6ANoFkdAjC/nhCMP0HV9lChoBmgJaA9DCP0v16IFHl1AlIaUUpRoFU3oA2gWR0CMO2CA+Y+jdX2UKGgGaAloD0MI/mK2ZFVUGkCUhpRSlGgVS+VoFkdAjQRNU4rBkHV9lChoBmgJaA9DCL4z2qqkNWpAlIaUUpRoFU0KAmgWR0CNB6dlNDc/dX2UKGgGaAloD0MIyeNp+YETYECUhpRSlGgVTegDaBZHQI0Mcz9CNS91fZQoaAZoCWgPQwjdeeI5W6VjQJSGlFKUaBVN6ANoFkdAjQ6jr7fpEHV9lChoBmgJaA9DCFEWvr5WiGlAlIaUUpRoFU3BAWgWR0CNGtufEn9fdX2UKGgGaAloD0MI9wDdl3MxcECUhpRSlGgVTWMBaBZHQI0eidH2AXl1fZQoaAZoCWgPQwiHUKVmD6Q/QJSGlFKUaBVNEwFoFkdAjSFZaNdZ73V9lChoBmgJaA9DCEkqU8zBC2JAlIaUUpRoFU3oA2gWR0CNKNMCcPOIdX2UKGgGaAloD0MI7KLogY9OW0CUhpRSlGgVTegDaBZHQI0q5AY51eV1fZQoaAZoCWgPQwi6gQLv5E9fQJSGlFKUaBVN6ANoFkdAjS0xjjJdSnV9lChoBmgJaA9DCHF1AMRdvWJAlIaUUpRoFU3oA2gWR0CNOvckdFOPdX2UKGgGaAloD0MI2jhiLT4RWkCUhpRSlGgVTegDaBZHQI0+mOdXko51fZQoaAZoCWgPQwjlt+hkKdVnQJSGlFKUaBVN6ANoFkdAjUW/wAlv63V9lChoBmgJaA9DCDWyKy2jFmRAlIaUUpRoFU3oA2gWR0CNT7fek56udX2UKGgGaAloD0MIYYpyafzDXkCUhpRSlGgVTegDaBZHQI1P9Ed/8VJ1fZQoaAZoCWgPQwj4ja89sxNcQJSGlFKUaBVN6ANoFkdAjVTRKg7HQ3V9lChoBmgJaA9DCBpvK702SF5AlIaUUpRoFU3oA2gWR0CNVRBzFMqSdX2UKGgGaAloD0MIXcKht3iQX0CUhpRSlGgVTegDaBZHQI14fjENvwV1fZQoaAZoCWgPQwgGZ/D3i5ddQJSGlFKUaBVN6ANoFkdAjX4xVhkRSXV9lChoBmgJaA9DCF+y8WCLlmNAlIaUUpRoFU3oA2gWR0CNgON/e+EidX2UKGgGaAloD0MIcD51rFLNX0CUhpRSlGgVTegDaBZHQI2OnMB6rvN1fZQoaAZoCWgPQwiCkZc1sRdcQJSGlFKUaBVN6ANoFkdAjZLSx7iQ1nV9lChoBmgJaA9DCORnI9fNXGBAlIaUUpRoFU3oA2gWR0CNlb/FzdULdX2UKGgGaAloD0MIufscH625YkCUhpRSlGgVTegDaBZHQI2dYZZSvTx1fZQoaAZoCWgPQwimttRBXulgQJSGlFKUaBVN6ANoFkdAjZ9v8yeqaXV9lChoBmgJaA9DCKt3uB2apWNAlIaUUpRoFU3oA2gWR0CNocvbGm1qdX2UKGgGaAloD0MIYwgAjj3zQcCUhpRSlGgVS/poFkdAja6tZ3cHnnV9lChoBmgJaA9DCG4VxEDX2m5AlIaUUpRoFU3bAWgWR0CNr4fh/Aj6dX2UKGgGaAloD0MIGHsvvujHYECUhpRSlGgVTegDaBZHQI2wGrIYFaB1fZQoaAZoCWgPQwhdixag7X5kQJSGlFKUaBVN6ANoFkdAjbO/yPMjeXV9lChoBmgJaA9DCHzuBPuvy1hAlIaUUpRoFU3oA2gWR0CNu3/Ot4iYdX2UKGgGaAloD0MILZeNznkCY0CUhpRSlGgVTegDaBZHQI3Fu0NSZSh1fZQoaAZoCWgPQwjFceDVcp5ZQJSGlFKUaBVN6ANoFkdAjcXzVc2R73V9lChoBmgJaA9DCJLPK556DEbAlIaUUpRoFUvZaBZHQI3JgwyqMm51fZQoaAZoCWgPQwjS4La28ARgQJSGlFKUaBVN6ANoFkdAjcqHWrfce3V9lChoBmgJaA9DCHwMVpxq32FAlIaUUpRoFU3oA2gWR0CNysDEFW4mdX2UKGgGaAloD0MIJm+Ame8QHECUhpRSlGgVS/poFkdAjcvK15Sm7HV9lChoBmgJaA9DCHfbheY6dSlAlIaUUpRoFUvdaBZHQI3etY0VJtl1fZQoaAZoCWgPQwiU9gZfmMzpv5SGlFKUaBVL3mgWR0CN4y7uDzy0dWUu"
|
73 |
+
},
|
74 |
+
"ep_success_buffer": {
|
75 |
+
":type:": "<class 'collections.deque'>",
|
76 |
+
":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="
|
77 |
+
},
|
78 |
+
"_n_updates": 160,
|
79 |
+
"n_steps": 2048,
|
80 |
+
"gamma": 0.99,
|
81 |
+
"gae_lambda": 0.95,
|
82 |
+
"ent_coef": 0.0,
|
83 |
+
"vf_coef": 0.5,
|
84 |
+
"max_grad_norm": 0.5,
|
85 |
+
"batch_size": 64,
|
86 |
+
"n_epochs": 10,
|
87 |
+
"clip_range": {
|
88 |
+
":type:": "<class 'function'>",
|
89 |
+
":serialized:": "gAWVvwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwNX2J1aWx0aW5fdHlwZZSTlIwKTGFtYmRhVHlwZZSFlFKUKGgCjAhDb2RlVHlwZZSFlFKUKEsBSwBLAUsBSxNDBIgAUwCUToWUKYwBX5SFlIxIL3Vzci9sb2NhbC9saWIvcHl0aG9uMy43L2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lIwEZnVuY5RLgEMCAAGUjAN2YWyUhZQpdJRSlH2UKIwLX19wYWNrYWdlX1+UjBhzdGFibGVfYmFzZWxpbmVzMy5jb21tb26UjAhfX25hbWVfX5SMHnN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi51dGlsc5SMCF9fZmlsZV9flIxIL3Vzci9sb2NhbC9saWIvcHl0aG9uMy43L2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaCB9lH2UKGgXaA6MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgYjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz/JmZmZmZmahZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"
|
90 |
+
},
|
91 |
+
"clip_range_vf": null,
|
92 |
+
"normalize_advantage": true,
|
93 |
+
"target_kl": null
|
94 |
+
}
|
MlpPolicy/policy.optimizer.pth
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:d178047e695118fa6b1d0a508f5e0b2b194d36a92cd9b5592f95feb652dfe7c2
|
3 |
+
size 84893
|
MlpPolicy/policy.pth
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:0b7af01770c081cef62b687c055f274e47b4d649f2da253475dcc46672ab4a63
|
3 |
+
size 43201
|
MlpPolicy/pytorch_variables.pth
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:d030ad8db708280fcae77d87e973102039acd23a11bdecc3db8eb6c0ac940ee1
|
3 |
+
size 431
|
MlpPolicy/system_info.txt
ADDED
@@ -0,0 +1,7 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
OS: Linux-5.4.188+-x86_64-with-Ubuntu-18.04-bionic #1 SMP Sun Apr 24 10:03:06 PDT 2022
|
2 |
+
Python: 3.7.13
|
3 |
+
Stable-Baselines3: 1.5.0
|
4 |
+
PyTorch: 1.11.0+cu113
|
5 |
+
GPU Enabled: True
|
6 |
+
Numpy: 1.21.6
|
7 |
+
Gym: 0.21.0
|
README.md
ADDED
@@ -0,0 +1,28 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
---
|
2 |
+
library_name: stable-baselines3
|
3 |
+
tags:
|
4 |
+
- LunarLander-v2
|
5 |
+
- deep-reinforcement-learning
|
6 |
+
- reinforcement-learning
|
7 |
+
- stable-baselines3
|
8 |
+
model-index:
|
9 |
+
- name: ppo-LunarLander-v2
|
10 |
+
results:
|
11 |
+
- metrics:
|
12 |
+
- type: mean_reward
|
13 |
+
value: 159.70 +/- 97.42
|
14 |
+
name: mean_reward
|
15 |
+
task:
|
16 |
+
type: reinforcement-learning
|
17 |
+
name: reinforcement-learning
|
18 |
+
dataset:
|
19 |
+
name: LunarLander-v2
|
20 |
+
type: LunarLander-v2
|
21 |
+
---
|
22 |
+
|
23 |
+
# **ppo-LunarLander-v2** Agent playing **LunarLander-v2**
|
24 |
+
This is a trained model of a **ppo-LunarLander-v2** agent playing **LunarLander-v2** using the [stable-baselines3 library](https://github.com/DLR-RM/stable-baselines3).
|
25 |
+
|
26 |
+
## Usage (with Stable-baselines3)
|
27 |
+
TODO: Add your code
|
28 |
+
|
config.json
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
{"policy_class": {":type:": "<class 'abc.ABCMeta'>", ":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==", "__module__": "stable_baselines3.common.policies", "__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param sde_net_arch: Network architecture for extracting features\n when using gSDE. If None, the latent features from the policy will be used.\n Pass an empty list to use the states as features.\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ", "__init__": "<function ActorCriticPolicy.__init__ at 0x7f98b1eb3680>", "_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x7f98b1eb3710>", "reset_noise": "<function ActorCriticPolicy.reset_noise at 0x7f98b1eb37a0>", "_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x7f98b1eb3830>", "_build": "<function ActorCriticPolicy._build at 0x7f98b1eb38c0>", "forward": "<function ActorCriticPolicy.forward at 0x7f98b1eb3950>", "_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x7f98b1eb39e0>", "_predict": "<function ActorCriticPolicy._predict at 0x7f98b1eb3a70>", "evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x7f98b1eb3b00>", "get_distribution": "<function ActorCriticPolicy.get_distribution at 0x7f98b1eb3b90>", "predict_values": "<function ActorCriticPolicy.predict_values at 0x7f98b1eb3c20>", "__abstractmethods__": "frozenset()", "_abc_impl": "<_abc_data object at 0x7f98b1ef79c0>"}, "verbose": 1, "policy_kwargs": {}, "observation_space": {":type:": "<class 'gym.spaces.box.Box'>", ":serialized:": "gAWVnwEAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLCIWUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWIAAAAAAAAAAAAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/5RoCksIhZSMAUOUdJRSlIwEaGlnaJRoEiiWIAAAAAAAAAAAAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAf5RoCksIhZRoFXSUUpSMDWJvdW5kZWRfYmVsb3eUaBIolggAAAAAAAAAAAAAAAAAAACUaAeMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLCIWUaBV0lFKUjA1ib3VuZGVkX2Fib3ZllGgSKJYIAAAAAAAAAAAAAAAAAAAAlGghSwiFlGgVdJRSlIwKX25wX3JhbmRvbZROdWIu", "dtype": "float32", "_shape": [8], "low": "[-inf -inf -inf -inf -inf -inf -inf -inf]", "high": "[inf inf inf inf inf inf inf inf]", "bounded_below": "[False False False False False False False False]", "bounded_above": "[False False False False False False False False]", "_np_random": null}, "action_space": {":type:": "<class 'gym.spaces.discrete.Discrete'>", ":serialized:": "gAWVggAAAAAAAACME2d5bS5zcGFjZXMuZGlzY3JldGWUjAhEaXNjcmV0ZZSTlCmBlH2UKIwBbpRLBIwGX3NoYXBllCmMBWR0eXBllIwFbnVtcHmUaAeTlIwCaTiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYowKX25wX3JhbmRvbZROdWIu", "n": 4, "_shape": [], "dtype": "int64", "_np_random": null}, "n_envs": 16, "num_timesteps": 524288, "_total_timesteps": 500000, "_num_timesteps_at_start": 0, "seed": null, "action_noise": null, "start_time": 1651689068.346115, "learning_rate": 0.0003, "tensorboard_log": null, "lr_schedule": {":type:": "<class 'function'>", ":serialized:": "gAWVvwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwNX2J1aWx0aW5fdHlwZZSTlIwKTGFtYmRhVHlwZZSFlFKUKGgCjAhDb2RlVHlwZZSFlFKUKEsBSwBLAUsBSxNDBIgAUwCUToWUKYwBX5SFlIxIL3Vzci9sb2NhbC9saWIvcHl0aG9uMy43L2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lIwEZnVuY5RLgEMCAAGUjAN2YWyUhZQpdJRSlH2UKIwLX19wYWNrYWdlX1+UjBhzdGFibGVfYmFzZWxpbmVzMy5jb21tb26UjAhfX25hbWVfX5SMHnN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi51dGlsc5SMCF9fZmlsZV9flIxIL3Vzci9sb2NhbC9saWIvcHl0aG9uMy43L2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaCB9lH2UKGgXaA6MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgYjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz8zqSowVTJhhZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"}, "_last_obs": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVdQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYAAgAAAAAAAG7/k76910A8cp3wujmA5Tj/MsG9v2kSOgAAgD8AAIA/0OyDPq5V1zvguQW7QMOiuDKFdT3Iyxk6AACAPwAAgD+NmZC99rh0ulqbj7vjUb04p8/puklXOjoAAIA/AACAP52qYL6KOi48pyayOhKWo7ih5K29WATWuQAAgD8AAIA/QFa1PvdEU70wuVk9/vIqPP9Rgb4A/mE9AACAPwAAgD9zBgY+j1VEO1b9YTrx7To3X9rjPEvLlbkAAIA/AACAP82QXb09aHs/5WOxvcSjk74/8iO8rDYnvQAAAAAAAAAA+lxFvinPC7xTcPO71R6luSElgj0B7pI6AACAPwAAgD+mpK29XANLuh2BezuEVS029RnJuBjbkLoAAIA/AACAP7Vymr48gz49lsXCPcNcr73VEmy7yX4jPAAAAAAAAAAA2nOTvVwnS7o+4Wc5EbEbMmBearsc4Ya4AACAPwAAgD92HJG+vJKePwIU+L492S++XXGLvkrAOr4AAAAAAAAAANqVsL17cIq6KtRaujRdCrb2DAc7I0d2OQAAgD8AAIA/M537vdeDarvKG/49gXZBvAo3N71HDxY+AACAPwAAgD8AAOe7bXImPpecpT0AOUC+SMv8PILIz70AAAAAAAAAAJpnoryFA5O5E+puu4khMbYXPsi6VmGhNQAAgD8AAIA/lIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksQSwiGlIwBQ5R0lFKULg=="}, "_last_episode_starts": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVgwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSxCFlIwBQ5R0lFKULg=="}, "_last_original_obs": null, "_episode_num": 0, "use_sde": false, "sde_sample_freq": -1, "_current_progress_remaining": -0.04857599999999995, "ep_info_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVeBAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMI7x8L0SEsYECUhpRSlIwBbJRN6AOMAXSUR0CJ433vhIe6dX2UKGgGaAloD0MI3xXB/1ZkYECUhpRSlGgVTegDaBZHQInmixxDLKV1fZQoaAZoCWgPQwgYPiKmRBFSQJSGlFKUaBVN6ANoFkdAifAwqqfe13V9lChoBmgJaA9DCPrRcMrc9WJAlIaUUpRoFU3oA2gWR0CJ9XN47ihndX2UKGgGaAloD0MIwK+RJAgGX0CUhpRSlGgVTegDaBZHQIn5g5DJEIB1fZQoaAZoCWgPQwjh0Fs8vBcnwJSGlFKUaBVNOgFoFkdAigpTFVDKHXV9lChoBmgJaA9DCNCdYP91DFtAlIaUUpRoFU3oA2gWR0CKJonVG0/odX2UKGgGaAloD0MIeomxTL9lYECUhpRSlGgVTegDaBZHQIosF8qnWJ91fZQoaAZoCWgPQwjlR/yKNf5dQJSGlFKUaBVN6ANoFkdAiiykLYwqRXV9lChoBmgJaA9DCEeNCTGXmmJAlIaUUpRoFU3oA2gWR0CKSSVvddmhdX2UKGgGaAloD0MIq5Se6SVrYECUhpRSlGgVTegDaBZHQIpNTyauwHJ1fZQoaAZoCWgPQwg7/gsEAdxdQJSGlFKUaBVN6ANoFkdAik+r6UJOWXV9lChoBmgJaA9DCAx4mWGjHFlAlIaUUpRoFU3oA2gWR0CKWeuLaVUudX2UKGgGaAloD0MI6BIOvcWYXkCUhpRSlGgVTegDaBZHQIpek5hjOLR1fZQoaAZoCWgPQwjequtQTapgQJSGlFKUaBVN6ANoFkdAimHdhiLEUHV9lChoBmgJaA9DCFCqfToeCFlAlIaUUpRoFU3oA2gWR0CKZRjXnQpndX2UKGgGaAloD0MINpIE4QrAW0CUhpRSlGgVTegDaBZHQIpmGNR3u/l1fZQoaAZoCWgPQwiSrwRSYkRcQJSGlFKUaBVN6ANoFkdAim1e4Cp3o3V9lChoBmgJaA9DCG1TPC6qiTdAlIaUUpRoFUv4aBZHQIp3duWKMvR1fZQoaAZoCWgPQwiqfxDJkI9eQJSGlFKUaBVN6ANoFkdAineyYG+sYHV9lChoBmgJaA9DCM0iFFtBpGFAlIaUUpRoFU3oA2gWR0CKfJs3Q2MsdX2UKGgGaAloD0MIy5wui4ldKcCUhpRSlGgVTRsBaBZHQIp/etEG7jF1fZQoaAZoCWgPQwiQ3Jp0W49eQJSGlFKUaBVN6ANoFkdAioBrk0aZQnV9lChoBmgJaA9DCHizBu+rl1pAlIaUUpRoFU3oA2gWR0CKj/9Q40djdX2UKGgGaAloD0MIhnMNMzT7X0CUhpRSlGgVTegDaBZHQItm2aMJhOR1fZQoaAZoCWgPQwjuPsdHi/dfQJSGlFKUaBVN6ANoFkdAi2vILofSyHV9lChoBmgJaA9DCMFVnkDYtFhAlIaUUpRoFU3oA2gWR0CLbEXhOxjbdX2UKGgGaAloD0MIYkm5+xyXW0CUhpRSlGgVTegDaBZHQIuF7rzGxUx1fZQoaAZoCWgPQwimRBK9jC9gQJSGlFKUaBVN6ANoFkdAi4msyJsO5XV9lChoBmgJaA9DCLWJk/sdclxAlIaUUpRoFU3oA2gWR0CLi/V1fVqfdX2UKGgGaAloD0MIprqAlxlWCUCUhpRSlGgVTUsBaBZHQIuPq/wiJO51fZQoaAZoCWgPQwi+9sySgMlqQJSGlFKUaBVNZQFoFkdAi6FJAdGRWHV9lChoBmgJaA9DCNNqSNxjP2BAlIaUUpRoFU3oA2gWR0CLp04mTkhidX2UKGgGaAloD0MILPNWXYeHYECUhpRSlGgVTegDaBZHQIuqWZ5Rjz91fZQoaAZoCWgPQwgqdF5jF6JiQJSGlFKUaBVN6ANoFkdAi6sjDCP6sXV9lChoBmgJaA9DCJwzorQ36WBAlIaUUpRoFU3oA2gWR0CLsd9zfaYedX2UKGgGaAloD0MIYAMixJXQX0CUhpRSlGgVTegDaBZHQIu69Sl3yI51fZQoaAZoCWgPQwjON6J7VkBgQJSGlFKUaBVN6ANoFkdAi7svMjeKsXV9lChoBmgJaA9DCE0PCkrRbGBAlIaUUpRoFU3oA2gWR0CLv6qpcX3ydX2UKGgGaAloD0MIRb3g05z8WkCUhpRSlGgVTegDaBZHQIvCIOWjXWh1fZQoaAZoCWgPQwjKUuv9RisXwJSGlFKUaBVNOQFoFkdAi8KWnbZezHV9lChoBmgJaA9DCDTaqiSyjldAlIaUUpRoFU3oA2gWR0CLwuDqW1MNdX2UKGgGaAloD0MIfa1LjdBXW0CUhpRSlGgVTegDaBZHQIvOAJC0F8p1fZQoaAZoCWgPQwjSVE/mH/0twJSGlFKUaBVNMQFoFkdAi+KLkS26TXV9lChoBmgJaA9DCGaGjbJ+DmJAlIaUUpRoFU3oA2gWR0CL5UKl54W2dX2UKGgGaAloD0MIev1JfO5MXECUhpRSlGgVTegDaBZHQIwBIR7JGON1fZQoaAZoCWgPQwj4F0FjpnRjQJSGlFKUaBVN6ANoFkdAjATWU8mrsHV9lChoBmgJaA9DCPJfIAiQkVtAlIaUUpRoFU3oA2gWR0CMBtoouwotdX2UKGgGaAloD0MI1zTvOEWRWUCUhpRSlGgVTegDaBZHQIwJK08eS0V1fZQoaAZoCWgPQwjIe9XKBFhiQJSGlFKUaBVN6ANoFkdAjBXlVT72tnV9lChoBmgJaA9DCL9k48EWSyZAlIaUUpRoFUvEaBZHQIwWGaF23a11fZQoaAZoCWgPQwgS+wRQjO1fQJSGlFKUaBVN6ANoFkdAjBirAgxJunV9lChoBmgJaA9DCKzgtyHG+VtAlIaUUpRoFU3oA2gWR0CMGV9LHuJDdX2UKGgGaAloD0MI1uHoKt2rYkCUhpRSlGgVTegDaBZHQIwfmGwiaAp1fZQoaAZoCWgPQwhqFJLM6g1eQJSGlFKUaBVN6ANoFkdAjCg/8/D+BHV9lChoBmgJaA9DCIwsmWP5nmNAlIaUUpRoFU3oA2gWR0CMKHKaG5+ZdX2UKGgGaAloD0MI8uzyrQ9DRkCUhpRSlGgVS8loFkdAjCx86/7BPHV9lChoBmgJaA9DCK34hsJnFWFAlIaUUpRoFU3oA2gWR0CMLLw9aEBbdX2UKGgGaAloD0MIZsHEH0WKWUCUhpRSlGgVTegDaBZHQIwvIC8vmHR1fZQoaAZoCWgPQwiIZTOHJO1iQJSGlFKUaBVN6ANoFkdAjC/nhCMP0HV9lChoBmgJaA9DCP0v16IFHl1AlIaUUpRoFU3oA2gWR0CMO2CA+Y+jdX2UKGgGaAloD0MI/mK2ZFVUGkCUhpRSlGgVS+VoFkdAjQRNU4rBkHV9lChoBmgJaA9DCL4z2qqkNWpAlIaUUpRoFU0KAmgWR0CNB6dlNDc/dX2UKGgGaAloD0MIyeNp+YETYECUhpRSlGgVTegDaBZHQI0Mcz9CNS91fZQoaAZoCWgPQwjdeeI5W6VjQJSGlFKUaBVN6ANoFkdAjQ6jr7fpEHV9lChoBmgJaA9DCFEWvr5WiGlAlIaUUpRoFU3BAWgWR0CNGtufEn9fdX2UKGgGaAloD0MI9wDdl3MxcECUhpRSlGgVTWMBaBZHQI0eidH2AXl1fZQoaAZoCWgPQwiHUKVmD6Q/QJSGlFKUaBVNEwFoFkdAjSFZaNdZ73V9lChoBmgJaA9DCEkqU8zBC2JAlIaUUpRoFU3oA2gWR0CNKNMCcPOIdX2UKGgGaAloD0MI7KLogY9OW0CUhpRSlGgVTegDaBZHQI0q5AY51eV1fZQoaAZoCWgPQwi6gQLv5E9fQJSGlFKUaBVN6ANoFkdAjS0xjjJdSnV9lChoBmgJaA9DCHF1AMRdvWJAlIaUUpRoFU3oA2gWR0CNOvckdFOPdX2UKGgGaAloD0MI2jhiLT4RWkCUhpRSlGgVTegDaBZHQI0+mOdXko51fZQoaAZoCWgPQwjlt+hkKdVnQJSGlFKUaBVN6ANoFkdAjUW/wAlv63V9lChoBmgJaA9DCDWyKy2jFmRAlIaUUpRoFU3oA2gWR0CNT7fek56udX2UKGgGaAloD0MIYYpyafzDXkCUhpRSlGgVTegDaBZHQI1P9Ed/8VJ1fZQoaAZoCWgPQwj4ja89sxNcQJSGlFKUaBVN6ANoFkdAjVTRKg7HQ3V9lChoBmgJaA9DCBpvK702SF5AlIaUUpRoFU3oA2gWR0CNVRBzFMqSdX2UKGgGaAloD0MIXcKht3iQX0CUhpRSlGgVTegDaBZHQI14fjENvwV1fZQoaAZoCWgPQwgGZ/D3i5ddQJSGlFKUaBVN6ANoFkdAjX4xVhkRSXV9lChoBmgJaA9DCF+y8WCLlmNAlIaUUpRoFU3oA2gWR0CNgON/e+EidX2UKGgGaAloD0MIcD51rFLNX0CUhpRSlGgVTegDaBZHQI2OnMB6rvN1fZQoaAZoCWgPQwiCkZc1sRdcQJSGlFKUaBVN6ANoFkdAjZLSx7iQ1nV9lChoBmgJaA9DCORnI9fNXGBAlIaUUpRoFU3oA2gWR0CNlb/FzdULdX2UKGgGaAloD0MIufscH625YkCUhpRSlGgVTegDaBZHQI2dYZZSvTx1fZQoaAZoCWgPQwimttRBXulgQJSGlFKUaBVN6ANoFkdAjZ9v8yeqaXV9lChoBmgJaA9DCKt3uB2apWNAlIaUUpRoFU3oA2gWR0CNocvbGm1qdX2UKGgGaAloD0MIYwgAjj3zQcCUhpRSlGgVS/poFkdAja6tZ3cHnnV9lChoBmgJaA9DCG4VxEDX2m5AlIaUUpRoFU3bAWgWR0CNr4fh/Aj6dX2UKGgGaAloD0MIGHsvvujHYECUhpRSlGgVTegDaBZHQI2wGrIYFaB1fZQoaAZoCWgPQwhdixag7X5kQJSGlFKUaBVN6ANoFkdAjbO/yPMjeXV9lChoBmgJaA9DCHzuBPuvy1hAlIaUUpRoFU3oA2gWR0CNu3/Ot4iYdX2UKGgGaAloD0MILZeNznkCY0CUhpRSlGgVTegDaBZHQI3Fu0NSZSh1fZQoaAZoCWgPQwjFceDVcp5ZQJSGlFKUaBVN6ANoFkdAjcXzVc2R73V9lChoBmgJaA9DCJLPK556DEbAlIaUUpRoFUvZaBZHQI3JgwyqMm51fZQoaAZoCWgPQwjS4La28ARgQJSGlFKUaBVN6ANoFkdAjcqHWrfce3V9lChoBmgJaA9DCHwMVpxq32FAlIaUUpRoFU3oA2gWR0CNysDEFW4mdX2UKGgGaAloD0MIJm+Ame8QHECUhpRSlGgVS/poFkdAjcvK15Sm7HV9lChoBmgJaA9DCHfbheY6dSlAlIaUUpRoFUvdaBZHQI3etY0VJtl1fZQoaAZoCWgPQwiU9gZfmMzpv5SGlFKUaBVL3mgWR0CN4y7uDzy0dWUu"}, "ep_success_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="}, "_n_updates": 160, "n_steps": 2048, "gamma": 0.99, "gae_lambda": 0.95, "ent_coef": 0.0, "vf_coef": 0.5, "max_grad_norm": 0.5, "batch_size": 64, "n_epochs": 10, "clip_range": {":type:": "<class 'function'>", ":serialized:": "gAWVvwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwNX2J1aWx0aW5fdHlwZZSTlIwKTGFtYmRhVHlwZZSFlFKUKGgCjAhDb2RlVHlwZZSFlFKUKEsBSwBLAUsBSxNDBIgAUwCUToWUKYwBX5SFlIxIL3Vzci9sb2NhbC9saWIvcHl0aG9uMy43L2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lIwEZnVuY5RLgEMCAAGUjAN2YWyUhZQpdJRSlH2UKIwLX19wYWNrYWdlX1+UjBhzdGFibGVfYmFzZWxpbmVzMy5jb21tb26UjAhfX25hbWVfX5SMHnN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi51dGlsc5SMCF9fZmlsZV9flIxIL3Vzci9sb2NhbC9saWIvcHl0aG9uMy43L2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaCB9lH2UKGgXaA6MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgYjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz/JmZmZmZmahZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"}, "clip_range_vf": null, "normalize_advantage": true, "target_kl": null, "system_info": {"OS": "Linux-5.4.188+-x86_64-with-Ubuntu-18.04-bionic #1 SMP Sun Apr 24 10:03:06 PDT 2022", "Python": "3.7.13", "Stable-Baselines3": "1.5.0", "PyTorch": "1.11.0+cu113", "GPU Enabled": "True", "Numpy": "1.21.6", "Gym": "0.21.0"}}
|
replay.mp4
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:3f457a0c65f238408135bf0133b9dd9a4b6425ae95e5b219e47f258fc5d82e72
|
3 |
+
size 257203
|
results.json
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
{"mean_reward": 159.69878192017214, "std_reward": 97.42413394337414, "is_deterministic": true, "n_eval_episodes": 10, "eval_datetime": "2022-05-04T18:47:38.010216"}
|