prithvinambiar commited on
Commit
d311bad
1 Parent(s): 09345b7

First Unit Deep RL Course

Browse files
.gitattributes CHANGED
@@ -25,3 +25,4 @@ saved_model/**/* filter=lfs diff=lfs merge=lfs -text
25
  *.zip filter=lfs diff=lfs merge=lfs -text
26
  *.zstandard filter=lfs diff=lfs merge=lfs -text
27
  *tfevents* filter=lfs diff=lfs merge=lfs -text
 
 
25
  *.zip filter=lfs diff=lfs merge=lfs -text
26
  *.zstandard filter=lfs diff=lfs merge=lfs -text
27
  *tfevents* filter=lfs diff=lfs merge=lfs -text
28
+ *.mp4 filter=lfs diff=lfs merge=lfs -text
MlpPolicy.zip ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:258000a983219db8fdafe027fab96c92959633888abf4fe09eb8eaf37ff3f42c
3
+ size 144097
MlpPolicy/_stable_baselines3_version ADDED
@@ -0,0 +1 @@
 
 
1
+ 1.5.0
MlpPolicy/data ADDED
@@ -0,0 +1,94 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "policy_class": {
3
+ ":type:": "<class 'abc.ABCMeta'>",
4
+ ":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==",
5
+ "__module__": "stable_baselines3.common.policies",
6
+ "__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param sde_net_arch: Network architecture for extracting features\n when using gSDE. If None, the latent features from the policy will be used.\n Pass an empty list to use the states as features.\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ",
7
+ "__init__": "<function ActorCriticPolicy.__init__ at 0x7f98b1eb3680>",
8
+ "_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x7f98b1eb3710>",
9
+ "reset_noise": "<function ActorCriticPolicy.reset_noise at 0x7f98b1eb37a0>",
10
+ "_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x7f98b1eb3830>",
11
+ "_build": "<function ActorCriticPolicy._build at 0x7f98b1eb38c0>",
12
+ "forward": "<function ActorCriticPolicy.forward at 0x7f98b1eb3950>",
13
+ "_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x7f98b1eb39e0>",
14
+ "_predict": "<function ActorCriticPolicy._predict at 0x7f98b1eb3a70>",
15
+ "evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x7f98b1eb3b00>",
16
+ "get_distribution": "<function ActorCriticPolicy.get_distribution at 0x7f98b1eb3b90>",
17
+ "predict_values": "<function ActorCriticPolicy.predict_values at 0x7f98b1eb3c20>",
18
+ "__abstractmethods__": "frozenset()",
19
+ "_abc_impl": "<_abc_data object at 0x7f98b1ef79c0>"
20
+ },
21
+ "verbose": 1,
22
+ "policy_kwargs": {},
23
+ "observation_space": {
24
+ ":type:": "<class 'gym.spaces.box.Box'>",
25
+ ":serialized:": "gAWVnwEAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLCIWUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWIAAAAAAAAAAAAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/5RoCksIhZSMAUOUdJRSlIwEaGlnaJRoEiiWIAAAAAAAAAAAAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAf5RoCksIhZRoFXSUUpSMDWJvdW5kZWRfYmVsb3eUaBIolggAAAAAAAAAAAAAAAAAAACUaAeMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLCIWUaBV0lFKUjA1ib3VuZGVkX2Fib3ZllGgSKJYIAAAAAAAAAAAAAAAAAAAAlGghSwiFlGgVdJRSlIwKX25wX3JhbmRvbZROdWIu",
26
+ "dtype": "float32",
27
+ "_shape": [
28
+ 8
29
+ ],
30
+ "low": "[-inf -inf -inf -inf -inf -inf -inf -inf]",
31
+ "high": "[inf inf inf inf inf inf inf inf]",
32
+ "bounded_below": "[False False False False False False False False]",
33
+ "bounded_above": "[False False False False False False False False]",
34
+ "_np_random": null
35
+ },
36
+ "action_space": {
37
+ ":type:": "<class 'gym.spaces.discrete.Discrete'>",
38
+ ":serialized:": "gAWVggAAAAAAAACME2d5bS5zcGFjZXMuZGlzY3JldGWUjAhEaXNjcmV0ZZSTlCmBlH2UKIwBbpRLBIwGX3NoYXBllCmMBWR0eXBllIwFbnVtcHmUaAeTlIwCaTiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYowKX25wX3JhbmRvbZROdWIu",
39
+ "n": 4,
40
+ "_shape": [],
41
+ "dtype": "int64",
42
+ "_np_random": null
43
+ },
44
+ "n_envs": 16,
45
+ "num_timesteps": 524288,
46
+ "_total_timesteps": 500000,
47
+ "_num_timesteps_at_start": 0,
48
+ "seed": null,
49
+ "action_noise": null,
50
+ "start_time": 1651689068.346115,
51
+ "learning_rate": 0.0003,
52
+ "tensorboard_log": null,
53
+ "lr_schedule": {
54
+ ":type:": "<class 'function'>",
55
+ ":serialized:": "gAWVvwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwNX2J1aWx0aW5fdHlwZZSTlIwKTGFtYmRhVHlwZZSFlFKUKGgCjAhDb2RlVHlwZZSFlFKUKEsBSwBLAUsBSxNDBIgAUwCUToWUKYwBX5SFlIxIL3Vzci9sb2NhbC9saWIvcHl0aG9uMy43L2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lIwEZnVuY5RLgEMCAAGUjAN2YWyUhZQpdJRSlH2UKIwLX19wYWNrYWdlX1+UjBhzdGFibGVfYmFzZWxpbmVzMy5jb21tb26UjAhfX25hbWVfX5SMHnN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi51dGlsc5SMCF9fZmlsZV9flIxIL3Vzci9sb2NhbC9saWIvcHl0aG9uMy43L2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaCB9lH2UKGgXaA6MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgYjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz8zqSowVTJhhZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"
56
+ },
57
+ "_last_obs": {
58
+ ":type:": "<class 'numpy.ndarray'>",
59
+ ":serialized:": "gAWVdQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYAAgAAAAAAAG7/k76910A8cp3wujmA5Tj/MsG9v2kSOgAAgD8AAIA/0OyDPq5V1zvguQW7QMOiuDKFdT3Iyxk6AACAPwAAgD+NmZC99rh0ulqbj7vjUb04p8/puklXOjoAAIA/AACAP52qYL6KOi48pyayOhKWo7ih5K29WATWuQAAgD8AAIA/QFa1PvdEU70wuVk9/vIqPP9Rgb4A/mE9AACAPwAAgD9zBgY+j1VEO1b9YTrx7To3X9rjPEvLlbkAAIA/AACAP82QXb09aHs/5WOxvcSjk74/8iO8rDYnvQAAAAAAAAAA+lxFvinPC7xTcPO71R6luSElgj0B7pI6AACAPwAAgD+mpK29XANLuh2BezuEVS029RnJuBjbkLoAAIA/AACAP7Vymr48gz49lsXCPcNcr73VEmy7yX4jPAAAAAAAAAAA2nOTvVwnS7o+4Wc5EbEbMmBearsc4Ya4AACAPwAAgD92HJG+vJKePwIU+L492S++XXGLvkrAOr4AAAAAAAAAANqVsL17cIq6KtRaujRdCrb2DAc7I0d2OQAAgD8AAIA/M537vdeDarvKG/49gXZBvAo3N71HDxY+AACAPwAAgD8AAOe7bXImPpecpT0AOUC+SMv8PILIz70AAAAAAAAAAJpnoryFA5O5E+puu4khMbYXPsi6VmGhNQAAgD8AAIA/lIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksQSwiGlIwBQ5R0lFKULg=="
60
+ },
61
+ "_last_episode_starts": {
62
+ ":type:": "<class 'numpy.ndarray'>",
63
+ ":serialized:": "gAWVgwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSxCFlIwBQ5R0lFKULg=="
64
+ },
65
+ "_last_original_obs": null,
66
+ "_episode_num": 0,
67
+ "use_sde": false,
68
+ "sde_sample_freq": -1,
69
+ "_current_progress_remaining": -0.04857599999999995,
70
+ "ep_info_buffer": {
71
+ ":type:": "<class 'collections.deque'>",
72
+ ":serialized:": "gAWVeBAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMI7x8L0SEsYECUhpRSlIwBbJRN6AOMAXSUR0CJ433vhIe6dX2UKGgGaAloD0MI3xXB/1ZkYECUhpRSlGgVTegDaBZHQInmixxDLKV1fZQoaAZoCWgPQwgYPiKmRBFSQJSGlFKUaBVN6ANoFkdAifAwqqfe13V9lChoBmgJaA9DCPrRcMrc9WJAlIaUUpRoFU3oA2gWR0CJ9XN47ihndX2UKGgGaAloD0MIwK+RJAgGX0CUhpRSlGgVTegDaBZHQIn5g5DJEIB1fZQoaAZoCWgPQwjh0Fs8vBcnwJSGlFKUaBVNOgFoFkdAigpTFVDKHXV9lChoBmgJaA9DCNCdYP91DFtAlIaUUpRoFU3oA2gWR0CKJonVG0/odX2UKGgGaAloD0MIeomxTL9lYECUhpRSlGgVTegDaBZHQIosF8qnWJ91fZQoaAZoCWgPQwjlR/yKNf5dQJSGlFKUaBVN6ANoFkdAiiykLYwqRXV9lChoBmgJaA9DCEeNCTGXmmJAlIaUUpRoFU3oA2gWR0CKSSVvddmhdX2UKGgGaAloD0MIq5Se6SVrYECUhpRSlGgVTegDaBZHQIpNTyauwHJ1fZQoaAZoCWgPQwg7/gsEAdxdQJSGlFKUaBVN6ANoFkdAik+r6UJOWXV9lChoBmgJaA9DCAx4mWGjHFlAlIaUUpRoFU3oA2gWR0CKWeuLaVUudX2UKGgGaAloD0MI6BIOvcWYXkCUhpRSlGgVTegDaBZHQIpek5hjOLR1fZQoaAZoCWgPQwjequtQTapgQJSGlFKUaBVN6ANoFkdAimHdhiLEUHV9lChoBmgJaA9DCFCqfToeCFlAlIaUUpRoFU3oA2gWR0CKZRjXnQpndX2UKGgGaAloD0MINpIE4QrAW0CUhpRSlGgVTegDaBZHQIpmGNR3u/l1fZQoaAZoCWgPQwiSrwRSYkRcQJSGlFKUaBVN6ANoFkdAim1e4Cp3o3V9lChoBmgJaA9DCG1TPC6qiTdAlIaUUpRoFUv4aBZHQIp3duWKMvR1fZQoaAZoCWgPQwiqfxDJkI9eQJSGlFKUaBVN6ANoFkdAineyYG+sYHV9lChoBmgJaA9DCM0iFFtBpGFAlIaUUpRoFU3oA2gWR0CKfJs3Q2MsdX2UKGgGaAloD0MIy5wui4ldKcCUhpRSlGgVTRsBaBZHQIp/etEG7jF1fZQoaAZoCWgPQwiQ3Jp0W49eQJSGlFKUaBVN6ANoFkdAioBrk0aZQnV9lChoBmgJaA9DCHizBu+rl1pAlIaUUpRoFU3oA2gWR0CKj/9Q40djdX2UKGgGaAloD0MIhnMNMzT7X0CUhpRSlGgVTegDaBZHQItm2aMJhOR1fZQoaAZoCWgPQwjuPsdHi/dfQJSGlFKUaBVN6ANoFkdAi2vILofSyHV9lChoBmgJaA9DCMFVnkDYtFhAlIaUUpRoFU3oA2gWR0CLbEXhOxjbdX2UKGgGaAloD0MIYkm5+xyXW0CUhpRSlGgVTegDaBZHQIuF7rzGxUx1fZQoaAZoCWgPQwimRBK9jC9gQJSGlFKUaBVN6ANoFkdAi4msyJsO5XV9lChoBmgJaA9DCLWJk/sdclxAlIaUUpRoFU3oA2gWR0CLi/V1fVqfdX2UKGgGaAloD0MIprqAlxlWCUCUhpRSlGgVTUsBaBZHQIuPq/wiJO51fZQoaAZoCWgPQwi+9sySgMlqQJSGlFKUaBVNZQFoFkdAi6FJAdGRWHV9lChoBmgJaA9DCNNqSNxjP2BAlIaUUpRoFU3oA2gWR0CLp04mTkhidX2UKGgGaAloD0MILPNWXYeHYECUhpRSlGgVTegDaBZHQIuqWZ5Rjz91fZQoaAZoCWgPQwgqdF5jF6JiQJSGlFKUaBVN6ANoFkdAi6sjDCP6sXV9lChoBmgJaA9DCJwzorQ36WBAlIaUUpRoFU3oA2gWR0CLsd9zfaYedX2UKGgGaAloD0MIYAMixJXQX0CUhpRSlGgVTegDaBZHQIu69Sl3yI51fZQoaAZoCWgPQwjON6J7VkBgQJSGlFKUaBVN6ANoFkdAi7svMjeKsXV9lChoBmgJaA9DCE0PCkrRbGBAlIaUUpRoFU3oA2gWR0CLv6qpcX3ydX2UKGgGaAloD0MIRb3g05z8WkCUhpRSlGgVTegDaBZHQIvCIOWjXWh1fZQoaAZoCWgPQwjKUuv9RisXwJSGlFKUaBVNOQFoFkdAi8KWnbZezHV9lChoBmgJaA9DCDTaqiSyjldAlIaUUpRoFU3oA2gWR0CLwuDqW1MNdX2UKGgGaAloD0MIfa1LjdBXW0CUhpRSlGgVTegDaBZHQIvOAJC0F8p1fZQoaAZoCWgPQwjSVE/mH/0twJSGlFKUaBVNMQFoFkdAi+KLkS26TXV9lChoBmgJaA9DCGaGjbJ+DmJAlIaUUpRoFU3oA2gWR0CL5UKl54W2dX2UKGgGaAloD0MIev1JfO5MXECUhpRSlGgVTegDaBZHQIwBIR7JGON1fZQoaAZoCWgPQwj4F0FjpnRjQJSGlFKUaBVN6ANoFkdAjATWU8mrsHV9lChoBmgJaA9DCPJfIAiQkVtAlIaUUpRoFU3oA2gWR0CMBtoouwotdX2UKGgGaAloD0MI1zTvOEWRWUCUhpRSlGgVTegDaBZHQIwJK08eS0V1fZQoaAZoCWgPQwjIe9XKBFhiQJSGlFKUaBVN6ANoFkdAjBXlVT72tnV9lChoBmgJaA9DCL9k48EWSyZAlIaUUpRoFUvEaBZHQIwWGaF23a11fZQoaAZoCWgPQwgS+wRQjO1fQJSGlFKUaBVN6ANoFkdAjBirAgxJunV9lChoBmgJaA9DCKzgtyHG+VtAlIaUUpRoFU3oA2gWR0CMGV9LHuJDdX2UKGgGaAloD0MI1uHoKt2rYkCUhpRSlGgVTegDaBZHQIwfmGwiaAp1fZQoaAZoCWgPQwhqFJLM6g1eQJSGlFKUaBVN6ANoFkdAjCg/8/D+BHV9lChoBmgJaA9DCIwsmWP5nmNAlIaUUpRoFU3oA2gWR0CMKHKaG5+ZdX2UKGgGaAloD0MI8uzyrQ9DRkCUhpRSlGgVS8loFkdAjCx86/7BPHV9lChoBmgJaA9DCK34hsJnFWFAlIaUUpRoFU3oA2gWR0CMLLw9aEBbdX2UKGgGaAloD0MIZsHEH0WKWUCUhpRSlGgVTegDaBZHQIwvIC8vmHR1fZQoaAZoCWgPQwiIZTOHJO1iQJSGlFKUaBVN6ANoFkdAjC/nhCMP0HV9lChoBmgJaA9DCP0v16IFHl1AlIaUUpRoFU3oA2gWR0CMO2CA+Y+jdX2UKGgGaAloD0MI/mK2ZFVUGkCUhpRSlGgVS+VoFkdAjQRNU4rBkHV9lChoBmgJaA9DCL4z2qqkNWpAlIaUUpRoFU0KAmgWR0CNB6dlNDc/dX2UKGgGaAloD0MIyeNp+YETYECUhpRSlGgVTegDaBZHQI0Mcz9CNS91fZQoaAZoCWgPQwjdeeI5W6VjQJSGlFKUaBVN6ANoFkdAjQ6jr7fpEHV9lChoBmgJaA9DCFEWvr5WiGlAlIaUUpRoFU3BAWgWR0CNGtufEn9fdX2UKGgGaAloD0MI9wDdl3MxcECUhpRSlGgVTWMBaBZHQI0eidH2AXl1fZQoaAZoCWgPQwiHUKVmD6Q/QJSGlFKUaBVNEwFoFkdAjSFZaNdZ73V9lChoBmgJaA9DCEkqU8zBC2JAlIaUUpRoFU3oA2gWR0CNKNMCcPOIdX2UKGgGaAloD0MI7KLogY9OW0CUhpRSlGgVTegDaBZHQI0q5AY51eV1fZQoaAZoCWgPQwi6gQLv5E9fQJSGlFKUaBVN6ANoFkdAjS0xjjJdSnV9lChoBmgJaA9DCHF1AMRdvWJAlIaUUpRoFU3oA2gWR0CNOvckdFOPdX2UKGgGaAloD0MI2jhiLT4RWkCUhpRSlGgVTegDaBZHQI0+mOdXko51fZQoaAZoCWgPQwjlt+hkKdVnQJSGlFKUaBVN6ANoFkdAjUW/wAlv63V9lChoBmgJaA9DCDWyKy2jFmRAlIaUUpRoFU3oA2gWR0CNT7fek56udX2UKGgGaAloD0MIYYpyafzDXkCUhpRSlGgVTegDaBZHQI1P9Ed/8VJ1fZQoaAZoCWgPQwj4ja89sxNcQJSGlFKUaBVN6ANoFkdAjVTRKg7HQ3V9lChoBmgJaA9DCBpvK702SF5AlIaUUpRoFU3oA2gWR0CNVRBzFMqSdX2UKGgGaAloD0MIXcKht3iQX0CUhpRSlGgVTegDaBZHQI14fjENvwV1fZQoaAZoCWgPQwgGZ/D3i5ddQJSGlFKUaBVN6ANoFkdAjX4xVhkRSXV9lChoBmgJaA9DCF+y8WCLlmNAlIaUUpRoFU3oA2gWR0CNgON/e+EidX2UKGgGaAloD0MIcD51rFLNX0CUhpRSlGgVTegDaBZHQI2OnMB6rvN1fZQoaAZoCWgPQwiCkZc1sRdcQJSGlFKUaBVN6ANoFkdAjZLSx7iQ1nV9lChoBmgJaA9DCORnI9fNXGBAlIaUUpRoFU3oA2gWR0CNlb/FzdULdX2UKGgGaAloD0MIufscH625YkCUhpRSlGgVTegDaBZHQI2dYZZSvTx1fZQoaAZoCWgPQwimttRBXulgQJSGlFKUaBVN6ANoFkdAjZ9v8yeqaXV9lChoBmgJaA9DCKt3uB2apWNAlIaUUpRoFU3oA2gWR0CNocvbGm1qdX2UKGgGaAloD0MIYwgAjj3zQcCUhpRSlGgVS/poFkdAja6tZ3cHnnV9lChoBmgJaA9DCG4VxEDX2m5AlIaUUpRoFU3bAWgWR0CNr4fh/Aj6dX2UKGgGaAloD0MIGHsvvujHYECUhpRSlGgVTegDaBZHQI2wGrIYFaB1fZQoaAZoCWgPQwhdixag7X5kQJSGlFKUaBVN6ANoFkdAjbO/yPMjeXV9lChoBmgJaA9DCHzuBPuvy1hAlIaUUpRoFU3oA2gWR0CNu3/Ot4iYdX2UKGgGaAloD0MILZeNznkCY0CUhpRSlGgVTegDaBZHQI3Fu0NSZSh1fZQoaAZoCWgPQwjFceDVcp5ZQJSGlFKUaBVN6ANoFkdAjcXzVc2R73V9lChoBmgJaA9DCJLPK556DEbAlIaUUpRoFUvZaBZHQI3JgwyqMm51fZQoaAZoCWgPQwjS4La28ARgQJSGlFKUaBVN6ANoFkdAjcqHWrfce3V9lChoBmgJaA9DCHwMVpxq32FAlIaUUpRoFU3oA2gWR0CNysDEFW4mdX2UKGgGaAloD0MIJm+Ame8QHECUhpRSlGgVS/poFkdAjcvK15Sm7HV9lChoBmgJaA9DCHfbheY6dSlAlIaUUpRoFUvdaBZHQI3etY0VJtl1fZQoaAZoCWgPQwiU9gZfmMzpv5SGlFKUaBVL3mgWR0CN4y7uDzy0dWUu"
73
+ },
74
+ "ep_success_buffer": {
75
+ ":type:": "<class 'collections.deque'>",
76
+ ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="
77
+ },
78
+ "_n_updates": 160,
79
+ "n_steps": 2048,
80
+ "gamma": 0.99,
81
+ "gae_lambda": 0.95,
82
+ "ent_coef": 0.0,
83
+ "vf_coef": 0.5,
84
+ "max_grad_norm": 0.5,
85
+ "batch_size": 64,
86
+ "n_epochs": 10,
87
+ "clip_range": {
88
+ ":type:": "<class 'function'>",
89
+ ":serialized:": "gAWVvwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwNX2J1aWx0aW5fdHlwZZSTlIwKTGFtYmRhVHlwZZSFlFKUKGgCjAhDb2RlVHlwZZSFlFKUKEsBSwBLAUsBSxNDBIgAUwCUToWUKYwBX5SFlIxIL3Vzci9sb2NhbC9saWIvcHl0aG9uMy43L2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lIwEZnVuY5RLgEMCAAGUjAN2YWyUhZQpdJRSlH2UKIwLX19wYWNrYWdlX1+UjBhzdGFibGVfYmFzZWxpbmVzMy5jb21tb26UjAhfX25hbWVfX5SMHnN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi51dGlsc5SMCF9fZmlsZV9flIxIL3Vzci9sb2NhbC9saWIvcHl0aG9uMy43L2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaCB9lH2UKGgXaA6MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgYjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz/JmZmZmZmahZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"
90
+ },
91
+ "clip_range_vf": null,
92
+ "normalize_advantage": true,
93
+ "target_kl": null
94
+ }
MlpPolicy/policy.optimizer.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:d178047e695118fa6b1d0a508f5e0b2b194d36a92cd9b5592f95feb652dfe7c2
3
+ size 84893
MlpPolicy/policy.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:0b7af01770c081cef62b687c055f274e47b4d649f2da253475dcc46672ab4a63
3
+ size 43201
MlpPolicy/pytorch_variables.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:d030ad8db708280fcae77d87e973102039acd23a11bdecc3db8eb6c0ac940ee1
3
+ size 431
MlpPolicy/system_info.txt ADDED
@@ -0,0 +1,7 @@
 
 
 
 
 
 
 
 
1
+ OS: Linux-5.4.188+-x86_64-with-Ubuntu-18.04-bionic #1 SMP Sun Apr 24 10:03:06 PDT 2022
2
+ Python: 3.7.13
3
+ Stable-Baselines3: 1.5.0
4
+ PyTorch: 1.11.0+cu113
5
+ GPU Enabled: True
6
+ Numpy: 1.21.6
7
+ Gym: 0.21.0
README.md ADDED
@@ -0,0 +1,28 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ library_name: stable-baselines3
3
+ tags:
4
+ - LunarLander-v2
5
+ - deep-reinforcement-learning
6
+ - reinforcement-learning
7
+ - stable-baselines3
8
+ model-index:
9
+ - name: ppo-LunarLander-v2
10
+ results:
11
+ - metrics:
12
+ - type: mean_reward
13
+ value: 159.70 +/- 97.42
14
+ name: mean_reward
15
+ task:
16
+ type: reinforcement-learning
17
+ name: reinforcement-learning
18
+ dataset:
19
+ name: LunarLander-v2
20
+ type: LunarLander-v2
21
+ ---
22
+
23
+ # **ppo-LunarLander-v2** Agent playing **LunarLander-v2**
24
+ This is a trained model of a **ppo-LunarLander-v2** agent playing **LunarLander-v2** using the [stable-baselines3 library](https://github.com/DLR-RM/stable-baselines3).
25
+
26
+ ## Usage (with Stable-baselines3)
27
+ TODO: Add your code
28
+
config.json ADDED
@@ -0,0 +1 @@
 
 
1
+ {"policy_class": {":type:": "<class 'abc.ABCMeta'>", ":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==", "__module__": "stable_baselines3.common.policies", "__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param sde_net_arch: Network architecture for extracting features\n when using gSDE. If None, the latent features from the policy will be used.\n Pass an empty list to use the states as features.\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ", "__init__": "<function ActorCriticPolicy.__init__ at 0x7f98b1eb3680>", "_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x7f98b1eb3710>", "reset_noise": "<function ActorCriticPolicy.reset_noise at 0x7f98b1eb37a0>", "_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x7f98b1eb3830>", "_build": "<function ActorCriticPolicy._build at 0x7f98b1eb38c0>", "forward": "<function ActorCriticPolicy.forward at 0x7f98b1eb3950>", "_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x7f98b1eb39e0>", "_predict": "<function ActorCriticPolicy._predict at 0x7f98b1eb3a70>", "evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x7f98b1eb3b00>", "get_distribution": "<function ActorCriticPolicy.get_distribution at 0x7f98b1eb3b90>", "predict_values": "<function ActorCriticPolicy.predict_values at 0x7f98b1eb3c20>", "__abstractmethods__": "frozenset()", "_abc_impl": "<_abc_data object at 0x7f98b1ef79c0>"}, "verbose": 1, "policy_kwargs": {}, "observation_space": {":type:": "<class 'gym.spaces.box.Box'>", ":serialized:": "gAWVnwEAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLCIWUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWIAAAAAAAAAAAAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/5RoCksIhZSMAUOUdJRSlIwEaGlnaJRoEiiWIAAAAAAAAAAAAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAf5RoCksIhZRoFXSUUpSMDWJvdW5kZWRfYmVsb3eUaBIolggAAAAAAAAAAAAAAAAAAACUaAeMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLCIWUaBV0lFKUjA1ib3VuZGVkX2Fib3ZllGgSKJYIAAAAAAAAAAAAAAAAAAAAlGghSwiFlGgVdJRSlIwKX25wX3JhbmRvbZROdWIu", "dtype": "float32", "_shape": [8], "low": "[-inf -inf -inf -inf -inf -inf -inf -inf]", "high": "[inf inf inf inf inf inf inf inf]", "bounded_below": "[False False False False False False False False]", "bounded_above": "[False False False False False False False False]", "_np_random": null}, "action_space": {":type:": "<class 'gym.spaces.discrete.Discrete'>", ":serialized:": "gAWVggAAAAAAAACME2d5bS5zcGFjZXMuZGlzY3JldGWUjAhEaXNjcmV0ZZSTlCmBlH2UKIwBbpRLBIwGX3NoYXBllCmMBWR0eXBllIwFbnVtcHmUaAeTlIwCaTiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYowKX25wX3JhbmRvbZROdWIu", "n": 4, "_shape": [], "dtype": "int64", "_np_random": null}, "n_envs": 16, "num_timesteps": 524288, "_total_timesteps": 500000, "_num_timesteps_at_start": 0, "seed": null, "action_noise": null, "start_time": 1651689068.346115, "learning_rate": 0.0003, "tensorboard_log": null, "lr_schedule": {":type:": "<class 'function'>", ":serialized:": "gAWVvwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwNX2J1aWx0aW5fdHlwZZSTlIwKTGFtYmRhVHlwZZSFlFKUKGgCjAhDb2RlVHlwZZSFlFKUKEsBSwBLAUsBSxNDBIgAUwCUToWUKYwBX5SFlIxIL3Vzci9sb2NhbC9saWIvcHl0aG9uMy43L2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lIwEZnVuY5RLgEMCAAGUjAN2YWyUhZQpdJRSlH2UKIwLX19wYWNrYWdlX1+UjBhzdGFibGVfYmFzZWxpbmVzMy5jb21tb26UjAhfX25hbWVfX5SMHnN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi51dGlsc5SMCF9fZmlsZV9flIxIL3Vzci9sb2NhbC9saWIvcHl0aG9uMy43L2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaCB9lH2UKGgXaA6MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgYjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz8zqSowVTJhhZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"}, "_last_obs": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVdQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYAAgAAAAAAAG7/k76910A8cp3wujmA5Tj/MsG9v2kSOgAAgD8AAIA/0OyDPq5V1zvguQW7QMOiuDKFdT3Iyxk6AACAPwAAgD+NmZC99rh0ulqbj7vjUb04p8/puklXOjoAAIA/AACAP52qYL6KOi48pyayOhKWo7ih5K29WATWuQAAgD8AAIA/QFa1PvdEU70wuVk9/vIqPP9Rgb4A/mE9AACAPwAAgD9zBgY+j1VEO1b9YTrx7To3X9rjPEvLlbkAAIA/AACAP82QXb09aHs/5WOxvcSjk74/8iO8rDYnvQAAAAAAAAAA+lxFvinPC7xTcPO71R6luSElgj0B7pI6AACAPwAAgD+mpK29XANLuh2BezuEVS029RnJuBjbkLoAAIA/AACAP7Vymr48gz49lsXCPcNcr73VEmy7yX4jPAAAAAAAAAAA2nOTvVwnS7o+4Wc5EbEbMmBearsc4Ya4AACAPwAAgD92HJG+vJKePwIU+L492S++XXGLvkrAOr4AAAAAAAAAANqVsL17cIq6KtRaujRdCrb2DAc7I0d2OQAAgD8AAIA/M537vdeDarvKG/49gXZBvAo3N71HDxY+AACAPwAAgD8AAOe7bXImPpecpT0AOUC+SMv8PILIz70AAAAAAAAAAJpnoryFA5O5E+puu4khMbYXPsi6VmGhNQAAgD8AAIA/lIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksQSwiGlIwBQ5R0lFKULg=="}, "_last_episode_starts": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVgwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSxCFlIwBQ5R0lFKULg=="}, "_last_original_obs": null, "_episode_num": 0, "use_sde": false, "sde_sample_freq": -1, "_current_progress_remaining": -0.04857599999999995, "ep_info_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVeBAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMI7x8L0SEsYECUhpRSlIwBbJRN6AOMAXSUR0CJ433vhIe6dX2UKGgGaAloD0MI3xXB/1ZkYECUhpRSlGgVTegDaBZHQInmixxDLKV1fZQoaAZoCWgPQwgYPiKmRBFSQJSGlFKUaBVN6ANoFkdAifAwqqfe13V9lChoBmgJaA9DCPrRcMrc9WJAlIaUUpRoFU3oA2gWR0CJ9XN47ihndX2UKGgGaAloD0MIwK+RJAgGX0CUhpRSlGgVTegDaBZHQIn5g5DJEIB1fZQoaAZoCWgPQwjh0Fs8vBcnwJSGlFKUaBVNOgFoFkdAigpTFVDKHXV9lChoBmgJaA9DCNCdYP91DFtAlIaUUpRoFU3oA2gWR0CKJonVG0/odX2UKGgGaAloD0MIeomxTL9lYECUhpRSlGgVTegDaBZHQIosF8qnWJ91fZQoaAZoCWgPQwjlR/yKNf5dQJSGlFKUaBVN6ANoFkdAiiykLYwqRXV9lChoBmgJaA9DCEeNCTGXmmJAlIaUUpRoFU3oA2gWR0CKSSVvddmhdX2UKGgGaAloD0MIq5Se6SVrYECUhpRSlGgVTegDaBZHQIpNTyauwHJ1fZQoaAZoCWgPQwg7/gsEAdxdQJSGlFKUaBVN6ANoFkdAik+r6UJOWXV9lChoBmgJaA9DCAx4mWGjHFlAlIaUUpRoFU3oA2gWR0CKWeuLaVUudX2UKGgGaAloD0MI6BIOvcWYXkCUhpRSlGgVTegDaBZHQIpek5hjOLR1fZQoaAZoCWgPQwjequtQTapgQJSGlFKUaBVN6ANoFkdAimHdhiLEUHV9lChoBmgJaA9DCFCqfToeCFlAlIaUUpRoFU3oA2gWR0CKZRjXnQpndX2UKGgGaAloD0MINpIE4QrAW0CUhpRSlGgVTegDaBZHQIpmGNR3u/l1fZQoaAZoCWgPQwiSrwRSYkRcQJSGlFKUaBVN6ANoFkdAim1e4Cp3o3V9lChoBmgJaA9DCG1TPC6qiTdAlIaUUpRoFUv4aBZHQIp3duWKMvR1fZQoaAZoCWgPQwiqfxDJkI9eQJSGlFKUaBVN6ANoFkdAineyYG+sYHV9lChoBmgJaA9DCM0iFFtBpGFAlIaUUpRoFU3oA2gWR0CKfJs3Q2MsdX2UKGgGaAloD0MIy5wui4ldKcCUhpRSlGgVTRsBaBZHQIp/etEG7jF1fZQoaAZoCWgPQwiQ3Jp0W49eQJSGlFKUaBVN6ANoFkdAioBrk0aZQnV9lChoBmgJaA9DCHizBu+rl1pAlIaUUpRoFU3oA2gWR0CKj/9Q40djdX2UKGgGaAloD0MIhnMNMzT7X0CUhpRSlGgVTegDaBZHQItm2aMJhOR1fZQoaAZoCWgPQwjuPsdHi/dfQJSGlFKUaBVN6ANoFkdAi2vILofSyHV9lChoBmgJaA9DCMFVnkDYtFhAlIaUUpRoFU3oA2gWR0CLbEXhOxjbdX2UKGgGaAloD0MIYkm5+xyXW0CUhpRSlGgVTegDaBZHQIuF7rzGxUx1fZQoaAZoCWgPQwimRBK9jC9gQJSGlFKUaBVN6ANoFkdAi4msyJsO5XV9lChoBmgJaA9DCLWJk/sdclxAlIaUUpRoFU3oA2gWR0CLi/V1fVqfdX2UKGgGaAloD0MIprqAlxlWCUCUhpRSlGgVTUsBaBZHQIuPq/wiJO51fZQoaAZoCWgPQwi+9sySgMlqQJSGlFKUaBVNZQFoFkdAi6FJAdGRWHV9lChoBmgJaA9DCNNqSNxjP2BAlIaUUpRoFU3oA2gWR0CLp04mTkhidX2UKGgGaAloD0MILPNWXYeHYECUhpRSlGgVTegDaBZHQIuqWZ5Rjz91fZQoaAZoCWgPQwgqdF5jF6JiQJSGlFKUaBVN6ANoFkdAi6sjDCP6sXV9lChoBmgJaA9DCJwzorQ36WBAlIaUUpRoFU3oA2gWR0CLsd9zfaYedX2UKGgGaAloD0MIYAMixJXQX0CUhpRSlGgVTegDaBZHQIu69Sl3yI51fZQoaAZoCWgPQwjON6J7VkBgQJSGlFKUaBVN6ANoFkdAi7svMjeKsXV9lChoBmgJaA9DCE0PCkrRbGBAlIaUUpRoFU3oA2gWR0CLv6qpcX3ydX2UKGgGaAloD0MIRb3g05z8WkCUhpRSlGgVTegDaBZHQIvCIOWjXWh1fZQoaAZoCWgPQwjKUuv9RisXwJSGlFKUaBVNOQFoFkdAi8KWnbZezHV9lChoBmgJaA9DCDTaqiSyjldAlIaUUpRoFU3oA2gWR0CLwuDqW1MNdX2UKGgGaAloD0MIfa1LjdBXW0CUhpRSlGgVTegDaBZHQIvOAJC0F8p1fZQoaAZoCWgPQwjSVE/mH/0twJSGlFKUaBVNMQFoFkdAi+KLkS26TXV9lChoBmgJaA9DCGaGjbJ+DmJAlIaUUpRoFU3oA2gWR0CL5UKl54W2dX2UKGgGaAloD0MIev1JfO5MXECUhpRSlGgVTegDaBZHQIwBIR7JGON1fZQoaAZoCWgPQwj4F0FjpnRjQJSGlFKUaBVN6ANoFkdAjATWU8mrsHV9lChoBmgJaA9DCPJfIAiQkVtAlIaUUpRoFU3oA2gWR0CMBtoouwotdX2UKGgGaAloD0MI1zTvOEWRWUCUhpRSlGgVTegDaBZHQIwJK08eS0V1fZQoaAZoCWgPQwjIe9XKBFhiQJSGlFKUaBVN6ANoFkdAjBXlVT72tnV9lChoBmgJaA9DCL9k48EWSyZAlIaUUpRoFUvEaBZHQIwWGaF23a11fZQoaAZoCWgPQwgS+wRQjO1fQJSGlFKUaBVN6ANoFkdAjBirAgxJunV9lChoBmgJaA9DCKzgtyHG+VtAlIaUUpRoFU3oA2gWR0CMGV9LHuJDdX2UKGgGaAloD0MI1uHoKt2rYkCUhpRSlGgVTegDaBZHQIwfmGwiaAp1fZQoaAZoCWgPQwhqFJLM6g1eQJSGlFKUaBVN6ANoFkdAjCg/8/D+BHV9lChoBmgJaA9DCIwsmWP5nmNAlIaUUpRoFU3oA2gWR0CMKHKaG5+ZdX2UKGgGaAloD0MI8uzyrQ9DRkCUhpRSlGgVS8loFkdAjCx86/7BPHV9lChoBmgJaA9DCK34hsJnFWFAlIaUUpRoFU3oA2gWR0CMLLw9aEBbdX2UKGgGaAloD0MIZsHEH0WKWUCUhpRSlGgVTegDaBZHQIwvIC8vmHR1fZQoaAZoCWgPQwiIZTOHJO1iQJSGlFKUaBVN6ANoFkdAjC/nhCMP0HV9lChoBmgJaA9DCP0v16IFHl1AlIaUUpRoFU3oA2gWR0CMO2CA+Y+jdX2UKGgGaAloD0MI/mK2ZFVUGkCUhpRSlGgVS+VoFkdAjQRNU4rBkHV9lChoBmgJaA9DCL4z2qqkNWpAlIaUUpRoFU0KAmgWR0CNB6dlNDc/dX2UKGgGaAloD0MIyeNp+YETYECUhpRSlGgVTegDaBZHQI0Mcz9CNS91fZQoaAZoCWgPQwjdeeI5W6VjQJSGlFKUaBVN6ANoFkdAjQ6jr7fpEHV9lChoBmgJaA9DCFEWvr5WiGlAlIaUUpRoFU3BAWgWR0CNGtufEn9fdX2UKGgGaAloD0MI9wDdl3MxcECUhpRSlGgVTWMBaBZHQI0eidH2AXl1fZQoaAZoCWgPQwiHUKVmD6Q/QJSGlFKUaBVNEwFoFkdAjSFZaNdZ73V9lChoBmgJaA9DCEkqU8zBC2JAlIaUUpRoFU3oA2gWR0CNKNMCcPOIdX2UKGgGaAloD0MI7KLogY9OW0CUhpRSlGgVTegDaBZHQI0q5AY51eV1fZQoaAZoCWgPQwi6gQLv5E9fQJSGlFKUaBVN6ANoFkdAjS0xjjJdSnV9lChoBmgJaA9DCHF1AMRdvWJAlIaUUpRoFU3oA2gWR0CNOvckdFOPdX2UKGgGaAloD0MI2jhiLT4RWkCUhpRSlGgVTegDaBZHQI0+mOdXko51fZQoaAZoCWgPQwjlt+hkKdVnQJSGlFKUaBVN6ANoFkdAjUW/wAlv63V9lChoBmgJaA9DCDWyKy2jFmRAlIaUUpRoFU3oA2gWR0CNT7fek56udX2UKGgGaAloD0MIYYpyafzDXkCUhpRSlGgVTegDaBZHQI1P9Ed/8VJ1fZQoaAZoCWgPQwj4ja89sxNcQJSGlFKUaBVN6ANoFkdAjVTRKg7HQ3V9lChoBmgJaA9DCBpvK702SF5AlIaUUpRoFU3oA2gWR0CNVRBzFMqSdX2UKGgGaAloD0MIXcKht3iQX0CUhpRSlGgVTegDaBZHQI14fjENvwV1fZQoaAZoCWgPQwgGZ/D3i5ddQJSGlFKUaBVN6ANoFkdAjX4xVhkRSXV9lChoBmgJaA9DCF+y8WCLlmNAlIaUUpRoFU3oA2gWR0CNgON/e+EidX2UKGgGaAloD0MIcD51rFLNX0CUhpRSlGgVTegDaBZHQI2OnMB6rvN1fZQoaAZoCWgPQwiCkZc1sRdcQJSGlFKUaBVN6ANoFkdAjZLSx7iQ1nV9lChoBmgJaA9DCORnI9fNXGBAlIaUUpRoFU3oA2gWR0CNlb/FzdULdX2UKGgGaAloD0MIufscH625YkCUhpRSlGgVTegDaBZHQI2dYZZSvTx1fZQoaAZoCWgPQwimttRBXulgQJSGlFKUaBVN6ANoFkdAjZ9v8yeqaXV9lChoBmgJaA9DCKt3uB2apWNAlIaUUpRoFU3oA2gWR0CNocvbGm1qdX2UKGgGaAloD0MIYwgAjj3zQcCUhpRSlGgVS/poFkdAja6tZ3cHnnV9lChoBmgJaA9DCG4VxEDX2m5AlIaUUpRoFU3bAWgWR0CNr4fh/Aj6dX2UKGgGaAloD0MIGHsvvujHYECUhpRSlGgVTegDaBZHQI2wGrIYFaB1fZQoaAZoCWgPQwhdixag7X5kQJSGlFKUaBVN6ANoFkdAjbO/yPMjeXV9lChoBmgJaA9DCHzuBPuvy1hAlIaUUpRoFU3oA2gWR0CNu3/Ot4iYdX2UKGgGaAloD0MILZeNznkCY0CUhpRSlGgVTegDaBZHQI3Fu0NSZSh1fZQoaAZoCWgPQwjFceDVcp5ZQJSGlFKUaBVN6ANoFkdAjcXzVc2R73V9lChoBmgJaA9DCJLPK556DEbAlIaUUpRoFUvZaBZHQI3JgwyqMm51fZQoaAZoCWgPQwjS4La28ARgQJSGlFKUaBVN6ANoFkdAjcqHWrfce3V9lChoBmgJaA9DCHwMVpxq32FAlIaUUpRoFU3oA2gWR0CNysDEFW4mdX2UKGgGaAloD0MIJm+Ame8QHECUhpRSlGgVS/poFkdAjcvK15Sm7HV9lChoBmgJaA9DCHfbheY6dSlAlIaUUpRoFUvdaBZHQI3etY0VJtl1fZQoaAZoCWgPQwiU9gZfmMzpv5SGlFKUaBVL3mgWR0CN4y7uDzy0dWUu"}, "ep_success_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="}, "_n_updates": 160, "n_steps": 2048, "gamma": 0.99, "gae_lambda": 0.95, "ent_coef": 0.0, "vf_coef": 0.5, "max_grad_norm": 0.5, "batch_size": 64, "n_epochs": 10, "clip_range": {":type:": "<class 'function'>", ":serialized:": "gAWVvwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwNX2J1aWx0aW5fdHlwZZSTlIwKTGFtYmRhVHlwZZSFlFKUKGgCjAhDb2RlVHlwZZSFlFKUKEsBSwBLAUsBSxNDBIgAUwCUToWUKYwBX5SFlIxIL3Vzci9sb2NhbC9saWIvcHl0aG9uMy43L2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lIwEZnVuY5RLgEMCAAGUjAN2YWyUhZQpdJRSlH2UKIwLX19wYWNrYWdlX1+UjBhzdGFibGVfYmFzZWxpbmVzMy5jb21tb26UjAhfX25hbWVfX5SMHnN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi51dGlsc5SMCF9fZmlsZV9flIxIL3Vzci9sb2NhbC9saWIvcHl0aG9uMy43L2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaCB9lH2UKGgXaA6MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgYjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz/JmZmZmZmahZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"}, "clip_range_vf": null, "normalize_advantage": true, "target_kl": null, "system_info": {"OS": "Linux-5.4.188+-x86_64-with-Ubuntu-18.04-bionic #1 SMP Sun Apr 24 10:03:06 PDT 2022", "Python": "3.7.13", "Stable-Baselines3": "1.5.0", "PyTorch": "1.11.0+cu113", "GPU Enabled": "True", "Numpy": "1.21.6", "Gym": "0.21.0"}}
replay.mp4 ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:3f457a0c65f238408135bf0133b9dd9a4b6425ae95e5b219e47f258fc5d82e72
3
+ size 257203
results.json ADDED
@@ -0,0 +1 @@
 
 
1
+ {"mean_reward": 159.69878192017214, "std_reward": 97.42413394337414, "is_deterministic": true, "n_eval_episodes": 10, "eval_datetime": "2022-05-04T18:47:38.010216"}