pritamdeka commited on
Commit
2acb4d6
1 Parent(s): cd99d44

Initial Commit

Browse files
1_Pooling/config.json ADDED
@@ -0,0 +1,7 @@
 
 
 
 
 
 
 
1
+ {
2
+ "word_embedding_dimension": 768,
3
+ "pooling_mode_cls_token": false,
4
+ "pooling_mode_mean_tokens": true,
5
+ "pooling_mode_max_tokens": false,
6
+ "pooling_mode_mean_sqrt_len_tokens": false
7
+ }
README.md ADDED
@@ -0,0 +1,125 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ pipeline_tag: sentence-similarity
3
+ tags:
4
+ - sentence-transformers
5
+ - feature-extraction
6
+ - sentence-similarity
7
+ - transformers
8
+ ---
9
+
10
+ # {MODEL_NAME}
11
+
12
+ This is a [sentence-transformers](https://www.SBERT.net) model: It maps sentences & paragraphs to a 768 dimensional dense vector space and can be used for tasks like clustering or semantic search.
13
+
14
+ <!--- Describe your model here -->
15
+
16
+ ## Usage (Sentence-Transformers)
17
+
18
+ Using this model becomes easy when you have [sentence-transformers](https://www.SBERT.net) installed:
19
+
20
+ ```
21
+ pip install -U sentence-transformers
22
+ ```
23
+
24
+ Then you can use the model like this:
25
+
26
+ ```python
27
+ from sentence_transformers import SentenceTransformer
28
+ sentences = ["This is an example sentence", "Each sentence is converted"]
29
+
30
+ model = SentenceTransformer('{MODEL_NAME}')
31
+ embeddings = model.encode(sentences)
32
+ print(embeddings)
33
+ ```
34
+
35
+
36
+
37
+ ## Usage (HuggingFace Transformers)
38
+ Without [sentence-transformers](https://www.SBERT.net), you can use the model like this: First, you pass your input through the transformer model, then you have to apply the right pooling-operation on-top of the contextualized word embeddings.
39
+
40
+ ```python
41
+ from transformers import AutoTokenizer, AutoModel
42
+ import torch
43
+
44
+
45
+ #Mean Pooling - Take attention mask into account for correct averaging
46
+ def mean_pooling(model_output, attention_mask):
47
+ token_embeddings = model_output[0] #First element of model_output contains all token embeddings
48
+ input_mask_expanded = attention_mask.unsqueeze(-1).expand(token_embeddings.size()).float()
49
+ return torch.sum(token_embeddings * input_mask_expanded, 1) / torch.clamp(input_mask_expanded.sum(1), min=1e-9)
50
+
51
+
52
+ # Sentences we want sentence embeddings for
53
+ sentences = ['This is an example sentence', 'Each sentence is converted']
54
+
55
+ # Load model from HuggingFace Hub
56
+ tokenizer = AutoTokenizer.from_pretrained('{MODEL_NAME}')
57
+ model = AutoModel.from_pretrained('{MODEL_NAME}')
58
+
59
+ # Tokenize sentences
60
+ encoded_input = tokenizer(sentences, padding=True, truncation=True, return_tensors='pt')
61
+
62
+ # Compute token embeddings
63
+ with torch.no_grad():
64
+ model_output = model(**encoded_input)
65
+
66
+ # Perform pooling. In this case, mean pooling.
67
+ sentence_embeddings = mean_pooling(model_output, encoded_input['attention_mask'])
68
+
69
+ print("Sentence embeddings:")
70
+ print(sentence_embeddings)
71
+ ```
72
+
73
+
74
+
75
+ ## Evaluation Results
76
+
77
+ <!--- Describe how your model was evaluated -->
78
+
79
+ For an automated evaluation of this model, see the *Sentence Embeddings Benchmark*: [https://seb.sbert.net](https://seb.sbert.net?model_name={MODEL_NAME})
80
+
81
+
82
+ ## Training
83
+ The model was trained with the parameters:
84
+
85
+ **DataLoader**:
86
+
87
+ `torch.utils.data.dataloader.DataLoader` of length 90 with parameters:
88
+ ```
89
+ {'batch_size': 64, 'sampler': 'torch.utils.data.sampler.RandomSampler', 'batch_sampler': 'torch.utils.data.sampler.BatchSampler'}
90
+ ```
91
+
92
+ **Loss**:
93
+
94
+ `sentence_transformers.losses.CosineSimilarityLoss.CosineSimilarityLoss`
95
+
96
+ Parameters of the fit()-Method:
97
+ ```
98
+ {
99
+ "epochs": 4,
100
+ "evaluation_steps": 1000,
101
+ "evaluator": "sentence_transformers.evaluation.EmbeddingSimilarityEvaluator.EmbeddingSimilarityEvaluator",
102
+ "max_grad_norm": 1,
103
+ "optimizer_class": "<class 'transformers.optimization.AdamW'>",
104
+ "optimizer_params": {
105
+ "lr": 2e-05
106
+ },
107
+ "scheduler": "WarmupLinear",
108
+ "steps_per_epoch": null,
109
+ "warmup_steps": 36,
110
+ "weight_decay": 0.01
111
+ }
112
+ ```
113
+
114
+
115
+ ## Full Model Architecture
116
+ ```
117
+ SentenceTransformer(
118
+ (0): Transformer({'max_seq_length': 100, 'do_lower_case': False}) with Transformer model: BertModel
119
+ (1): Pooling({'word_embedding_dimension': 768, 'pooling_mode_cls_token': False, 'pooling_mode_mean_tokens': True, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False})
120
+ )
121
+ ```
122
+
123
+ ## Citing & Authors
124
+
125
+ <!--- Describe where people can find more information -->
config.json ADDED
@@ -0,0 +1,25 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "_name_or_path": "/content/output/training_nli_v2_dmis-lab-biobert-base-cased-v1.1-2022-03-18_16-41-36/",
3
+ "architectures": [
4
+ "BertModel"
5
+ ],
6
+ "attention_probs_dropout_prob": 0.1,
7
+ "classifier_dropout": null,
8
+ "hidden_act": "gelu",
9
+ "hidden_dropout_prob": 0.1,
10
+ "hidden_size": 768,
11
+ "initializer_range": 0.02,
12
+ "intermediate_size": 3072,
13
+ "layer_norm_eps": 1e-12,
14
+ "max_position_embeddings": 512,
15
+ "model_type": "bert",
16
+ "num_attention_heads": 12,
17
+ "num_hidden_layers": 12,
18
+ "pad_token_id": 0,
19
+ "position_embedding_type": "absolute",
20
+ "torch_dtype": "float32",
21
+ "transformers_version": "4.17.0",
22
+ "type_vocab_size": 2,
23
+ "use_cache": true,
24
+ "vocab_size": 28996
25
+ }
config_sentence_transformers.json ADDED
@@ -0,0 +1,7 @@
 
 
 
 
 
 
 
1
+ {
2
+ "__version__": {
3
+ "sentence_transformers": "2.2.0",
4
+ "transformers": "4.17.0",
5
+ "pytorch": "1.10.0+cu111"
6
+ }
7
+ }
eval/similarity_evaluation_sts-dev_results.csv ADDED
@@ -0,0 +1,5 @@
 
 
 
 
 
1
+ epoch,steps,cosine_pearson,cosine_spearman,euclidean_pearson,euclidean_spearman,manhattan_pearson,manhattan_spearman,dot_pearson,dot_spearman
2
+ 0,-1,0.8667611816929917,0.8653252778956937,0.8522959591100303,0.8563179869901638,0.8519160068748066,0.8560048345103143,0.8385606708203017,0.8373828031211172
3
+ 1,-1,0.8698264938877386,0.86863752294357,0.8566278303626796,0.8611569618555399,0.8561934587623409,0.8608475157882435,0.8447470861930428,0.8434443454151405
4
+ 2,-1,0.8703678457041776,0.8695533003826927,0.8573278697507727,0.8625512599695453,0.8569055360482523,0.8622108255712095,0.8438904783464654,0.8431047305523388
5
+ 3,-1,0.8708249248824746,0.869843814817797,0.8575966932799004,0.8627137252611878,0.8571419732780672,0.8621855594162681,0.8465318807736723,0.8454695667018083
modules.json ADDED
@@ -0,0 +1,14 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ [
2
+ {
3
+ "idx": 0,
4
+ "name": "0",
5
+ "path": "",
6
+ "type": "sentence_transformers.models.Transformer"
7
+ },
8
+ {
9
+ "idx": 1,
10
+ "name": "1",
11
+ "path": "1_Pooling",
12
+ "type": "sentence_transformers.models.Pooling"
13
+ }
14
+ ]
pytorch_model.bin ADDED
@@ -0,0 +1,3 @@
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:13ca01c439249fb0cb006ac753e00383cbbc6f9765377cf3c2a321c23376bc6d
3
+ size 433323313
sentence_bert_config.json ADDED
@@ -0,0 +1,4 @@
 
 
 
 
1
+ {
2
+ "max_seq_length": 100,
3
+ "do_lower_case": false
4
+ }
similarity_evaluation_sts-test_results.csv ADDED
@@ -0,0 +1,2 @@
 
 
1
+ epoch,steps,cosine_pearson,cosine_spearman,euclidean_pearson,euclidean_spearman,manhattan_pearson,manhattan_spearman,dot_pearson,dot_spearman
2
+ -1,-1,0.8440781119094548,0.8435368160946305,0.8291817232408202,0.8313528556148087,0.8295220016266469,0.8321727047759158,0.8109921467469483,0.8036224506968396
special_tokens_map.json ADDED
@@ -0,0 +1 @@
 
1
+ {"unk_token": "[UNK]", "sep_token": "[SEP]", "pad_token": "[PAD]", "cls_token": "[CLS]", "mask_token": "[MASK]"}
tokenizer.json ADDED
The diff for this file is too large to render. See raw diff
tokenizer_config.json ADDED
@@ -0,0 +1 @@
 
1
+ {"do_lower_case": true, "unk_token": "[UNK]", "sep_token": "[SEP]", "pad_token": "[PAD]", "cls_token": "[CLS]", "mask_token": "[MASK]", "tokenize_chinese_chars": true, "strip_accents": null, "special_tokens_map_file": null, "name_or_path": "/content/output/training_nli_v2_dmis-lab-biobert-base-cased-v1.1-2022-03-18_16-41-36/", "do_basic_tokenize": true, "never_split": null, "tokenizer_class": "BertTokenizer"}
vocab.txt ADDED
The diff for this file is too large to render. See raw diff