flozi00 commited on
Commit
6c9a31f
1 Parent(s): 7306364

Update README.md

Browse files
Files changed (1) hide show
  1. README.md +90 -160
README.md CHANGED
@@ -1,199 +1,129 @@
1
  ---
 
 
 
2
  library_name: transformers
3
- tags: []
4
  ---
5
 
6
- # Model Card for Model ID
 
7
 
8
- <!-- Provide a quick summary of what the model is/does. -->
9
 
10
 
 
 
11
 
12
- ## Model Details
 
 
 
 
13
 
14
- ### Model Description
15
 
16
- <!-- Provide a longer summary of what this model is. -->
17
 
18
- This is the model card of a 🤗 transformers model that has been pushed on the Hub. This model card has been automatically generated.
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
19
 
20
- - **Developed by:** [More Information Needed]
21
- - **Funded by [optional]:** [More Information Needed]
22
- - **Shared by [optional]:** [More Information Needed]
23
- - **Model type:** [More Information Needed]
24
- - **Language(s) (NLP):** [More Information Needed]
25
- - **License:** [More Information Needed]
26
- - **Finetuned from model [optional]:** [More Information Needed]
27
 
28
- ### Model Sources [optional]
29
 
30
- <!-- Provide the basic links for the model. -->
31
 
32
- - **Repository:** [More Information Needed]
33
- - **Paper [optional]:** [More Information Needed]
34
- - **Demo [optional]:** [More Information Needed]
35
 
36
- ## Uses
37
 
38
- <!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. -->
39
 
40
- ### Direct Use
41
 
42
- <!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. -->
 
43
 
44
- [More Information Needed]
 
 
 
 
45
 
46
- ### Downstream Use [optional]
47
 
48
- <!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app -->
49
 
50
- [More Information Needed]
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
51
 
52
- ### Out-of-Scope Use
53
 
54
- <!-- This section addresses misuse, malicious use, and uses that the model will not work well for. -->
55
 
56
- [More Information Needed]
57
 
58
- ## Bias, Risks, and Limitations
59
 
60
- <!-- This section is meant to convey both technical and sociotechnical limitations. -->
61
 
62
- [More Information Needed]
63
 
64
- ### Recommendations
65
 
66
- <!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. -->
67
 
68
- Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations.
69
 
70
- ## How to Get Started with the Model
71
 
72
- Use the code below to get started with the model.
73
 
74
- [More Information Needed]
 
75
 
76
- ## Training Details
77
 
78
- ### Training Data
79
 
80
- <!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. -->
81
 
82
- [More Information Needed]
83
-
84
- ### Training Procedure
85
-
86
- <!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. -->
87
-
88
- #### Preprocessing [optional]
89
-
90
- [More Information Needed]
91
-
92
-
93
- #### Training Hyperparameters
94
-
95
- - **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision -->
96
-
97
- #### Speeds, Sizes, Times [optional]
98
-
99
- <!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. -->
100
-
101
- [More Information Needed]
102
-
103
- ## Evaluation
104
-
105
- <!-- This section describes the evaluation protocols and provides the results. -->
106
-
107
- ### Testing Data, Factors & Metrics
108
-
109
- #### Testing Data
110
-
111
- <!-- This should link to a Dataset Card if possible. -->
112
-
113
- [More Information Needed]
114
-
115
- #### Factors
116
-
117
- <!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. -->
118
-
119
- [More Information Needed]
120
-
121
- #### Metrics
122
-
123
- <!-- These are the evaluation metrics being used, ideally with a description of why. -->
124
-
125
- [More Information Needed]
126
-
127
- ### Results
128
-
129
- [More Information Needed]
130
-
131
- #### Summary
132
-
133
-
134
-
135
- ## Model Examination [optional]
136
-
137
- <!-- Relevant interpretability work for the model goes here -->
138
-
139
- [More Information Needed]
140
-
141
- ## Environmental Impact
142
-
143
- <!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly -->
144
-
145
- Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700).
146
-
147
- - **Hardware Type:** [More Information Needed]
148
- - **Hours used:** [More Information Needed]
149
- - **Cloud Provider:** [More Information Needed]
150
- - **Compute Region:** [More Information Needed]
151
- - **Carbon Emitted:** [More Information Needed]
152
-
153
- ## Technical Specifications [optional]
154
-
155
- ### Model Architecture and Objective
156
-
157
- [More Information Needed]
158
-
159
- ### Compute Infrastructure
160
-
161
- [More Information Needed]
162
-
163
- #### Hardware
164
-
165
- [More Information Needed]
166
-
167
- #### Software
168
-
169
- [More Information Needed]
170
-
171
- ## Citation [optional]
172
-
173
- <!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. -->
174
-
175
- **BibTeX:**
176
-
177
- [More Information Needed]
178
-
179
- **APA:**
180
-
181
- [More Information Needed]
182
-
183
- ## Glossary [optional]
184
-
185
- <!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. -->
186
-
187
- [More Information Needed]
188
-
189
- ## More Information [optional]
190
-
191
- [More Information Needed]
192
-
193
- ## Model Card Authors [optional]
194
-
195
- [More Information Needed]
196
-
197
- ## Model Card Contact
198
-
199
- [More Information Needed]
 
1
  ---
2
+ license: apache-2.0
3
+ language:
4
+ - de
5
  library_name: transformers
6
+ pipeline_tag: automatic-speech-recognition
7
  ---
8
 
9
+ ### Summary
10
+ This model card provides information about a model based on the tiny whisper architecture that has been trained for speech recognition in German.
11
 
12
+ Whisper is a powerful speech recognition platform developed by OpenAI.
13
 
14
 
15
+ ### Applications
16
+ This model can be used in various application areas, including
17
 
18
+ - Transcription of spoken German language
19
+ - Voice commands and voice control
20
+ - Automatic subtitling for German videos
21
+ - Voice-based search queries in German
22
+ - Dictation functions in word processing programs
23
 
 
24
 
25
+ ## Evaluations - Word error rate
26
 
27
+ +-----------------------------------------+-------+-----------+----------------------------+---------------------+
28
+ | Model | All | Tuda-De | multilingual librispeech | common_voice_19_0 |
29
+ +=========================================+=======+===========+============================+=====================+
30
+ | openai-whisper-large-v3 | 3.28 | 7.86 | 2.85 | 3.46 |
31
+ +-----------------------------------------+-------+-----------+----------------------------+---------------------+
32
+ | openai-whisper-large-v3-turbo | 3.64 | 8.20 | 3.19 | 3.85 |
33
+ +-----------------------------------------+-------+-----------+----------------------------+---------------------+
34
+ | openai-whisper-medium | 5.49 | 11.13 | 5.04 | 5.53 |
35
+ +-----------------------------------------+-------+-----------+----------------------------+---------------------+
36
+ | primeline-whisper-tiny-german-1224 | 6.26 | 9.62 | 4.97 | 8.46 |
37
+ +-----------------------------------------+-------+-----------+----------------------------+---------------------+
38
+ | openai-whisper-small | 9.54 | 15.94 | 8.77 | 10.15 |
39
+ +-----------------------------------------+-------+-----------+----------------------------+---------------------+
40
+ | openai-whisper-base | 18.75 | 33.58 | 17.15 | 19.74 |
41
+ +-----------------------------------------+-------+-----------+----------------------------+---------------------+
42
+ | openai-whisper-tiny | 28.80 | 47.33 | 26.47 | 30.76 |
43
+ +-----------------------------------------+-------+-----------+----------------------------+---------------------+
44
 
45
+ The results are calculated in December 2024 and may change over the time with updates to the eval corpus.
 
 
 
 
 
 
46
 
47
+ For always the newest results please check the code and dataset page.
48
 
49
+ The data and code for evaluations are available [here](https://huggingface.co/datasets/flozi00/asr-german-mixed-evals)
50
 
51
+ ### Training data
52
+ The training data for this model includes a large amount of spoken German from various sources.
 
53
 
54
+ The data was carefully selected and processed to optimize recognition performance.
55
 
56
+ The dataset size is about 6.000 hours of public, proprietary and synthetic data.
57
 
 
58
 
59
+ ### Training process
60
+ The training of the model was performed with the following hyperparameters
61
 
62
+ - Batch size: 32768
63
+ - Epochs: 48
64
+ - Learning rate: 1e-4
65
+ - Data augmentation: No
66
+ - Optimizer: [Ademamix](https://arxiv.org/abs/2409.03137)
67
 
 
68
 
69
+ ### How to use
70
 
71
+ ```python
72
+ import torch
73
+ from transformers import AutoModelForSpeechSeq2Seq, AutoProcessor, pipeline
74
+ from datasets import load_dataset
75
+ device = "cuda:0" if torch.cuda.is_available() else "cpu"
76
+ torch_dtype = torch.float16 if torch.cuda.is_available() else torch.float32
77
+ model_id = "primeline/whisper-tiny-german-1224"
78
+ model = AutoModelForSpeechSeq2Seq.from_pretrained(
79
+ model_id, torch_dtype=torch_dtype, low_cpu_mem_usage=True, use_safetensors=True
80
+ )
81
+ model.to(device)
82
+ processor = AutoProcessor.from_pretrained(model_id)
83
+ pipe = pipeline(
84
+ "automatic-speech-recognition",
85
+ model=model,
86
+ tokenizer=processor.tokenizer,
87
+ feature_extractor=processor.feature_extractor,
88
+ max_new_tokens=128,
89
+ chunk_length_s=30,
90
+ batch_size=16,
91
+ return_timestamps=True,
92
+ torch_dtype=torch_dtype,
93
+ device=device,
94
+ )
95
+ dataset = load_dataset("distil-whisper/librispeech_long", "clean", split="validation")
96
+ sample = dataset[0]["audio"]
97
+ result = pipe(sample)
98
+ print(result["text"])
99
+ ```
100
 
 
101
 
102
+ ## [About us](https://primeline-ai.com/en/)
103
 
104
+ [![primeline AI](https://primeline-ai.com/wp-content/uploads/2024/02/pl_ai_bildwortmarke_original.svg)](https://primeline-ai.com/en/)
105
 
 
106
 
107
+ Your partner for AI infrastructure in Germany
108
 
109
+ Experience the powerful AI infrastructure that drives your ambitions in Deep Learning, Machine Learning & High-Performance Computing.
110
 
111
+ Optimized for AI training and inference.
112
 
 
113
 
 
114
 
115
+ Model author: [Florian Zimmermeister](https://huggingface.co/flozi00)
116
 
117
+ **Disclaimer**
118
 
119
+ ```
120
+ This model is not a product of the primeLine Group.
121
 
122
+ It represents research conducted by [Florian Zimmermeister](https://huggingface.co/flozi00), with computing power sponsored by primeLine.
123
 
124
+ The model is published under this account by primeLine, but it is not a commercial product of primeLine Solutions GmbH.
125
 
126
+ Please be aware that while we have tested and developed this model to the best of our abilities, errors may still occur.
127
 
128
+ Use of this model is at your own risk. We do not accept liability for any incorrect outputs generated by this model.
129
+ ```