prepsyched
commited on
Commit
•
c88ed70
1
Parent(s):
399e547
Initial commit
Browse files- README.md +37 -0
- a2c-PandaReachDense-v2.zip +3 -0
- a2c-PandaReachDense-v2/_stable_baselines3_version +1 -0
- a2c-PandaReachDense-v2/data +95 -0
- a2c-PandaReachDense-v2/policy.optimizer.pth +3 -0
- a2c-PandaReachDense-v2/policy.pth +3 -0
- a2c-PandaReachDense-v2/pytorch_variables.pth +3 -0
- a2c-PandaReachDense-v2/system_info.txt +7 -0
- config.json +1 -0
- replay.mp4 +0 -0
- results.json +1 -0
- vec_normalize.pkl +3 -0
README.md
ADDED
@@ -0,0 +1,37 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
---
|
2 |
+
library_name: stable-baselines3
|
3 |
+
tags:
|
4 |
+
- PandaReachDense-v2
|
5 |
+
- deep-reinforcement-learning
|
6 |
+
- reinforcement-learning
|
7 |
+
- stable-baselines3
|
8 |
+
model-index:
|
9 |
+
- name: A2C
|
10 |
+
results:
|
11 |
+
- task:
|
12 |
+
type: reinforcement-learning
|
13 |
+
name: reinforcement-learning
|
14 |
+
dataset:
|
15 |
+
name: PandaReachDense-v2
|
16 |
+
type: PandaReachDense-v2
|
17 |
+
metrics:
|
18 |
+
- type: mean_reward
|
19 |
+
value: -2.34 +/- 0.80
|
20 |
+
name: mean_reward
|
21 |
+
verified: false
|
22 |
+
---
|
23 |
+
|
24 |
+
# **A2C** Agent playing **PandaReachDense-v2**
|
25 |
+
This is a trained model of a **A2C** agent playing **PandaReachDense-v2**
|
26 |
+
using the [stable-baselines3 library](https://github.com/DLR-RM/stable-baselines3).
|
27 |
+
|
28 |
+
## Usage (with Stable-baselines3)
|
29 |
+
TODO: Add your code
|
30 |
+
|
31 |
+
|
32 |
+
```python
|
33 |
+
from stable_baselines3 import ...
|
34 |
+
from huggingface_sb3 import load_from_hub
|
35 |
+
|
36 |
+
...
|
37 |
+
```
|
a2c-PandaReachDense-v2.zip
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:11981cf705121741267680d866095b46cf96eff0263c2e9d3fe5d731e0da2a3d
|
3 |
+
size 108180
|
a2c-PandaReachDense-v2/_stable_baselines3_version
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
1.8.0
|
a2c-PandaReachDense-v2/data
ADDED
@@ -0,0 +1,95 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"policy_class": {
|
3 |
+
":type:": "<class 'abc.ABCMeta'>",
|
4 |
+
":serialized:": "gAWVRQAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMG011bHRpSW5wdXRBY3RvckNyaXRpY1BvbGljeZSTlC4=",
|
5 |
+
"__module__": "stable_baselines3.common.policies",
|
6 |
+
"__doc__": "\n MultiInputActorClass policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space (Tuple)\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Uses the CombinedExtractor\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ",
|
7 |
+
"__init__": "<function MultiInputActorCriticPolicy.__init__ at 0x7ff1e49e9a60>",
|
8 |
+
"__abstractmethods__": "frozenset()",
|
9 |
+
"_abc_impl": "<_abc._abc_data object at 0x7ff246552400>"
|
10 |
+
},
|
11 |
+
"verbose": 1,
|
12 |
+
"policy_kwargs": {
|
13 |
+
":type:": "<class 'dict'>",
|
14 |
+
":serialized:": "gAWVgQAAAAAAAAB9lCiMD29wdGltaXplcl9jbGFzc5SME3RvcmNoLm9wdGltLnJtc3Byb3CUjAdSTVNwcm9wlJOUjBBvcHRpbWl6ZXJfa3dhcmdzlH2UKIwFYWxwaGGURz/vrhR64UeujANlcHOURz7k+LWI42jxjAx3ZWlnaHRfZGVjYXmUSwB1dS4=",
|
15 |
+
"optimizer_class": "<class 'torch.optim.rmsprop.RMSprop'>",
|
16 |
+
"optimizer_kwargs": {
|
17 |
+
"alpha": 0.99,
|
18 |
+
"eps": 1e-05,
|
19 |
+
"weight_decay": 0
|
20 |
+
}
|
21 |
+
},
|
22 |
+
"num_timesteps": 1000000,
|
23 |
+
"_total_timesteps": 1000000.0,
|
24 |
+
"_num_timesteps_at_start": 0,
|
25 |
+
"seed": null,
|
26 |
+
"action_noise": null,
|
27 |
+
"start_time": 1682526576156394263,
|
28 |
+
"learning_rate": 0.0007,
|
29 |
+
"tensorboard_log": null,
|
30 |
+
"lr_schedule": {
|
31 |
+
":type:": "<class 'function'>",
|
32 |
+
":serialized:": "gAWVwwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOS9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZSMBGZ1bmOUS4JDAgABlIwDdmFslIWUKXSUUpR9lCiMC19fcGFja2FnZV9flIwYc3RhYmxlX2Jhc2VsaW5lczMuY29tbW9ulIwIX19uYW1lX1+UjB5zdGFibGVfYmFzZWxpbmVzMy5jb21tb24udXRpbHOUjAhfX2ZpbGVfX5SMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOS9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZR1Tk5oAIwQX21ha2VfZW1wdHlfY2VsbJSTlClSlIWUdJRSlIwcY2xvdWRwaWNrbGUuY2xvdWRwaWNrbGVfZmFzdJSMEl9mdW5jdGlvbl9zZXRzdGF0ZZSTlGgffZR9lChoFmgNjAxfX3F1YWxuYW1lX1+UjBljb25zdGFudF9mbi48bG9jYWxzPi5mdW5jlIwPX19hbm5vdGF0aW9uc19flH2UjA5fX2t3ZGVmYXVsdHNfX5ROjAxfX2RlZmF1bHRzX1+UTowKX19tb2R1bGVfX5RoF4wHX19kb2NfX5ROjAtfX2Nsb3N1cmVfX5RoAIwKX21ha2VfY2VsbJSTlEc/RvAGjbi6x4WUUpSFlIwXX2Nsb3VkcGlja2xlX3N1Ym1vZHVsZXOUXZSMC19fZ2xvYmFsc19flH2UdYaUhlIwLg=="
|
33 |
+
},
|
34 |
+
"_last_obs": {
|
35 |
+
":type:": "<class 'collections.OrderedDict'>",
|
36 |
+
":serialized:": "gAWVuwEAAAAAAACMC2NvbGxlY3Rpb25zlIwLT3JkZXJlZERpY3SUk5QpUpQojA1hY2hpZXZlZF9nb2FslIwSbnVtcHkuY29yZS5udW1lcmljlIwLX2Zyb21idWZmZXKUk5QoljAAAAAAAAAADoi8Po9YB7nu2Q8/Doi8Po9YB7nu2Q8/Doi8Po9YB7nu2Q8/Doi8Po9YB7nu2Q8/lIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksESwOGlIwBQ5R0lFKUjAxkZXNpcmVkX2dvYWyUaAcoljAAAAAAAAAA+TXXvgcYEz6vsCI/xgwuPwgJWz+S/bw/mIVFv8cfkr+1QgE/CrCkv3ZXib7w3py/lGgOSwRLA4aUaBJ0lFKUjAtvYnNlcnZhdGlvbpRoByiWYAAAAAAAAAAOiLw+j1gHue7ZDz++ixE8RRYNu+RJejsOiLw+j1gHue7ZDz++ixE8RRYNu+RJejsOiLw+j1gHue7ZDz++ixE8RRYNu+RJejsOiLw+j1gHue7ZDz++ixE8RRYNu+RJejuUaA5LBEsGhpRoEnSUUpR1Lg==",
|
37 |
+
"achieved_goal": "[[ 3.6822551e-01 -1.2907594e-04 5.6191909e-01]\n [ 3.6822551e-01 -1.2907594e-04 5.6191909e-01]\n [ 3.6822551e-01 -1.2907594e-04 5.6191909e-01]\n [ 3.6822551e-01 -1.2907594e-04 5.6191909e-01]]",
|
38 |
+
"desired_goal": "[[-0.42033365 0.14364634 0.6355085 ]\n [ 0.6798824 0.85560656 1.4764884 ]\n [-0.7715697 -1.1415948 0.5049241 ]\n [-1.2866223 -0.2682454 -1.2255535 ]]",
|
39 |
+
"observation": "[[ 3.6822551e-01 -1.2907594e-04 5.6191909e-01 8.8834148e-03\n -2.1528166e-03 3.8191015e-03]\n [ 3.6822551e-01 -1.2907594e-04 5.6191909e-01 8.8834148e-03\n -2.1528166e-03 3.8191015e-03]\n [ 3.6822551e-01 -1.2907594e-04 5.6191909e-01 8.8834148e-03\n -2.1528166e-03 3.8191015e-03]\n [ 3.6822551e-01 -1.2907594e-04 5.6191909e-01 8.8834148e-03\n -2.1528166e-03 3.8191015e-03]]"
|
40 |
+
},
|
41 |
+
"_last_episode_starts": {
|
42 |
+
":type:": "<class 'numpy.ndarray'>",
|
43 |
+
":serialized:": "gAWVdwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYEAAAAAAAAAAEBAQGUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSwSFlIwBQ5R0lFKULg=="
|
44 |
+
},
|
45 |
+
"_last_original_obs": {
|
46 |
+
":type:": "<class 'collections.OrderedDict'>",
|
47 |
+
":serialized:": "gAWVuwEAAAAAAACMC2NvbGxlY3Rpb25zlIwLT3JkZXJlZERpY3SUk5QpUpQojA1hY2hpZXZlZF9nb2FslIwSbnVtcHkuY29yZS5udW1lcmljlIwLX2Zyb21idWZmZXKUk5QoljAAAAAAAAAA6nIdPRlsGqxDI0o+6nIdPRlsGqxDI0o+6nIdPRlsGqxDI0o+6nIdPRlsGqxDI0o+lIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksESwOGlIwBQ5R0lFKUjAxkZXNpcmVkX2dvYWyUaAcoljAAAAAAAAAAVsJtvWzwvL03RKw9QsubPQJf0j0SAXo+MATDPIBfzT2zmTM+HSV5vRp8xD2CalM+lGgOSwRLA4aUaBJ0lFKUjAtvYnNlcnZhdGlvbpRoByiWYAAAAAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAACUaA5LBEsGhpRoEnSUUpR1Lg==",
|
48 |
+
"achieved_goal": "[[ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]]",
|
49 |
+
"desired_goal": "[[-0.05804666 -0.09225544 0.08411448]\n [ 0.07607128 0.10272028 0.24414471]\n [ 0.02380571 0.10027981 0.175391 ]\n [-0.06082641 0.09593983 0.20646098]]",
|
50 |
+
"observation": "[[ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]]"
|
51 |
+
},
|
52 |
+
"_episode_num": 0,
|
53 |
+
"use_sde": false,
|
54 |
+
"sde_sample_freq": -1,
|
55 |
+
"_current_progress_remaining": 0.0,
|
56 |
+
"_stats_window_size": 100,
|
57 |
+
"ep_info_buffer": {
|
58 |
+
":type:": "<class 'collections.deque'>",
|
59 |
+
":serialized:": "gAWVHRAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMI46jcRC2tAMCUhpRSlIwBbJRLMowBdJRHQKop7og3cYZ1fZQoaAZoCWgPQwg9Sbpm8g0CwJSGlFKUaBVLMmgWR0CqKZmucMEzdX2UKGgGaAloD0MILuV8sfeCAMCUhpRSlGgVSzJoFkdAqik+hRIjGHV9lChoBmgJaA9DCNPB+j+HGQnAlIaUUpRoFUsyaBZHQKoo4pvxYq51fZQoaAZoCWgPQwi78e7IWG32v5SGlFKUaBVLMmgWR0CqK4Tb349HdX2UKGgGaAloD0MIFxIwurxZAMCUhpRSlGgVSzJoFkdAqisvy5I6KnV9lChoBmgJaA9DCKexvRb0fgjAlIaUUpRoFUsyaBZHQKoq1O7g88t1fZQoaAZoCWgPQwg74/viUlX8v5SGlFKUaBVLMmgWR0CqKnifxtpFdX2UKGgGaAloD0MIpWsm32yzBcCUhpRSlGgVSzJoFkdAqi0wXAM2FXV9lChoBmgJaA9DCJF8JZASe/K/lIaUUpRoFUsyaBZHQKos22sq8UV1fZQoaAZoCWgPQwjh0jHnGRsFwJSGlFKUaBVLMmgWR0CqLIBWPtD2dX2UKGgGaAloD0MIPpXTnpJz9r+UhpRSlGgVSzJoFkdAqiwlLteD4HV9lChoBmgJaA9DCED6Jk2DYgPAlIaUUpRoFUsyaBZHQKovFWYnfEZ1fZQoaAZoCWgPQwj1DyIZcuz8v5SGlFKUaBVLMmgWR0CqLsI6r/83dX2UKGgGaAloD0MI4etrXWqkAsCUhpRSlGgVSzJoFkdAqi5m78Nx2nV9lChoBmgJaA9DCLvvGB77WQXAlIaUUpRoFUsyaBZHQKouCsyzoll1fZQoaAZoCWgPQwhjesISD+gFwJSGlFKUaBVLMmgWR0CqMPSLhrFgdX2UKGgGaAloD0MIDJV/La+c9r+UhpRSlGgVSzJoFkdAqjChacI7eXV9lChoBmgJaA9DCDoEjgQaDADAlIaUUpRoFUsyaBZHQKowRhWHUMJ1fZQoaAZoCWgPQwhrYKsEi2MGwJSGlFKUaBVLMmgWR0CqL+owVTJhdX2UKGgGaAloD0MI5jv4iQPoBMCUhpRSlGgVSzJoFkdAqjKgte2NN3V9lChoBmgJaA9DCOgv9IjRM/2/lIaUUpRoFUsyaBZHQKoyS8+Royt1fZQoaAZoCWgPQwizlZf8Tx4EwJSGlFKUaBVLMmgWR0CqMfCaqjrSdX2UKGgGaAloD0MIwVPIlXo2BMCUhpRSlGgVSzJoFkdAqjGVFfAsTXV9lChoBmgJaA9DCKhy2lNybgTAlIaUUpRoFUsyaBZHQKo0TRIjGDN1fZQoaAZoCWgPQwjw3eaNk4L3v5SGlFKUaBVLMmgWR0CqM/ifpUxVdX2UKGgGaAloD0MI2UP7WMEPC8CUhpRSlGgVSzJoFkdAqjOdXko4MnV9lChoBmgJaA9DCIoGKXgK2QHAlIaUUpRoFUsyaBZHQKozQbAk9lp1fZQoaAZoCWgPQwi4I5wWvOj7v5SGlFKUaBVLMmgWR0CqNj8vM8oydX2UKGgGaAloD0MIP/7Soj6pAsCUhpRSlGgVSzJoFkdAqjXrj/+85HV9lChoBmgJaA9DCKlr7X2qqgnAlIaUUpRoFUsyaBZHQKo1kPBi1At1fZQoaAZoCWgPQwhSfecXJSgBwJSGlFKUaBVLMmgWR0CqNTTtsvZidX2UKGgGaAloD0MI/P7NixPf+L+UhpRSlGgVSzJoFkdAqjf2IGhVVHV9lChoBmgJaA9DCKhWX10ViATAlIaUUpRoFUsyaBZHQKo3oUTtb9t1fZQoaAZoCWgPQwgKuVLPgrADwJSGlFKUaBVLMmgWR0CqN0a1b7j1dX2UKGgGaAloD0MItvRoqieTB8CUhpRSlGgVSzJoFkdAqjbq6MBIWnV9lChoBmgJaA9DCH0geedQxgXAlIaUUpRoFUsyaBZHQKo5I4G2TgV1fZQoaAZoCWgPQwjvqgfMQ0YDwJSGlFKUaBVLMmgWR0CqOM7W/ag3dX2UKGgGaAloD0MIylLr/UabA8CUhpRSlGgVSzJoFkdAqjhzEzfrKXV9lChoBmgJaA9DCLKhm/2B0gPAlIaUUpRoFUsyaBZHQKo4Ft1p0wJ1fZQoaAZoCWgPQwjgnXx6bIsGwJSGlFKUaBVLMmgWR0CqOiByS3b3dX2UKGgGaAloD0MI4Zo7+l8uCcCUhpRSlGgVSzJoFkdAqjnKs6q82HV9lChoBmgJaA9DCO4m+Kbp0wzAlIaUUpRoFUsyaBZHQKo5bxAB1cN1fZQoaAZoCWgPQwgi36XUJQMEwJSGlFKUaBVLMmgWR0CqORJFLFn7dX2UKGgGaAloD0MIGY9SCU8o/b+UhpRSlGgVSzJoFkdAqjsizXz19XV9lChoBmgJaA9DCC5XPzbJzwfAlIaUUpRoFUsyaBZHQKo6zZWaMJh1fZQoaAZoCWgPQwjAdcWM8JYCwJSGlFKUaBVLMmgWR0CqOnHUUfxMdX2UKGgGaAloD0MIGO3xQjr8D8CUhpRSlGgVSzJoFkdAqjoVe8f3e3V9lChoBmgJaA9DCHLcKR2snwnAlIaUUpRoFUsyaBZHQKo8SF7laKV1fZQoaAZoCWgPQwj1uG+1TjwJwJSGlFKUaBVLMmgWR0CqO/K9oN/fdX2UKGgGaAloD0MIUkfH1ciuA8CUhpRSlGgVSzJoFkdAqjuW3DvVmXV9lChoBmgJaA9DCAjIl1DB4QTAlIaUUpRoFUsyaBZHQKo7OixFAml1fZQoaAZoCWgPQwiK5CuBlJgQwJSGlFKUaBVLMmgWR0CqPUFPznRtdX2UKGgGaAloD0MIdxTnqKOj+7+UhpRSlGgVSzJoFkdAqjzr9VFQVXV9lChoBmgJaA9DCNl22hoRDP+/lIaUUpRoFUsyaBZHQKo8kDEFW4p1fZQoaAZoCWgPQwhvufqxSZ4NwJSGlFKUaBVLMmgWR0CqPDOby6MBdX2UKGgGaAloD0MIHofB/BUyBsCUhpRSlGgVSzJoFkdAqj44oZydWnV9lChoBmgJaA9DCD/iV6zhQgLAlIaUUpRoFUsyaBZHQKo941ZTyax1fZQoaAZoCWgPQwhiTPp7KTz3v5SGlFKUaBVLMmgWR0CqPYeWGATadX2UKGgGaAloD0MIpIriVdYWAMCUhpRSlGgVSzJoFkdAqj0rM3ZPEnV9lChoBmgJaA9DCAgiizTxzgPAlIaUUpRoFUsyaBZHQKo/OOFxn4B1fZQoaAZoCWgPQwhvZvSj4RT6v5SGlFKUaBVLMmgWR0CqPuM+FDfFdX2UKGgGaAloD0MIoS5SKAv/AsCUhpRSlGgVSzJoFkdAqj6HdRBNVXV9lChoBmgJaA9DCAmocASp1P+/lIaUUpRoFUsyaBZHQKo+KqtHQQd1fZQoaAZoCWgPQwhgOUIG8uz5v5SGlFKUaBVLMmgWR0CqQFMguAZsdX2UKGgGaAloD0MIn8ppT8lZAcCUhpRSlGgVSzJoFkdAqj/9oYekpXV9lChoBmgJaA9DCAh1kUJZmA/AlIaUUpRoFUsyaBZHQKo/oqgAZKp1fZQoaAZoCWgPQwhPzeUGQ135v5SGlFKUaBVLMmgWR0CqP0YXoC+2dX2UKGgGaAloD0MIkGtDxTg/D8CUhpRSlGgVSzJoFkdAqkFxttQ9BHV9lChoBmgJaA9DCHCWkuUkhBDAlIaUUpRoFUsyaBZHQKpBHIlMRHx1fZQoaAZoCWgPQwj2Yb1RK0wLwJSGlFKUaBVLMmgWR0CqQMGwaBI4dX2UKGgGaAloD0MIIxRbQdNSCcCUhpRSlGgVSzJoFkdAqkBlIkJKJ3V9lChoBmgJaA9DCFjLnZlgOAfAlIaUUpRoFUsyaBZHQKpCrX4CZF51fZQoaAZoCWgPQwjWU6uvrsoMwJSGlFKUaBVLMmgWR0CqQljX4CZGdX2UKGgGaAloD0MIeEZblUS2AcCUhpRSlGgVSzJoFkdAqkH9aMaS93V9lChoBmgJaA9DCEIhAg6hygfAlIaUUpRoFUsyaBZHQKpBoLE1l5J1fZQoaAZoCWgPQwhm9nmM8uwGwJSGlFKUaBVLMmgWR0CqQ8fnW8RMdX2UKGgGaAloD0MIP8bctYTcCMCUhpRSlGgVSzJoFkdAqkNykwevIXV9lChoBmgJaA9DCEXY8PRKGfS/lIaUUpRoFUsyaBZHQKpDFvG6wt91fZQoaAZoCWgPQwhmn8coz/z2v5SGlFKUaBVLMmgWR0CqQrpUgjhUdX2UKGgGaAloD0MIqb7zixKUB8CUhpRSlGgVSzJoFkdAqkTBBgNPQHV9lChoBmgJaA9DCE8EcR5OoPS/lIaUUpRoFUsyaBZHQKpEa12q1gJ1fZQoaAZoCWgPQwhU/Urnw5MEwJSGlFKUaBVLMmgWR0CqRA9yksSTdX2UKGgGaAloD0MI2/l+aryUCcCUhpRSlGgVSzJoFkdAqkOyon8baXV9lChoBmgJaA9DCJ6xL9l4cAHAlIaUUpRoFUsyaBZHQKpF5xhlUZN1fZQoaAZoCWgPQwhxytx8I/r9v5SGlFKUaBVLMmgWR0CqRZHoxHoYdX2UKGgGaAloD0MIPGh23VsxAcCUhpRSlGgVSzJoFkdAqkU2Fev6j3V9lChoBmgJaA9DCBObj2tDhQPAlIaUUpRoFUsyaBZHQKpE2kfs/pt1fZQoaAZoCWgPQwiaJ9cUyKwBwJSGlFKUaBVLMmgWR0CqRt8scyWSdX2UKGgGaAloD0MINsmP+BXLCsCUhpRSlGgVSzJoFkdAqkaJ00WM0nV9lChoBmgJaA9DCIpbBTHQVQLAlIaUUpRoFUsyaBZHQKpGLh2GIsR1fZQoaAZoCWgPQwhJSnoYWt34v5SGlFKUaBVLMmgWR0CqRdFxn3+NdX2UKGgGaAloD0MIaeBHNewXDcCUhpRSlGgVSzJoFkdAqkf2WfK6nXV9lChoBmgJaA9DCObpXFFKiAPAlIaUUpRoFUsyaBZHQKpHoQCCBf91fZQoaAZoCWgPQwgArfnxl9b3v5SGlFKUaBVLMmgWR0CqR0Uk4WDZdX2UKGgGaAloD0MIyotMwK8RBMCUhpRSlGgVSzJoFkdAqkbogRsdk3V9lChoBmgJaA9DCJ30vvG1xwDAlIaUUpRoFUsyaBZHQKpI+G8Empl1fZQoaAZoCWgPQwjx2To42NsHwJSGlFKUaBVLMmgWR0CqSKLbYbsGdX2UKGgGaAloD0MIkj6toj+0+7+UhpRSlGgVSzJoFkdAqkhHT3IuG3V9lChoBmgJaA9DCJDaxMn9TgHAlIaUUpRoFUsyaBZHQKpH6rMC9yt1ZS4="
|
60 |
+
},
|
61 |
+
"ep_success_buffer": {
|
62 |
+
":type:": "<class 'collections.deque'>",
|
63 |
+
":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="
|
64 |
+
},
|
65 |
+
"_n_updates": 50000,
|
66 |
+
"n_steps": 5,
|
67 |
+
"gamma": 0.99,
|
68 |
+
"gae_lambda": 1.0,
|
69 |
+
"ent_coef": 0.0,
|
70 |
+
"vf_coef": 0.5,
|
71 |
+
"max_grad_norm": 0.5,
|
72 |
+
"normalize_advantage": false,
|
73 |
+
"observation_space": {
|
74 |
+
":type:": "<class 'gym.spaces.dict.Dict'>",
|
75 |
+
":serialized:": "gAWVUgMAAAAAAACMD2d5bS5zcGFjZXMuZGljdJSMBERpY3SUk5QpgZR9lCiMBnNwYWNlc5SMC2NvbGxlY3Rpb25zlIwLT3JkZXJlZERpY3SUk5QpUpQojA1hY2hpZXZlZF9nb2FslIwOZ3ltLnNwYWNlcy5ib3iUjANCb3iUk5QpgZR9lCiMBWR0eXBllIwFbnVtcHmUaBCTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYowGX3NoYXBllEsDhZSMA2xvd5SMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYMAAAAAAAAAAAAIMEAACDBAAAgwZRoFUsDhZSMAUOUdJRSlIwEaGlnaJRoHSiWDAAAAAAAAAAAACBBAAAgQQAAIEGUaBVLA4WUaCB0lFKUjA1ib3VuZGVkX2JlbG93lGgdKJYDAAAAAAAAAAEBAZRoEowCYjGUiYiHlFKUKEsDjAF8lE5OTkr/////Sv////9LAHSUYksDhZRoIHSUUpSMDWJvdW5kZWRfYWJvdmWUaB0olgMAAAAAAAAAAQEBlGgsSwOFlGggdJRSlIwKX25wX3JhbmRvbZROdWKMDGRlc2lyZWRfZ29hbJRoDSmBlH2UKGgQaBVoGEsDhZRoGmgdKJYMAAAAAAAAAAAAIMEAACDBAAAgwZRoFUsDhZRoIHSUUpRoI2gdKJYMAAAAAAAAAAAAIEEAACBBAAAgQZRoFUsDhZRoIHSUUpRoKGgdKJYDAAAAAAAAAAEBAZRoLEsDhZRoIHSUUpRoMmgdKJYDAAAAAAAAAAEBAZRoLEsDhZRoIHSUUpRoN051YowLb2JzZXJ2YXRpb26UaA0pgZR9lChoEGgVaBhLBoWUaBpoHSiWGAAAAAAAAAAAACDBAAAgwQAAIMEAACDBAAAgwQAAIMGUaBVLBoWUaCB0lFKUaCNoHSiWGAAAAAAAAAAAACBBAAAgQQAAIEEAACBBAAAgQQAAIEGUaBVLBoWUaCB0lFKUaChoHSiWBgAAAAAAAAABAQEBAQGUaCxLBoWUaCB0lFKUaDJoHSiWBgAAAAAAAAABAQEBAQGUaCxLBoWUaCB0lFKUaDdOdWJ1aBhOaBBOaDdOdWIu",
|
76 |
+
"spaces": "OrderedDict([('achieved_goal', Box([-10. -10. -10.], [10. 10. 10.], (3,), float32)), ('desired_goal', Box([-10. -10. -10.], [10. 10. 10.], (3,), float32)), ('observation', Box([-10. -10. -10. -10. -10. -10.], [10. 10. 10. 10. 10. 10.], (6,), float32))])",
|
77 |
+
"_shape": null,
|
78 |
+
"dtype": null,
|
79 |
+
"_np_random": null
|
80 |
+
},
|
81 |
+
"action_space": {
|
82 |
+
":type:": "<class 'gym.spaces.box.Box'>",
|
83 |
+
":serialized:": "gAWVbQEAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLA4WUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWDAAAAAAAAAAAAIC/AACAvwAAgL+UaApLA4WUjAFDlHSUUpSMBGhpZ2iUaBIolgwAAAAAAAAAAACAPwAAgD8AAIA/lGgKSwOFlGgVdJRSlIwNYm91bmRlZF9iZWxvd5RoEiiWAwAAAAAAAAABAQGUaAeMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLA4WUaBV0lFKUjA1ib3VuZGVkX2Fib3ZllGgSKJYDAAAAAAAAAAEBAZRoIUsDhZRoFXSUUpSMCl9ucF9yYW5kb22UTnViLg==",
|
84 |
+
"dtype": "float32",
|
85 |
+
"_shape": [
|
86 |
+
3
|
87 |
+
],
|
88 |
+
"low": "[-1. -1. -1.]",
|
89 |
+
"high": "[1. 1. 1.]",
|
90 |
+
"bounded_below": "[ True True True]",
|
91 |
+
"bounded_above": "[ True True True]",
|
92 |
+
"_np_random": null
|
93 |
+
},
|
94 |
+
"n_envs": 4
|
95 |
+
}
|
a2c-PandaReachDense-v2/policy.optimizer.pth
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:bf170dd063c7f65f697095b111f50c36a4df398f99ba2d248e39983a3e82b8a5
|
3 |
+
size 44734
|
a2c-PandaReachDense-v2/policy.pth
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:9c847bf3bcbdeb846e30cc70d33c544af9ffaf40139303b03c6dc0c2bbcf87b7
|
3 |
+
size 46014
|
a2c-PandaReachDense-v2/pytorch_variables.pth
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:d030ad8db708280fcae77d87e973102039acd23a11bdecc3db8eb6c0ac940ee1
|
3 |
+
size 431
|
a2c-PandaReachDense-v2/system_info.txt
ADDED
@@ -0,0 +1,7 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
- OS: Linux-5.10.147+-x86_64-with-glibc2.31 # 1 SMP Sat Dec 10 16:00:40 UTC 2022
|
2 |
+
- Python: 3.9.16
|
3 |
+
- Stable-Baselines3: 1.8.0
|
4 |
+
- PyTorch: 2.0.0+cu118
|
5 |
+
- GPU Enabled: True
|
6 |
+
- Numpy: 1.22.4
|
7 |
+
- Gym: 0.21.0
|
config.json
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
{"policy_class": {":type:": "<class 'abc.ABCMeta'>", ":serialized:": "gAWVRQAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMG011bHRpSW5wdXRBY3RvckNyaXRpY1BvbGljeZSTlC4=", "__module__": "stable_baselines3.common.policies", "__doc__": "\n MultiInputActorClass policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space (Tuple)\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Uses the CombinedExtractor\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ", "__init__": "<function MultiInputActorCriticPolicy.__init__ at 0x7ff1e49e9a60>", "__abstractmethods__": "frozenset()", "_abc_impl": "<_abc._abc_data object at 0x7ff246552400>"}, "verbose": 1, "policy_kwargs": {":type:": "<class 'dict'>", ":serialized:": "gAWVgQAAAAAAAAB9lCiMD29wdGltaXplcl9jbGFzc5SME3RvcmNoLm9wdGltLnJtc3Byb3CUjAdSTVNwcm9wlJOUjBBvcHRpbWl6ZXJfa3dhcmdzlH2UKIwFYWxwaGGURz/vrhR64UeujANlcHOURz7k+LWI42jxjAx3ZWlnaHRfZGVjYXmUSwB1dS4=", "optimizer_class": "<class 'torch.optim.rmsprop.RMSprop'>", "optimizer_kwargs": {"alpha": 0.99, "eps": 1e-05, "weight_decay": 0}}, "num_timesteps": 1000000, "_total_timesteps": 1000000.0, "_num_timesteps_at_start": 0, "seed": null, "action_noise": null, "start_time": 1682526576156394263, "learning_rate": 0.0007, "tensorboard_log": null, "lr_schedule": {":type:": "<class 'function'>", ":serialized:": "gAWVwwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOS9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZSMBGZ1bmOUS4JDAgABlIwDdmFslIWUKXSUUpR9lCiMC19fcGFja2FnZV9flIwYc3RhYmxlX2Jhc2VsaW5lczMuY29tbW9ulIwIX19uYW1lX1+UjB5zdGFibGVfYmFzZWxpbmVzMy5jb21tb24udXRpbHOUjAhfX2ZpbGVfX5SMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOS9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZR1Tk5oAIwQX21ha2VfZW1wdHlfY2VsbJSTlClSlIWUdJRSlIwcY2xvdWRwaWNrbGUuY2xvdWRwaWNrbGVfZmFzdJSMEl9mdW5jdGlvbl9zZXRzdGF0ZZSTlGgffZR9lChoFmgNjAxfX3F1YWxuYW1lX1+UjBljb25zdGFudF9mbi48bG9jYWxzPi5mdW5jlIwPX19hbm5vdGF0aW9uc19flH2UjA5fX2t3ZGVmYXVsdHNfX5ROjAxfX2RlZmF1bHRzX1+UTowKX19tb2R1bGVfX5RoF4wHX19kb2NfX5ROjAtfX2Nsb3N1cmVfX5RoAIwKX21ha2VfY2VsbJSTlEc/RvAGjbi6x4WUUpSFlIwXX2Nsb3VkcGlja2xlX3N1Ym1vZHVsZXOUXZSMC19fZ2xvYmFsc19flH2UdYaUhlIwLg=="}, "_last_obs": {":type:": "<class 'collections.OrderedDict'>", ":serialized:": "gAWVuwEAAAAAAACMC2NvbGxlY3Rpb25zlIwLT3JkZXJlZERpY3SUk5QpUpQojA1hY2hpZXZlZF9nb2FslIwSbnVtcHkuY29yZS5udW1lcmljlIwLX2Zyb21idWZmZXKUk5QoljAAAAAAAAAADoi8Po9YB7nu2Q8/Doi8Po9YB7nu2Q8/Doi8Po9YB7nu2Q8/Doi8Po9YB7nu2Q8/lIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksESwOGlIwBQ5R0lFKUjAxkZXNpcmVkX2dvYWyUaAcoljAAAAAAAAAA+TXXvgcYEz6vsCI/xgwuPwgJWz+S/bw/mIVFv8cfkr+1QgE/CrCkv3ZXib7w3py/lGgOSwRLA4aUaBJ0lFKUjAtvYnNlcnZhdGlvbpRoByiWYAAAAAAAAAAOiLw+j1gHue7ZDz++ixE8RRYNu+RJejsOiLw+j1gHue7ZDz++ixE8RRYNu+RJejsOiLw+j1gHue7ZDz++ixE8RRYNu+RJejsOiLw+j1gHue7ZDz++ixE8RRYNu+RJejuUaA5LBEsGhpRoEnSUUpR1Lg==", "achieved_goal": "[[ 3.6822551e-01 -1.2907594e-04 5.6191909e-01]\n [ 3.6822551e-01 -1.2907594e-04 5.6191909e-01]\n [ 3.6822551e-01 -1.2907594e-04 5.6191909e-01]\n [ 3.6822551e-01 -1.2907594e-04 5.6191909e-01]]", "desired_goal": "[[-0.42033365 0.14364634 0.6355085 ]\n [ 0.6798824 0.85560656 1.4764884 ]\n [-0.7715697 -1.1415948 0.5049241 ]\n [-1.2866223 -0.2682454 -1.2255535 ]]", "observation": "[[ 3.6822551e-01 -1.2907594e-04 5.6191909e-01 8.8834148e-03\n -2.1528166e-03 3.8191015e-03]\n [ 3.6822551e-01 -1.2907594e-04 5.6191909e-01 8.8834148e-03\n -2.1528166e-03 3.8191015e-03]\n [ 3.6822551e-01 -1.2907594e-04 5.6191909e-01 8.8834148e-03\n -2.1528166e-03 3.8191015e-03]\n [ 3.6822551e-01 -1.2907594e-04 5.6191909e-01 8.8834148e-03\n -2.1528166e-03 3.8191015e-03]]"}, "_last_episode_starts": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVdwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYEAAAAAAAAAAEBAQGUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSwSFlIwBQ5R0lFKULg=="}, "_last_original_obs": {":type:": "<class 'collections.OrderedDict'>", ":serialized:": "gAWVuwEAAAAAAACMC2NvbGxlY3Rpb25zlIwLT3JkZXJlZERpY3SUk5QpUpQojA1hY2hpZXZlZF9nb2FslIwSbnVtcHkuY29yZS5udW1lcmljlIwLX2Zyb21idWZmZXKUk5QoljAAAAAAAAAA6nIdPRlsGqxDI0o+6nIdPRlsGqxDI0o+6nIdPRlsGqxDI0o+6nIdPRlsGqxDI0o+lIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksESwOGlIwBQ5R0lFKUjAxkZXNpcmVkX2dvYWyUaAcoljAAAAAAAAAAVsJtvWzwvL03RKw9QsubPQJf0j0SAXo+MATDPIBfzT2zmTM+HSV5vRp8xD2CalM+lGgOSwRLA4aUaBJ0lFKUjAtvYnNlcnZhdGlvbpRoByiWYAAAAAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAACUaA5LBEsGhpRoEnSUUpR1Lg==", "achieved_goal": "[[ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]]", "desired_goal": "[[-0.05804666 -0.09225544 0.08411448]\n [ 0.07607128 0.10272028 0.24414471]\n [ 0.02380571 0.10027981 0.175391 ]\n [-0.06082641 0.09593983 0.20646098]]", "observation": "[[ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]]"}, "_episode_num": 0, "use_sde": false, "sde_sample_freq": -1, "_current_progress_remaining": 0.0, "_stats_window_size": 100, "ep_info_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVHRAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMI46jcRC2tAMCUhpRSlIwBbJRLMowBdJRHQKop7og3cYZ1fZQoaAZoCWgPQwg9Sbpm8g0CwJSGlFKUaBVLMmgWR0CqKZmucMEzdX2UKGgGaAloD0MILuV8sfeCAMCUhpRSlGgVSzJoFkdAqik+hRIjGHV9lChoBmgJaA9DCNPB+j+HGQnAlIaUUpRoFUsyaBZHQKoo4pvxYq51fZQoaAZoCWgPQwi78e7IWG32v5SGlFKUaBVLMmgWR0CqK4Tb349HdX2UKGgGaAloD0MIFxIwurxZAMCUhpRSlGgVSzJoFkdAqisvy5I6KnV9lChoBmgJaA9DCKexvRb0fgjAlIaUUpRoFUsyaBZHQKoq1O7g88t1fZQoaAZoCWgPQwg74/viUlX8v5SGlFKUaBVLMmgWR0CqKnifxtpFdX2UKGgGaAloD0MIpWsm32yzBcCUhpRSlGgVSzJoFkdAqi0wXAM2FXV9lChoBmgJaA9DCJF8JZASe/K/lIaUUpRoFUsyaBZHQKos22sq8UV1fZQoaAZoCWgPQwjh0jHnGRsFwJSGlFKUaBVLMmgWR0CqLIBWPtD2dX2UKGgGaAloD0MIPpXTnpJz9r+UhpRSlGgVSzJoFkdAqiwlLteD4HV9lChoBmgJaA9DCED6Jk2DYgPAlIaUUpRoFUsyaBZHQKovFWYnfEZ1fZQoaAZoCWgPQwj1DyIZcuz8v5SGlFKUaBVLMmgWR0CqLsI6r/83dX2UKGgGaAloD0MI4etrXWqkAsCUhpRSlGgVSzJoFkdAqi5m78Nx2nV9lChoBmgJaA9DCLvvGB77WQXAlIaUUpRoFUsyaBZHQKouCsyzoll1fZQoaAZoCWgPQwhjesISD+gFwJSGlFKUaBVLMmgWR0CqMPSLhrFgdX2UKGgGaAloD0MIDJV/La+c9r+UhpRSlGgVSzJoFkdAqjChacI7eXV9lChoBmgJaA9DCDoEjgQaDADAlIaUUpRoFUsyaBZHQKowRhWHUMJ1fZQoaAZoCWgPQwhrYKsEi2MGwJSGlFKUaBVLMmgWR0CqL+owVTJhdX2UKGgGaAloD0MI5jv4iQPoBMCUhpRSlGgVSzJoFkdAqjKgte2NN3V9lChoBmgJaA9DCOgv9IjRM/2/lIaUUpRoFUsyaBZHQKoyS8+Royt1fZQoaAZoCWgPQwizlZf8Tx4EwJSGlFKUaBVLMmgWR0CqMfCaqjrSdX2UKGgGaAloD0MIwVPIlXo2BMCUhpRSlGgVSzJoFkdAqjGVFfAsTXV9lChoBmgJaA9DCKhy2lNybgTAlIaUUpRoFUsyaBZHQKo0TRIjGDN1fZQoaAZoCWgPQwjw3eaNk4L3v5SGlFKUaBVLMmgWR0CqM/ifpUxVdX2UKGgGaAloD0MI2UP7WMEPC8CUhpRSlGgVSzJoFkdAqjOdXko4MnV9lChoBmgJaA9DCIoGKXgK2QHAlIaUUpRoFUsyaBZHQKozQbAk9lp1fZQoaAZoCWgPQwi4I5wWvOj7v5SGlFKUaBVLMmgWR0CqNj8vM8oydX2UKGgGaAloD0MIP/7Soj6pAsCUhpRSlGgVSzJoFkdAqjXrj/+85HV9lChoBmgJaA9DCKlr7X2qqgnAlIaUUpRoFUsyaBZHQKo1kPBi1At1fZQoaAZoCWgPQwhSfecXJSgBwJSGlFKUaBVLMmgWR0CqNTTtsvZidX2UKGgGaAloD0MI/P7NixPf+L+UhpRSlGgVSzJoFkdAqjf2IGhVVHV9lChoBmgJaA9DCKhWX10ViATAlIaUUpRoFUsyaBZHQKo3oUTtb9t1fZQoaAZoCWgPQwgKuVLPgrADwJSGlFKUaBVLMmgWR0CqN0a1b7j1dX2UKGgGaAloD0MItvRoqieTB8CUhpRSlGgVSzJoFkdAqjbq6MBIWnV9lChoBmgJaA9DCH0geedQxgXAlIaUUpRoFUsyaBZHQKo5I4G2TgV1fZQoaAZoCWgPQwjvqgfMQ0YDwJSGlFKUaBVLMmgWR0CqOM7W/ag3dX2UKGgGaAloD0MIylLr/UabA8CUhpRSlGgVSzJoFkdAqjhzEzfrKXV9lChoBmgJaA9DCLKhm/2B0gPAlIaUUpRoFUsyaBZHQKo4Ft1p0wJ1fZQoaAZoCWgPQwjgnXx6bIsGwJSGlFKUaBVLMmgWR0CqOiByS3b3dX2UKGgGaAloD0MI4Zo7+l8uCcCUhpRSlGgVSzJoFkdAqjnKs6q82HV9lChoBmgJaA9DCO4m+Kbp0wzAlIaUUpRoFUsyaBZHQKo5bxAB1cN1fZQoaAZoCWgPQwgi36XUJQMEwJSGlFKUaBVLMmgWR0CqORJFLFn7dX2UKGgGaAloD0MIGY9SCU8o/b+UhpRSlGgVSzJoFkdAqjsizXz19XV9lChoBmgJaA9DCC5XPzbJzwfAlIaUUpRoFUsyaBZHQKo6zZWaMJh1fZQoaAZoCWgPQwjAdcWM8JYCwJSGlFKUaBVLMmgWR0CqOnHUUfxMdX2UKGgGaAloD0MIGO3xQjr8D8CUhpRSlGgVSzJoFkdAqjoVe8f3e3V9lChoBmgJaA9DCHLcKR2snwnAlIaUUpRoFUsyaBZHQKo8SF7laKV1fZQoaAZoCWgPQwj1uG+1TjwJwJSGlFKUaBVLMmgWR0CqO/K9oN/fdX2UKGgGaAloD0MIUkfH1ciuA8CUhpRSlGgVSzJoFkdAqjuW3DvVmXV9lChoBmgJaA9DCAjIl1DB4QTAlIaUUpRoFUsyaBZHQKo7OixFAml1fZQoaAZoCWgPQwiK5CuBlJgQwJSGlFKUaBVLMmgWR0CqPUFPznRtdX2UKGgGaAloD0MIdxTnqKOj+7+UhpRSlGgVSzJoFkdAqjzr9VFQVXV9lChoBmgJaA9DCNl22hoRDP+/lIaUUpRoFUsyaBZHQKo8kDEFW4p1fZQoaAZoCWgPQwhvufqxSZ4NwJSGlFKUaBVLMmgWR0CqPDOby6MBdX2UKGgGaAloD0MIHofB/BUyBsCUhpRSlGgVSzJoFkdAqj44oZydWnV9lChoBmgJaA9DCD/iV6zhQgLAlIaUUpRoFUsyaBZHQKo941ZTyax1fZQoaAZoCWgPQwhiTPp7KTz3v5SGlFKUaBVLMmgWR0CqPYeWGATadX2UKGgGaAloD0MIpIriVdYWAMCUhpRSlGgVSzJoFkdAqj0rM3ZPEnV9lChoBmgJaA9DCAgiizTxzgPAlIaUUpRoFUsyaBZHQKo/OOFxn4B1fZQoaAZoCWgPQwhvZvSj4RT6v5SGlFKUaBVLMmgWR0CqPuM+FDfFdX2UKGgGaAloD0MIoS5SKAv/AsCUhpRSlGgVSzJoFkdAqj6HdRBNVXV9lChoBmgJaA9DCAmocASp1P+/lIaUUpRoFUsyaBZHQKo+KqtHQQd1fZQoaAZoCWgPQwhgOUIG8uz5v5SGlFKUaBVLMmgWR0CqQFMguAZsdX2UKGgGaAloD0MIn8ppT8lZAcCUhpRSlGgVSzJoFkdAqj/9oYekpXV9lChoBmgJaA9DCAh1kUJZmA/AlIaUUpRoFUsyaBZHQKo/oqgAZKp1fZQoaAZoCWgPQwhPzeUGQ135v5SGlFKUaBVLMmgWR0CqP0YXoC+2dX2UKGgGaAloD0MIkGtDxTg/D8CUhpRSlGgVSzJoFkdAqkFxttQ9BHV9lChoBmgJaA9DCHCWkuUkhBDAlIaUUpRoFUsyaBZHQKpBHIlMRHx1fZQoaAZoCWgPQwj2Yb1RK0wLwJSGlFKUaBVLMmgWR0CqQMGwaBI4dX2UKGgGaAloD0MIIxRbQdNSCcCUhpRSlGgVSzJoFkdAqkBlIkJKJ3V9lChoBmgJaA9DCFjLnZlgOAfAlIaUUpRoFUsyaBZHQKpCrX4CZF51fZQoaAZoCWgPQwjWU6uvrsoMwJSGlFKUaBVLMmgWR0CqQljX4CZGdX2UKGgGaAloD0MIeEZblUS2AcCUhpRSlGgVSzJoFkdAqkH9aMaS93V9lChoBmgJaA9DCEIhAg6hygfAlIaUUpRoFUsyaBZHQKpBoLE1l5J1fZQoaAZoCWgPQwhm9nmM8uwGwJSGlFKUaBVLMmgWR0CqQ8fnW8RMdX2UKGgGaAloD0MIP8bctYTcCMCUhpRSlGgVSzJoFkdAqkNykwevIXV9lChoBmgJaA9DCEXY8PRKGfS/lIaUUpRoFUsyaBZHQKpDFvG6wt91fZQoaAZoCWgPQwhmn8coz/z2v5SGlFKUaBVLMmgWR0CqQrpUgjhUdX2UKGgGaAloD0MIqb7zixKUB8CUhpRSlGgVSzJoFkdAqkTBBgNPQHV9lChoBmgJaA9DCE8EcR5OoPS/lIaUUpRoFUsyaBZHQKpEa12q1gJ1fZQoaAZoCWgPQwhU/Urnw5MEwJSGlFKUaBVLMmgWR0CqRA9yksSTdX2UKGgGaAloD0MI2/l+aryUCcCUhpRSlGgVSzJoFkdAqkOyon8baXV9lChoBmgJaA9DCJ6xL9l4cAHAlIaUUpRoFUsyaBZHQKpF5xhlUZN1fZQoaAZoCWgPQwhxytx8I/r9v5SGlFKUaBVLMmgWR0CqRZHoxHoYdX2UKGgGaAloD0MIPGh23VsxAcCUhpRSlGgVSzJoFkdAqkU2Fev6j3V9lChoBmgJaA9DCBObj2tDhQPAlIaUUpRoFUsyaBZHQKpE2kfs/pt1fZQoaAZoCWgPQwiaJ9cUyKwBwJSGlFKUaBVLMmgWR0CqRt8scyWSdX2UKGgGaAloD0MINsmP+BXLCsCUhpRSlGgVSzJoFkdAqkaJ00WM0nV9lChoBmgJaA9DCIpbBTHQVQLAlIaUUpRoFUsyaBZHQKpGLh2GIsR1fZQoaAZoCWgPQwhJSnoYWt34v5SGlFKUaBVLMmgWR0CqRdFxn3+NdX2UKGgGaAloD0MIaeBHNewXDcCUhpRSlGgVSzJoFkdAqkf2WfK6nXV9lChoBmgJaA9DCObpXFFKiAPAlIaUUpRoFUsyaBZHQKpHoQCCBf91fZQoaAZoCWgPQwgArfnxl9b3v5SGlFKUaBVLMmgWR0CqR0Uk4WDZdX2UKGgGaAloD0MIyotMwK8RBMCUhpRSlGgVSzJoFkdAqkbogRsdk3V9lChoBmgJaA9DCJ30vvG1xwDAlIaUUpRoFUsyaBZHQKpI+G8Empl1fZQoaAZoCWgPQwjx2To42NsHwJSGlFKUaBVLMmgWR0CqSKLbYbsGdX2UKGgGaAloD0MIkj6toj+0+7+UhpRSlGgVSzJoFkdAqkhHT3IuG3V9lChoBmgJaA9DCJDaxMn9TgHAlIaUUpRoFUsyaBZHQKpH6rMC9yt1ZS4="}, "ep_success_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="}, "_n_updates": 50000, "n_steps": 5, "gamma": 0.99, "gae_lambda": 1.0, "ent_coef": 0.0, "vf_coef": 0.5, "max_grad_norm": 0.5, "normalize_advantage": false, "observation_space": {":type:": "<class 'gym.spaces.dict.Dict'>", ":serialized:": "gAWVUgMAAAAAAACMD2d5bS5zcGFjZXMuZGljdJSMBERpY3SUk5QpgZR9lCiMBnNwYWNlc5SMC2NvbGxlY3Rpb25zlIwLT3JkZXJlZERpY3SUk5QpUpQojA1hY2hpZXZlZF9nb2FslIwOZ3ltLnNwYWNlcy5ib3iUjANCb3iUk5QpgZR9lCiMBWR0eXBllIwFbnVtcHmUaBCTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYowGX3NoYXBllEsDhZSMA2xvd5SMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYMAAAAAAAAAAAAIMEAACDBAAAgwZRoFUsDhZSMAUOUdJRSlIwEaGlnaJRoHSiWDAAAAAAAAAAAACBBAAAgQQAAIEGUaBVLA4WUaCB0lFKUjA1ib3VuZGVkX2JlbG93lGgdKJYDAAAAAAAAAAEBAZRoEowCYjGUiYiHlFKUKEsDjAF8lE5OTkr/////Sv////9LAHSUYksDhZRoIHSUUpSMDWJvdW5kZWRfYWJvdmWUaB0olgMAAAAAAAAAAQEBlGgsSwOFlGggdJRSlIwKX25wX3JhbmRvbZROdWKMDGRlc2lyZWRfZ29hbJRoDSmBlH2UKGgQaBVoGEsDhZRoGmgdKJYMAAAAAAAAAAAAIMEAACDBAAAgwZRoFUsDhZRoIHSUUpRoI2gdKJYMAAAAAAAAAAAAIEEAACBBAAAgQZRoFUsDhZRoIHSUUpRoKGgdKJYDAAAAAAAAAAEBAZRoLEsDhZRoIHSUUpRoMmgdKJYDAAAAAAAAAAEBAZRoLEsDhZRoIHSUUpRoN051YowLb2JzZXJ2YXRpb26UaA0pgZR9lChoEGgVaBhLBoWUaBpoHSiWGAAAAAAAAAAAACDBAAAgwQAAIMEAACDBAAAgwQAAIMGUaBVLBoWUaCB0lFKUaCNoHSiWGAAAAAAAAAAAACBBAAAgQQAAIEEAACBBAAAgQQAAIEGUaBVLBoWUaCB0lFKUaChoHSiWBgAAAAAAAAABAQEBAQGUaCxLBoWUaCB0lFKUaDJoHSiWBgAAAAAAAAABAQEBAQGUaCxLBoWUaCB0lFKUaDdOdWJ1aBhOaBBOaDdOdWIu", "spaces": "OrderedDict([('achieved_goal', Box([-10. -10. -10.], [10. 10. 10.], (3,), float32)), ('desired_goal', Box([-10. -10. -10.], [10. 10. 10.], (3,), float32)), ('observation', Box([-10. -10. -10. -10. -10. -10.], [10. 10. 10. 10. 10. 10.], (6,), float32))])", "_shape": null, "dtype": null, "_np_random": null}, "action_space": {":type:": "<class 'gym.spaces.box.Box'>", ":serialized:": "gAWVbQEAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLA4WUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWDAAAAAAAAAAAAIC/AACAvwAAgL+UaApLA4WUjAFDlHSUUpSMBGhpZ2iUaBIolgwAAAAAAAAAAACAPwAAgD8AAIA/lGgKSwOFlGgVdJRSlIwNYm91bmRlZF9iZWxvd5RoEiiWAwAAAAAAAAABAQGUaAeMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLA4WUaBV0lFKUjA1ib3VuZGVkX2Fib3ZllGgSKJYDAAAAAAAAAAEBAZRoIUsDhZRoFXSUUpSMCl9ucF9yYW5kb22UTnViLg==", "dtype": "float32", "_shape": [3], "low": "[-1. -1. -1.]", "high": "[1. 1. 1.]", "bounded_below": "[ True True True]", "bounded_above": "[ True True True]", "_np_random": null}, "n_envs": 4, "system_info": {"OS": "Linux-5.10.147+-x86_64-with-glibc2.31 # 1 SMP Sat Dec 10 16:00:40 UTC 2022", "Python": "3.9.16", "Stable-Baselines3": "1.8.0", "PyTorch": "2.0.0+cu118", "GPU Enabled": "True", "Numpy": "1.22.4", "Gym": "0.21.0"}}
|
replay.mp4
ADDED
Binary file (665 kB). View file
|
|
results.json
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
{"mean_reward": -2.336486550793052, "std_reward": 0.7959435378553466, "is_deterministic": true, "n_eval_episodes": 10, "eval_datetime": "2023-04-26T17:23:19.112693"}
|
vec_normalize.pkl
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:844b78eb8096291579c0b4ce0c4427936b3a8eacba529ce8161ae48d4627a662
|
3 |
+
size 2381
|