| 
							 | 
						from transformers import ( | 
					
					
						
						| 
							 | 
						    AutoTokenizer,  | 
					
					
						
						| 
							 | 
						    AutoModelForSequenceClassification, | 
					
					
						
						| 
							 | 
						    TrainingArguments,  | 
					
					
						
						| 
							 | 
						    Trainer, | 
					
					
						
						| 
							 | 
						    DataCollatorWithPadding | 
					
					
						
						| 
							 | 
						) | 
					
					
						
						| 
							 | 
						from datasets import load_dataset | 
					
					
						
						| 
							 | 
						import torch | 
					
					
						
						| 
							 | 
						
 | 
					
					
						
						| 
							 | 
						def train_model(): | 
					
					
						
						| 
							 | 
						     | 
					
					
						
						| 
							 | 
						    model_name = "your-username/your-model-name" | 
					
					
						
						| 
							 | 
						    tokenizer = AutoTokenizer.from_pretrained(model_name) | 
					
					
						
						| 
							 | 
						    model = AutoModelForSequenceClassification.from_pretrained(model_name) | 
					
					
						
						| 
							 | 
						     | 
					
					
						
						| 
							 | 
						     | 
					
					
						
						| 
							 | 
						    dataset = load_dataset("imdb")   | 
					
					
						
						| 
							 | 
						     | 
					
					
						
						| 
							 | 
						    def tokenize_function(examples): | 
					
					
						
						| 
							 | 
						        return tokenizer(examples["text"], truncation=True) | 
					
					
						
						| 
							 | 
						     | 
					
					
						
						| 
							 | 
						    tokenized_datasets = dataset.map(tokenize_function, batched=True) | 
					
					
						
						| 
							 | 
						     | 
					
					
						
						| 
							 | 
						     | 
					
					
						
						| 
							 | 
						    training_args = TrainingArguments( | 
					
					
						
						| 
							 | 
						        output_dir="./results", | 
					
					
						
						| 
							 | 
						        learning_rate=2e-5, | 
					
					
						
						| 
							 | 
						        per_device_train_batch_size=16, | 
					
					
						
						| 
							 | 
						        per_device_eval_batch_size=16, | 
					
					
						
						| 
							 | 
						        num_train_epochs=3, | 
					
					
						
						| 
							 | 
						        weight_decay=0.01, | 
					
					
						
						| 
							 | 
						        evaluation_strategy="epoch", | 
					
					
						
						| 
							 | 
						        save_strategy="epoch", | 
					
					
						
						| 
							 | 
						        load_best_model_at_end=True, | 
					
					
						
						| 
							 | 
						    ) | 
					
					
						
						| 
							 | 
						     | 
					
					
						
						| 
							 | 
						     | 
					
					
						
						| 
							 | 
						    trainer = Trainer( | 
					
					
						
						| 
							 | 
						        model=model, | 
					
					
						
						| 
							 | 
						        args=training_args, | 
					
					
						
						| 
							 | 
						        train_dataset=tokenized_datasets["train"], | 
					
					
						
						| 
							 | 
						        eval_dataset=tokenized_datasets["test"], | 
					
					
						
						| 
							 | 
						        tokenizer=tokenizer, | 
					
					
						
						| 
							 | 
						        data_collator=DataCollatorWithPadding(tokenizer=tokenizer), | 
					
					
						
						| 
							 | 
						    ) | 
					
					
						
						| 
							 | 
						     | 
					
					
						
						| 
							 | 
						     | 
					
					
						
						| 
							 | 
						    trainer.train() | 
					
					
						
						| 
							 | 
						     | 
					
					
						
						| 
							 | 
						     | 
					
					
						
						| 
							 | 
						    trainer.save_model("./fine-tuned-model") | 
					
					
						
						| 
							 | 
						    tokenizer.save_pretrained("./fine-tuned-model") | 
					
					
						
						| 
							 | 
						
 | 
					
					
						
						| 
							 | 
						if __name__ == "__main__": | 
					
					
						
						| 
							 | 
						    train_model() |