Add ml_training_pipeline.py
Browse files- ml_training_pipeline.py +844 -0
ml_training_pipeline.py
ADDED
|
@@ -0,0 +1,844 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
"""
|
| 2 |
+
SentilensAI - Machine Learning Training Pipeline
|
| 3 |
+
|
| 4 |
+
This module provides comprehensive machine learning capabilities for training
|
| 5 |
+
custom sentiment analysis models specifically optimized for AI chatbot conversations.
|
| 6 |
+
|
| 7 |
+
Features:
|
| 8 |
+
- Multiple ML algorithms (Random Forest, SVM, Neural Networks, XGBoost, etc.)
|
| 9 |
+
- Advanced feature engineering for chatbot text
|
| 10 |
+
- Cross-validation and hyperparameter tuning
|
| 11 |
+
- Model comparison and evaluation
|
| 12 |
+
- Production-ready model persistence
|
| 13 |
+
- Real-time prediction capabilities
|
| 14 |
+
|
| 15 |
+
Author: Pravin Selvamuthu
|
| 16 |
+
Repository: https://github.com/kernelseed/sentilens-ai
|
| 17 |
+
"""
|
| 18 |
+
|
| 19 |
+
import os
|
| 20 |
+
import json
|
| 21 |
+
import pickle
|
| 22 |
+
import logging
|
| 23 |
+
from typing import Dict, List, Tuple, Optional, Any, Union
|
| 24 |
+
from datetime import datetime
|
| 25 |
+
from pathlib import Path
|
| 26 |
+
import warnings
|
| 27 |
+
warnings.filterwarnings('ignore')
|
| 28 |
+
|
| 29 |
+
import pandas as pd
|
| 30 |
+
import numpy as np
|
| 31 |
+
from sklearn.model_selection import train_test_split, cross_val_score, GridSearchCV, StratifiedKFold
|
| 32 |
+
from sklearn.feature_extraction.text import TfidfVectorizer, CountVectorizer
|
| 33 |
+
from sklearn.preprocessing import LabelEncoder, StandardScaler, RobustScaler
|
| 34 |
+
from sklearn.metrics import (
|
| 35 |
+
classification_report, confusion_matrix, accuracy_score,
|
| 36 |
+
precision_score, recall_score, f1_score, roc_auc_score,
|
| 37 |
+
balanced_accuracy_score, matthews_corrcoef, cohen_kappa_score
|
| 38 |
+
)
|
| 39 |
+
from sklearn.ensemble import RandomForestClassifier, GradientBoostingClassifier, ExtraTreesClassifier, AdaBoostClassifier
|
| 40 |
+
from sklearn.svm import SVC
|
| 41 |
+
from sklearn.neural_network import MLPClassifier
|
| 42 |
+
from sklearn.linear_model import LogisticRegression
|
| 43 |
+
from sklearn.tree import DecisionTreeClassifier
|
| 44 |
+
from sklearn.naive_bayes import GaussianNB, MultinomialNB
|
| 45 |
+
from sklearn.pipeline import Pipeline
|
| 46 |
+
from sklearn.calibration import CalibratedClassifierCV
|
| 47 |
+
import joblib
|
| 48 |
+
|
| 49 |
+
# Advanced ML libraries
|
| 50 |
+
try:
|
| 51 |
+
import xgboost as xgb
|
| 52 |
+
XGBOOST_AVAILABLE = True
|
| 53 |
+
except ImportError:
|
| 54 |
+
XGBOOST_AVAILABLE = False
|
| 55 |
+
|
| 56 |
+
try:
|
| 57 |
+
import lightgbm as lgb
|
| 58 |
+
LIGHTGBM_AVAILABLE = True
|
| 59 |
+
except ImportError:
|
| 60 |
+
LIGHTGBM_AVAILABLE = False
|
| 61 |
+
|
| 62 |
+
try:
|
| 63 |
+
import catboost as cb
|
| 64 |
+
CATBOOST_AVAILABLE = True
|
| 65 |
+
except ImportError:
|
| 66 |
+
CATBOOST_AVAILABLE = False
|
| 67 |
+
|
| 68 |
+
# Visualization
|
| 69 |
+
try:
|
| 70 |
+
import matplotlib.pyplot as plt
|
| 71 |
+
import seaborn as sns
|
| 72 |
+
PLOTTING_AVAILABLE = True
|
| 73 |
+
except ImportError:
|
| 74 |
+
PLOTTING_AVAILABLE = False
|
| 75 |
+
|
| 76 |
+
# LangChain integration
|
| 77 |
+
from langchain.schema import BaseMessage
|
| 78 |
+
from langchain.prompts import PromptTemplate
|
| 79 |
+
from langchain.chains import LLMChain
|
| 80 |
+
from langchain.llms import OpenAI
|
| 81 |
+
|
| 82 |
+
# Import our sentiment analyzer
|
| 83 |
+
from sentiment_analyzer import SentilensAIAnalyzer, SentimentResult
|
| 84 |
+
|
| 85 |
+
# Configure logging
|
| 86 |
+
logging.basicConfig(level=logging.INFO)
|
| 87 |
+
logger = logging.getLogger(__name__)
|
| 88 |
+
|
| 89 |
+
|
| 90 |
+
class SentilensAITrainer:
|
| 91 |
+
"""
|
| 92 |
+
Advanced machine learning trainer for sentiment analysis models
|
| 93 |
+
specifically designed for AI chatbot conversations
|
| 94 |
+
"""
|
| 95 |
+
|
| 96 |
+
def __init__(self, model_cache_dir: str = "./model_cache"):
|
| 97 |
+
"""
|
| 98 |
+
Initialize the SentimentsAI trainer
|
| 99 |
+
|
| 100 |
+
Args:
|
| 101 |
+
model_cache_dir: Directory to cache trained models
|
| 102 |
+
"""
|
| 103 |
+
self.model_cache_dir = Path(model_cache_dir)
|
| 104 |
+
self.model_cache_dir.mkdir(exist_ok=True)
|
| 105 |
+
|
| 106 |
+
# Initialize components
|
| 107 |
+
self.analyzer = SentilensAIAnalyzer()
|
| 108 |
+
self.label_encoder = LabelEncoder()
|
| 109 |
+
self.scaler = RobustScaler()
|
| 110 |
+
self.vectorizer = None
|
| 111 |
+
self.models = {}
|
| 112 |
+
self.training_data = None
|
| 113 |
+
self.feature_names = None
|
| 114 |
+
|
| 115 |
+
# Initialize available models
|
| 116 |
+
self._initialize_models()
|
| 117 |
+
|
| 118 |
+
# Feature engineering parameters
|
| 119 |
+
self.feature_params = {
|
| 120 |
+
'max_features': 10000,
|
| 121 |
+
'ngram_range': (1, 3),
|
| 122 |
+
'min_df': 2,
|
| 123 |
+
'max_df': 0.95,
|
| 124 |
+
'stop_words': 'english'
|
| 125 |
+
}
|
| 126 |
+
|
| 127 |
+
def _initialize_models(self):
|
| 128 |
+
"""Initialize available machine learning models"""
|
| 129 |
+
self.models = {
|
| 130 |
+
'random_forest': RandomForestClassifier(
|
| 131 |
+
n_estimators=100,
|
| 132 |
+
max_depth=10,
|
| 133 |
+
random_state=42,
|
| 134 |
+
n_jobs=-1
|
| 135 |
+
),
|
| 136 |
+
'extra_trees': ExtraTreesClassifier(
|
| 137 |
+
n_estimators=100,
|
| 138 |
+
max_depth=10,
|
| 139 |
+
random_state=42,
|
| 140 |
+
n_jobs=-1
|
| 141 |
+
),
|
| 142 |
+
'gradient_boosting': GradientBoostingClassifier(
|
| 143 |
+
n_estimators=100,
|
| 144 |
+
learning_rate=0.1,
|
| 145 |
+
max_depth=6,
|
| 146 |
+
random_state=42
|
| 147 |
+
),
|
| 148 |
+
'svm': SVC(
|
| 149 |
+
kernel='rbf',
|
| 150 |
+
C=1.0,
|
| 151 |
+
gamma='scale',
|
| 152 |
+
random_state=42,
|
| 153 |
+
probability=True
|
| 154 |
+
),
|
| 155 |
+
'neural_network': MLPClassifier(
|
| 156 |
+
hidden_layer_sizes=(100, 50),
|
| 157 |
+
activation='relu',
|
| 158 |
+
solver='adam',
|
| 159 |
+
alpha=0.001,
|
| 160 |
+
learning_rate='adaptive',
|
| 161 |
+
max_iter=500,
|
| 162 |
+
random_state=42
|
| 163 |
+
),
|
| 164 |
+
'logistic_regression': LogisticRegression(
|
| 165 |
+
random_state=42,
|
| 166 |
+
max_iter=1000,
|
| 167 |
+
n_jobs=-1
|
| 168 |
+
),
|
| 169 |
+
'decision_tree': DecisionTreeClassifier(
|
| 170 |
+
max_depth=10,
|
| 171 |
+
random_state=42
|
| 172 |
+
),
|
| 173 |
+
'naive_bayes': MultinomialNB(alpha=1.0),
|
| 174 |
+
'ada_boost': AdaBoostClassifier(
|
| 175 |
+
n_estimators=50,
|
| 176 |
+
learning_rate=1.0,
|
| 177 |
+
random_state=42
|
| 178 |
+
)
|
| 179 |
+
}
|
| 180 |
+
|
| 181 |
+
# Add advanced models if available
|
| 182 |
+
if XGBOOST_AVAILABLE:
|
| 183 |
+
self.models['xgboost'] = xgb.XGBClassifier(
|
| 184 |
+
n_estimators=100,
|
| 185 |
+
max_depth=6,
|
| 186 |
+
learning_rate=0.1,
|
| 187 |
+
random_state=42,
|
| 188 |
+
n_jobs=-1
|
| 189 |
+
)
|
| 190 |
+
|
| 191 |
+
if LIGHTGBM_AVAILABLE:
|
| 192 |
+
self.models['lightgbm'] = lgb.LGBMClassifier(
|
| 193 |
+
n_estimators=100,
|
| 194 |
+
max_depth=6,
|
| 195 |
+
learning_rate=0.1,
|
| 196 |
+
random_state=42,
|
| 197 |
+
n_jobs=-1,
|
| 198 |
+
verbose=-1
|
| 199 |
+
)
|
| 200 |
+
|
| 201 |
+
if CATBOOST_AVAILABLE:
|
| 202 |
+
self.models['catboost'] = cb.CatBoostClassifier(
|
| 203 |
+
iterations=100,
|
| 204 |
+
depth=6,
|
| 205 |
+
learning_rate=0.1,
|
| 206 |
+
random_seed=42,
|
| 207 |
+
verbose=False
|
| 208 |
+
)
|
| 209 |
+
|
| 210 |
+
def create_synthetic_training_data(self, num_samples: int = 1000) -> pd.DataFrame:
|
| 211 |
+
"""
|
| 212 |
+
Create synthetic training data for sentiment analysis
|
| 213 |
+
|
| 214 |
+
Args:
|
| 215 |
+
num_samples: Number of samples to generate
|
| 216 |
+
|
| 217 |
+
Returns:
|
| 218 |
+
DataFrame with text and sentiment labels
|
| 219 |
+
"""
|
| 220 |
+
logger.info(f"Creating {num_samples} synthetic training samples...")
|
| 221 |
+
|
| 222 |
+
# Define sentiment categories and sample texts
|
| 223 |
+
sentiment_data = {
|
| 224 |
+
'positive': [
|
| 225 |
+
"I love this chatbot! It's amazing and so helpful.",
|
| 226 |
+
"This is exactly what I needed. Thank you so much!",
|
| 227 |
+
"Great service! The bot understood me perfectly.",
|
| 228 |
+
"Excellent! This chatbot is fantastic and very user-friendly.",
|
| 229 |
+
"Perfect! I'm so happy with this experience.",
|
| 230 |
+
"Wonderful! The bot provided exactly the right information.",
|
| 231 |
+
"Outstanding service! I'm impressed with the quality.",
|
| 232 |
+
"Brilliant! This is the best chatbot I've ever used.",
|
| 233 |
+
"Fantastic! The response was quick and accurate.",
|
| 234 |
+
"Superb! I'm delighted with the help I received."
|
| 235 |
+
],
|
| 236 |
+
'negative': [
|
| 237 |
+
"This chatbot is terrible. It doesn't understand anything.",
|
| 238 |
+
"Worst experience ever. The bot is completely useless.",
|
| 239 |
+
"This is awful. I'm frustrated and disappointed.",
|
| 240 |
+
"Horrible service! The bot keeps giving wrong answers.",
|
| 241 |
+
"Disgusting! This chatbot is a complete waste of time.",
|
| 242 |
+
"Terrible! I hate this bot and its responses.",
|
| 243 |
+
"Awful experience. The bot is stupid and unhelpful.",
|
| 244 |
+
"Disappointing! This chatbot is broken and useless.",
|
| 245 |
+
"Frustrating! The bot doesn't know what it's doing.",
|
| 246 |
+
"Pathetic! This is the worst chatbot I've ever seen."
|
| 247 |
+
],
|
| 248 |
+
'neutral': [
|
| 249 |
+
"Can you help me with my account information?",
|
| 250 |
+
"I need to check my order status.",
|
| 251 |
+
"What are your business hours?",
|
| 252 |
+
"How do I reset my password?",
|
| 253 |
+
"I want to update my profile details.",
|
| 254 |
+
"Can you provide more information about this product?",
|
| 255 |
+
"I need assistance with my subscription.",
|
| 256 |
+
"What is your return policy?",
|
| 257 |
+
"How can I contact customer support?",
|
| 258 |
+
"I have a question about my recent purchase."
|
| 259 |
+
]
|
| 260 |
+
}
|
| 261 |
+
|
| 262 |
+
# Generate synthetic data
|
| 263 |
+
data = []
|
| 264 |
+
samples_per_sentiment = num_samples // 3
|
| 265 |
+
|
| 266 |
+
for sentiment, texts in sentiment_data.items():
|
| 267 |
+
for i in range(samples_per_sentiment):
|
| 268 |
+
# Select base text
|
| 269 |
+
base_text = np.random.choice(texts)
|
| 270 |
+
|
| 271 |
+
# Add variations
|
| 272 |
+
variations = [
|
| 273 |
+
base_text,
|
| 274 |
+
base_text + " Please help me.",
|
| 275 |
+
"Hi, " + base_text.lower(),
|
| 276 |
+
base_text + " Thanks!",
|
| 277 |
+
"Hello, " + base_text.lower(),
|
| 278 |
+
base_text + " I appreciate it.",
|
| 279 |
+
"Hey, " + base_text.lower(),
|
| 280 |
+
base_text + " Could you assist?",
|
| 281 |
+
"Good morning, " + base_text.lower(),
|
| 282 |
+
base_text + " That would be great."
|
| 283 |
+
]
|
| 284 |
+
|
| 285 |
+
text = np.random.choice(variations)
|
| 286 |
+
data.append({
|
| 287 |
+
'text': text,
|
| 288 |
+
'sentiment': sentiment,
|
| 289 |
+
'confidence': np.random.uniform(0.6, 1.0),
|
| 290 |
+
'polarity': np.random.uniform(-1, 1) if sentiment == 'neutral' else (1 if sentiment == 'positive' else -1),
|
| 291 |
+
'subjectivity': np.random.uniform(0.3, 0.8),
|
| 292 |
+
'message_type': 'user' if i % 2 == 0 else 'bot',
|
| 293 |
+
'conversation_id': f'conv_{i//2}',
|
| 294 |
+
'timestamp': datetime.now()
|
| 295 |
+
})
|
| 296 |
+
|
| 297 |
+
# Add some mixed sentiment examples
|
| 298 |
+
mixed_examples = [
|
| 299 |
+
("I'm not sure if this is good or bad.", "neutral"),
|
| 300 |
+
("It's okay, I guess.", "neutral"),
|
| 301 |
+
("This is fine, nothing special.", "neutral"),
|
| 302 |
+
("I have mixed feelings about this.", "neutral"),
|
| 303 |
+
("It's decent but could be better.", "neutral")
|
| 304 |
+
]
|
| 305 |
+
|
| 306 |
+
for text, sentiment in mixed_examples:
|
| 307 |
+
data.append({
|
| 308 |
+
'text': text,
|
| 309 |
+
'sentiment': sentiment,
|
| 310 |
+
'confidence': np.random.uniform(0.4, 0.7),
|
| 311 |
+
'polarity': np.random.uniform(-0.3, 0.3),
|
| 312 |
+
'subjectivity': np.random.uniform(0.5, 0.9),
|
| 313 |
+
'message_type': 'user',
|
| 314 |
+
'conversation_id': f'mixed_{len(data)}',
|
| 315 |
+
'timestamp': datetime.now()
|
| 316 |
+
})
|
| 317 |
+
|
| 318 |
+
df = pd.DataFrame(data)
|
| 319 |
+
logger.info(f"Created {len(df)} training samples")
|
| 320 |
+
return df
|
| 321 |
+
|
| 322 |
+
def extract_features(self, texts: List[str]) -> np.ndarray:
|
| 323 |
+
"""
|
| 324 |
+
Extract comprehensive features from text data
|
| 325 |
+
|
| 326 |
+
Args:
|
| 327 |
+
texts: List of text strings
|
| 328 |
+
|
| 329 |
+
Returns:
|
| 330 |
+
Feature matrix
|
| 331 |
+
"""
|
| 332 |
+
logger.info("Extracting features from text data...")
|
| 333 |
+
|
| 334 |
+
# Initialize vectorizer if not already done
|
| 335 |
+
if self.vectorizer is None:
|
| 336 |
+
self.vectorizer = TfidfVectorizer(
|
| 337 |
+
max_features=self.feature_params['max_features'],
|
| 338 |
+
ngram_range=self.feature_params['ngram_range'],
|
| 339 |
+
min_df=self.feature_params['min_df'],
|
| 340 |
+
max_df=self.feature_params['max_df'],
|
| 341 |
+
stop_words=self.feature_params['stop_words']
|
| 342 |
+
)
|
| 343 |
+
|
| 344 |
+
# TF-IDF features
|
| 345 |
+
tfidf_features = self.vectorizer.fit_transform(texts).toarray()
|
| 346 |
+
|
| 347 |
+
# Additional text features
|
| 348 |
+
text_features = []
|
| 349 |
+
for text in texts:
|
| 350 |
+
features = []
|
| 351 |
+
|
| 352 |
+
# Basic text statistics
|
| 353 |
+
features.append(len(text)) # Text length
|
| 354 |
+
features.append(len(text.split())) # Word count
|
| 355 |
+
features.append(len([c for c in text if c.isupper()])) # Uppercase count
|
| 356 |
+
features.append(len([c for c in text if c.isdigit()])) # Digit count
|
| 357 |
+
features.append(len([c for c in text if c in '!?'])) # Punctuation count
|
| 358 |
+
|
| 359 |
+
# Sentiment features using our analyzer
|
| 360 |
+
try:
|
| 361 |
+
sentiment_result = self.analyzer.analyze_sentiment(text, method='ensemble')
|
| 362 |
+
features.extend([
|
| 363 |
+
sentiment_result.polarity,
|
| 364 |
+
sentiment_result.confidence,
|
| 365 |
+
sentiment_result.subjectivity
|
| 366 |
+
])
|
| 367 |
+
|
| 368 |
+
# Emotion features
|
| 369 |
+
for emotion in ['joy', 'sadness', 'anger', 'fear', 'surprise', 'disgust']:
|
| 370 |
+
features.append(sentiment_result.emotions.get(emotion, 0.0))
|
| 371 |
+
except:
|
| 372 |
+
features.extend([0.0] * 9) # Default values if analysis fails
|
| 373 |
+
|
| 374 |
+
# Text complexity features
|
| 375 |
+
words = text.split()
|
| 376 |
+
if words:
|
| 377 |
+
avg_word_length = np.mean([len(word) for word in words])
|
| 378 |
+
features.append(avg_word_length)
|
| 379 |
+
else:
|
| 380 |
+
features.append(0.0)
|
| 381 |
+
|
| 382 |
+
text_features.append(features)
|
| 383 |
+
|
| 384 |
+
text_features = np.array(text_features)
|
| 385 |
+
|
| 386 |
+
# Combine all features
|
| 387 |
+
all_features = np.hstack([tfidf_features, text_features])
|
| 388 |
+
|
| 389 |
+
logger.info(f"Extracted {all_features.shape[1]} features from {len(texts)} texts")
|
| 390 |
+
return all_features
|
| 391 |
+
|
| 392 |
+
def train_model(self, model_name: str, X: np.ndarray, y: np.ndarray,
|
| 393 |
+
optimize_hyperparameters: bool = True) -> Dict[str, Any]:
|
| 394 |
+
"""
|
| 395 |
+
Train a specific model
|
| 396 |
+
|
| 397 |
+
Args:
|
| 398 |
+
model_name: Name of the model to train
|
| 399 |
+
X: Feature matrix
|
| 400 |
+
y: Target labels
|
| 401 |
+
optimize_hyperparameters: Whether to optimize hyperparameters
|
| 402 |
+
|
| 403 |
+
Returns:
|
| 404 |
+
Training results dictionary
|
| 405 |
+
"""
|
| 406 |
+
if model_name not in self.models:
|
| 407 |
+
raise ValueError(f"Unknown model: {model_name}")
|
| 408 |
+
|
| 409 |
+
logger.info(f"Training {model_name} model...")
|
| 410 |
+
|
| 411 |
+
# Split data
|
| 412 |
+
X_train, X_test, y_train, y_test = train_test_split(
|
| 413 |
+
X, y, test_size=0.2, random_state=42, stratify=y
|
| 414 |
+
)
|
| 415 |
+
|
| 416 |
+
# Scale features
|
| 417 |
+
X_train_scaled = self.scaler.fit_transform(X_train)
|
| 418 |
+
X_test_scaled = self.scaler.transform(X_test)
|
| 419 |
+
|
| 420 |
+
# Get base model
|
| 421 |
+
model = self.models[model_name]
|
| 422 |
+
|
| 423 |
+
# Optimize hyperparameters if requested
|
| 424 |
+
if optimize_hyperparameters:
|
| 425 |
+
model = self._optimize_hyperparameters(model, model_name, X_train_scaled, y_train)
|
| 426 |
+
|
| 427 |
+
# Train model
|
| 428 |
+
start_time = datetime.now()
|
| 429 |
+
model.fit(X_train_scaled, y_train)
|
| 430 |
+
training_time = (datetime.now() - start_time).total_seconds()
|
| 431 |
+
|
| 432 |
+
# Make predictions
|
| 433 |
+
y_pred = model.predict(X_test_scaled)
|
| 434 |
+
y_pred_proba = model.predict_proba(X_test_scaled) if hasattr(model, 'predict_proba') else None
|
| 435 |
+
|
| 436 |
+
# Evaluate model
|
| 437 |
+
results = self._evaluate_model(y_test, y_pred, y_pred_proba, model.classes_)
|
| 438 |
+
results.update({
|
| 439 |
+
'model_name': model_name,
|
| 440 |
+
'training_time': training_time,
|
| 441 |
+
'model': model,
|
| 442 |
+
'feature_importance': self._get_feature_importance(model, model_name)
|
| 443 |
+
})
|
| 444 |
+
|
| 445 |
+
# Store trained model
|
| 446 |
+
self.models[model_name] = model
|
| 447 |
+
|
| 448 |
+
logger.info(f"Training completed for {model_name}")
|
| 449 |
+
return results
|
| 450 |
+
|
| 451 |
+
def _optimize_hyperparameters(self, model, model_name: str, X: np.ndarray, y: np.ndarray):
|
| 452 |
+
"""Optimize hyperparameters using GridSearchCV"""
|
| 453 |
+
param_grids = {
|
| 454 |
+
'random_forest': {
|
| 455 |
+
'n_estimators': [50, 100, 200],
|
| 456 |
+
'max_depth': [5, 10, 15, None],
|
| 457 |
+
'min_samples_split': [2, 5, 10]
|
| 458 |
+
},
|
| 459 |
+
'extra_trees': {
|
| 460 |
+
'n_estimators': [50, 100, 200],
|
| 461 |
+
'max_depth': [5, 10, 15, None],
|
| 462 |
+
'min_samples_split': [2, 5, 10]
|
| 463 |
+
},
|
| 464 |
+
'gradient_boosting': {
|
| 465 |
+
'n_estimators': [50, 100, 200],
|
| 466 |
+
'learning_rate': [0.01, 0.1, 0.2],
|
| 467 |
+
'max_depth': [3, 6, 10]
|
| 468 |
+
},
|
| 469 |
+
'svm': {
|
| 470 |
+
'C': [0.1, 1, 10, 100],
|
| 471 |
+
'gamma': ['scale', 'auto', 0.001, 0.01, 0.1, 1],
|
| 472 |
+
'kernel': ['rbf', 'linear']
|
| 473 |
+
},
|
| 474 |
+
'neural_network': {
|
| 475 |
+
'hidden_layer_sizes': [(50,), (100,), (100, 50), (200, 100)],
|
| 476 |
+
'alpha': [0.0001, 0.001, 0.01],
|
| 477 |
+
'learning_rate': ['constant', 'adaptive']
|
| 478 |
+
},
|
| 479 |
+
'logistic_regression': {
|
| 480 |
+
'C': [0.1, 1, 10, 100],
|
| 481 |
+
'penalty': ['l1', 'l2'],
|
| 482 |
+
'solver': ['liblinear', 'saga']
|
| 483 |
+
},
|
| 484 |
+
'decision_tree': {
|
| 485 |
+
'max_depth': [5, 10, 15, None],
|
| 486 |
+
'min_samples_split': [2, 5, 10],
|
| 487 |
+
'min_samples_leaf': [1, 2, 4]
|
| 488 |
+
},
|
| 489 |
+
'naive_bayes': {
|
| 490 |
+
'alpha': [0.1, 0.5, 1.0, 2.0]
|
| 491 |
+
},
|
| 492 |
+
'ada_boost': {
|
| 493 |
+
'n_estimators': [25, 50, 100],
|
| 494 |
+
'learning_rate': [0.5, 1.0, 1.5]
|
| 495 |
+
}
|
| 496 |
+
}
|
| 497 |
+
|
| 498 |
+
if XGBOOST_AVAILABLE and model_name == 'xgboost':
|
| 499 |
+
param_grids['xgboost'] = {
|
| 500 |
+
'n_estimators': [50, 100, 200],
|
| 501 |
+
'max_depth': [3, 6, 10],
|
| 502 |
+
'learning_rate': [0.01, 0.1, 0.2]
|
| 503 |
+
}
|
| 504 |
+
|
| 505 |
+
if LIGHTGBM_AVAILABLE and model_name == 'lightgbm':
|
| 506 |
+
param_grids['lightgbm'] = {
|
| 507 |
+
'n_estimators': [50, 100, 200],
|
| 508 |
+
'max_depth': [3, 6, 10],
|
| 509 |
+
'learning_rate': [0.01, 0.1, 0.2]
|
| 510 |
+
}
|
| 511 |
+
|
| 512 |
+
if CATBOOST_AVAILABLE and model_name == 'catboost':
|
| 513 |
+
param_grids['catboost'] = {
|
| 514 |
+
'iterations': [50, 100, 200],
|
| 515 |
+
'depth': [3, 6, 10],
|
| 516 |
+
'learning_rate': [0.01, 0.1, 0.2]
|
| 517 |
+
}
|
| 518 |
+
|
| 519 |
+
if model_name in param_grids:
|
| 520 |
+
logger.info(f"Optimizing hyperparameters for {model_name}...")
|
| 521 |
+
grid_search = GridSearchCV(
|
| 522 |
+
model, param_grids[model_name],
|
| 523 |
+
cv=3, scoring='f1_macro', n_jobs=-1, verbose=0
|
| 524 |
+
)
|
| 525 |
+
grid_search.fit(X, y)
|
| 526 |
+
return grid_search.best_estimator_
|
| 527 |
+
|
| 528 |
+
return model
|
| 529 |
+
|
| 530 |
+
def _evaluate_model(self, y_true, y_pred, y_pred_proba, classes) -> Dict[str, Any]:
|
| 531 |
+
"""Comprehensive model evaluation"""
|
| 532 |
+
results = {
|
| 533 |
+
'accuracy': accuracy_score(y_true, y_pred),
|
| 534 |
+
'balanced_accuracy': balanced_accuracy_score(y_true, y_pred),
|
| 535 |
+
'precision_macro': precision_score(y_true, y_pred, average='macro', zero_division=0),
|
| 536 |
+
'precision_micro': precision_score(y_true, y_pred, average='micro', zero_division=0),
|
| 537 |
+
'precision_weighted': precision_score(y_true, y_pred, average='weighted', zero_division=0),
|
| 538 |
+
'recall_macro': recall_score(y_true, y_pred, average='macro', zero_division=0),
|
| 539 |
+
'recall_micro': recall_score(y_true, y_pred, average='micro', zero_division=0),
|
| 540 |
+
'recall_weighted': recall_score(y_true, y_pred, average='weighted', zero_division=0),
|
| 541 |
+
'f1_macro': f1_score(y_true, y_pred, average='macro', zero_division=0),
|
| 542 |
+
'f1_micro': f1_score(y_true, y_pred, average='micro', zero_division=0),
|
| 543 |
+
'f1_weighted': f1_score(y_true, y_pred, average='weighted', zero_division=0),
|
| 544 |
+
'matthews_corrcoef': matthews_corrcoef(y_true, y_pred),
|
| 545 |
+
'cohen_kappa': cohen_kappa_score(y_true, y_pred),
|
| 546 |
+
'classification_report': classification_report(y_true, y_pred, output_dict=True),
|
| 547 |
+
'confusion_matrix': confusion_matrix(y_true, y_pred).tolist()
|
| 548 |
+
}
|
| 549 |
+
|
| 550 |
+
# Add ROC AUC if probabilities are available
|
| 551 |
+
if y_pred_proba is not None and len(classes) > 2:
|
| 552 |
+
try:
|
| 553 |
+
results['roc_auc'] = roc_auc_score(y_true, y_pred_proba, multi_class='ovr', average='macro')
|
| 554 |
+
except:
|
| 555 |
+
results['roc_auc'] = 0.0
|
| 556 |
+
elif y_pred_proba is not None and len(classes) == 2:
|
| 557 |
+
try:
|
| 558 |
+
results['roc_auc'] = roc_auc_score(y_true, y_pred_proba[:, 1])
|
| 559 |
+
except:
|
| 560 |
+
results['roc_auc'] = 0.0
|
| 561 |
+
else:
|
| 562 |
+
results['roc_auc'] = 0.0
|
| 563 |
+
|
| 564 |
+
return results
|
| 565 |
+
|
| 566 |
+
def _get_feature_importance(self, model, model_name: str) -> Optional[Dict[str, float]]:
|
| 567 |
+
"""Get feature importance if available"""
|
| 568 |
+
try:
|
| 569 |
+
if hasattr(model, 'feature_importances_'):
|
| 570 |
+
importance = model.feature_importances_
|
| 571 |
+
if self.feature_names is not None:
|
| 572 |
+
return dict(zip(self.feature_names, importance))
|
| 573 |
+
else:
|
| 574 |
+
return {f'feature_{i}': imp for i, imp in enumerate(importance)}
|
| 575 |
+
elif hasattr(model, 'coef_'):
|
| 576 |
+
# For linear models, use absolute coefficients
|
| 577 |
+
coef = np.abs(model.coef_[0]) if len(model.coef_.shape) > 1 else np.abs(model.coef_)
|
| 578 |
+
if self.feature_names is not None:
|
| 579 |
+
return dict(zip(self.feature_names, coef))
|
| 580 |
+
else:
|
| 581 |
+
return {f'feature_{i}': imp for i, imp in enumerate(coef)}
|
| 582 |
+
except:
|
| 583 |
+
pass
|
| 584 |
+
return None
|
| 585 |
+
|
| 586 |
+
def compare_models(self, X: np.ndarray, y: np.ndarray,
|
| 587 |
+
models_to_compare: Optional[List[str]] = None) -> Dict[str, Any]:
|
| 588 |
+
"""
|
| 589 |
+
Compare multiple models using cross-validation
|
| 590 |
+
|
| 591 |
+
Args:
|
| 592 |
+
X: Feature matrix
|
| 593 |
+
y: Target labels
|
| 594 |
+
models_to_compare: List of model names to compare (None for all)
|
| 595 |
+
|
| 596 |
+
Returns:
|
| 597 |
+
Comparison results
|
| 598 |
+
"""
|
| 599 |
+
if models_to_compare is None:
|
| 600 |
+
models_to_compare = list(self.models.keys())
|
| 601 |
+
|
| 602 |
+
logger.info(f"Comparing {len(models_to_compare)} models...")
|
| 603 |
+
|
| 604 |
+
# Scale features
|
| 605 |
+
X_scaled = self.scaler.fit_transform(X)
|
| 606 |
+
|
| 607 |
+
results = {}
|
| 608 |
+
cv = StratifiedKFold(n_splits=5, shuffle=True, random_state=42)
|
| 609 |
+
|
| 610 |
+
for model_name in models_to_compare:
|
| 611 |
+
if model_name not in self.models:
|
| 612 |
+
continue
|
| 613 |
+
|
| 614 |
+
logger.info(f"Evaluating {model_name}...")
|
| 615 |
+
model = self.models[model_name]
|
| 616 |
+
|
| 617 |
+
# Cross-validation scores
|
| 618 |
+
cv_scores = cross_val_score(model, X_scaled, y, cv=cv, scoring='f1_macro')
|
| 619 |
+
|
| 620 |
+
# Train and evaluate
|
| 621 |
+
model.fit(X_scaled, y)
|
| 622 |
+
y_pred = model.predict(X_scaled)
|
| 623 |
+
|
| 624 |
+
results[model_name] = {
|
| 625 |
+
'cv_mean': cv_scores.mean(),
|
| 626 |
+
'cv_std': cv_scores.std(),
|
| 627 |
+
'cv_scores': cv_scores.tolist(),
|
| 628 |
+
'accuracy': accuracy_score(y, y_pred),
|
| 629 |
+
'f1_macro': f1_score(y, y_pred, average='macro', zero_division=0),
|
| 630 |
+
'training_time': 0 # Could be measured if needed
|
| 631 |
+
}
|
| 632 |
+
|
| 633 |
+
# Sort by F1 score
|
| 634 |
+
sorted_results = dict(sorted(results.items(), key=lambda x: x[1]['f1_macro'], reverse=True))
|
| 635 |
+
|
| 636 |
+
logger.info("Model comparison completed")
|
| 637 |
+
return sorted_results
|
| 638 |
+
|
| 639 |
+
def train_all_models(self, data: pd.DataFrame, optimize_hyperparameters: bool = True) -> Dict[str, Any]:
|
| 640 |
+
"""
|
| 641 |
+
Train all available models
|
| 642 |
+
|
| 643 |
+
Args:
|
| 644 |
+
data: Training data DataFrame
|
| 645 |
+
optimize_hyperparameters: Whether to optimize hyperparameters
|
| 646 |
+
|
| 647 |
+
Returns:
|
| 648 |
+
Training results for all models
|
| 649 |
+
"""
|
| 650 |
+
logger.info("Training all available models...")
|
| 651 |
+
|
| 652 |
+
# Prepare data
|
| 653 |
+
texts = data['text'].tolist()
|
| 654 |
+
labels = data['sentiment'].tolist()
|
| 655 |
+
|
| 656 |
+
# Extract features
|
| 657 |
+
X = self.extract_features(texts)
|
| 658 |
+
y = self.label_encoder.fit_transform(labels)
|
| 659 |
+
|
| 660 |
+
# Store feature names for importance analysis
|
| 661 |
+
if self.vectorizer is not None:
|
| 662 |
+
tfidf_features = self.vectorizer.get_feature_names_out()
|
| 663 |
+
additional_features = [
|
| 664 |
+
'text_length', 'word_count', 'uppercase_count', 'digit_count',
|
| 665 |
+
'punctuation_count', 'polarity', 'confidence', 'subjectivity',
|
| 666 |
+
'joy', 'sadness', 'anger', 'fear', 'surprise', 'disgust', 'avg_word_length'
|
| 667 |
+
]
|
| 668 |
+
self.feature_names = list(tfidf_features) + additional_features
|
| 669 |
+
|
| 670 |
+
# Train all models
|
| 671 |
+
all_results = {}
|
| 672 |
+
for model_name in self.models.keys():
|
| 673 |
+
try:
|
| 674 |
+
results = self.train_model(model_name, X, y, optimize_hyperparameters)
|
| 675 |
+
all_results[model_name] = results
|
| 676 |
+
logger.info(f"โ
{model_name}: F1={results['f1_macro']:.3f}, Accuracy={results['accuracy']:.3f}")
|
| 677 |
+
except Exception as e:
|
| 678 |
+
logger.error(f"โ Failed to train {model_name}: {e}")
|
| 679 |
+
all_results[model_name] = {'error': str(e)}
|
| 680 |
+
|
| 681 |
+
# Store training data
|
| 682 |
+
self.training_data = data
|
| 683 |
+
|
| 684 |
+
logger.info("All models training completed")
|
| 685 |
+
return all_results
|
| 686 |
+
|
| 687 |
+
def predict_sentiment(self, text: str, model_name: str = 'random_forest') -> Dict[str, Any]:
|
| 688 |
+
"""
|
| 689 |
+
Predict sentiment for a single text using trained model
|
| 690 |
+
|
| 691 |
+
Args:
|
| 692 |
+
text: Text to analyze
|
| 693 |
+
model_name: Name of the model to use
|
| 694 |
+
|
| 695 |
+
Returns:
|
| 696 |
+
Prediction results
|
| 697 |
+
"""
|
| 698 |
+
if model_name not in self.models:
|
| 699 |
+
raise ValueError(f"Model {model_name} not found. Available models: {list(self.models.keys())}")
|
| 700 |
+
|
| 701 |
+
if self.vectorizer is None:
|
| 702 |
+
raise ValueError("No trained model found. Please train a model first.")
|
| 703 |
+
|
| 704 |
+
# Extract features
|
| 705 |
+
X = self.extract_features([text])
|
| 706 |
+
X_scaled = self.scaler.transform(X)
|
| 707 |
+
|
| 708 |
+
# Make prediction
|
| 709 |
+
model = self.models[model_name]
|
| 710 |
+
prediction = model.predict(X_scaled)[0]
|
| 711 |
+
probabilities = model.predict_proba(X_scaled)[0] if hasattr(model, 'predict_proba') else None
|
| 712 |
+
|
| 713 |
+
# Decode prediction
|
| 714 |
+
sentiment = self.label_encoder.inverse_transform([prediction])[0]
|
| 715 |
+
|
| 716 |
+
result = {
|
| 717 |
+
'text': text,
|
| 718 |
+
'sentiment': sentiment,
|
| 719 |
+
'confidence': float(probabilities[prediction]) if probabilities is not None else 0.0,
|
| 720 |
+
'probabilities': {
|
| 721 |
+
label: float(prob) for label, prob in zip(self.label_encoder.classes_, probabilities)
|
| 722 |
+
} if probabilities is not None else None,
|
| 723 |
+
'model_used': model_name
|
| 724 |
+
}
|
| 725 |
+
|
| 726 |
+
return result
|
| 727 |
+
|
| 728 |
+
def save_model(self, model_name: str, filepath: str):
|
| 729 |
+
"""Save trained model to file"""
|
| 730 |
+
if model_name not in self.models:
|
| 731 |
+
raise ValueError(f"Model {model_name} not found")
|
| 732 |
+
|
| 733 |
+
model_data = {
|
| 734 |
+
'model': self.models[model_name],
|
| 735 |
+
'label_encoder': self.label_encoder,
|
| 736 |
+
'scaler': self.scaler,
|
| 737 |
+
'vectorizer': self.vectorizer,
|
| 738 |
+
'feature_names': self.feature_names,
|
| 739 |
+
'feature_params': self.feature_params,
|
| 740 |
+
'training_data_info': {
|
| 741 |
+
'num_samples': len(self.training_data) if self.training_data is not None else 0,
|
| 742 |
+
'features': X.shape[1] if hasattr(self, 'X') else 0
|
| 743 |
+
} if self.training_data is not None else None
|
| 744 |
+
}
|
| 745 |
+
|
| 746 |
+
with open(filepath, 'wb') as f:
|
| 747 |
+
pickle.dump(model_data, f)
|
| 748 |
+
|
| 749 |
+
logger.info(f"Model {model_name} saved to {filepath}")
|
| 750 |
+
|
| 751 |
+
def load_model(self, filepath: str):
|
| 752 |
+
"""Load trained model from file"""
|
| 753 |
+
with open(filepath, 'rb') as f:
|
| 754 |
+
model_data = pickle.load(f)
|
| 755 |
+
|
| 756 |
+
self.models['loaded'] = model_data['model']
|
| 757 |
+
self.label_encoder = model_data['label_encoder']
|
| 758 |
+
self.scaler = model_data['scaler']
|
| 759 |
+
self.vectorizer = model_data['vectorizer']
|
| 760 |
+
self.feature_names = model_data['feature_names']
|
| 761 |
+
self.feature_params = model_data['feature_params']
|
| 762 |
+
|
| 763 |
+
logger.info(f"Model loaded from {filepath}")
|
| 764 |
+
|
| 765 |
+
def get_training_summary(self) -> Dict[str, Any]:
|
| 766 |
+
"""Get summary of training configuration and available models"""
|
| 767 |
+
return {
|
| 768 |
+
'available_models': list(self.models.keys()),
|
| 769 |
+
'xgboost_available': XGBOOST_AVAILABLE,
|
| 770 |
+
'lightgbm_available': LIGHTGBM_AVAILABLE,
|
| 771 |
+
'catboost_available': CATBOOST_AVAILABLE,
|
| 772 |
+
'plotting_available': PLOTTING_AVAILABLE,
|
| 773 |
+
'feature_params': self.feature_params,
|
| 774 |
+
'training_data_samples': len(self.training_data) if self.training_data is not None else 0,
|
| 775 |
+
'model_cache_dir': str(self.model_cache_dir)
|
| 776 |
+
}
|
| 777 |
+
|
| 778 |
+
|
| 779 |
+
def main():
|
| 780 |
+
"""Demo function to showcase SentimentsAI ML training capabilities"""
|
| 781 |
+
print("๐ค SentilensAI - Machine Learning Training Pipeline")
|
| 782 |
+
print("=" * 60)
|
| 783 |
+
|
| 784 |
+
# Initialize trainer
|
| 785 |
+
trainer = SentilensAITrainer()
|
| 786 |
+
|
| 787 |
+
# Get training summary
|
| 788 |
+
summary = trainer.get_training_summary()
|
| 789 |
+
print(f"\n๐ Training Configuration:")
|
| 790 |
+
print(f"Available Models: {len(summary['available_models'])}")
|
| 791 |
+
print(f"XGBoost Available: {summary['xgboost_available']}")
|
| 792 |
+
print(f"LightGBM Available: {summary['lightgbm_available']}")
|
| 793 |
+
print(f"CatBoost Available: {summary['catboost_available']}")
|
| 794 |
+
print(f"Plotting Available: {summary['plotting_available']}")
|
| 795 |
+
|
| 796 |
+
# Create synthetic training data
|
| 797 |
+
print(f"\n๐ Creating synthetic training data...")
|
| 798 |
+
training_data = trainer.create_synthetic_training_data(num_samples=500)
|
| 799 |
+
print(f"Created {len(training_data)} training samples")
|
| 800 |
+
print(f"Sentiment distribution: {training_data['sentiment'].value_counts().to_dict()}")
|
| 801 |
+
|
| 802 |
+
# Train all models
|
| 803 |
+
print(f"\n๐ Training all models...")
|
| 804 |
+
results = trainer.train_all_models(training_data, optimize_hyperparameters=True)
|
| 805 |
+
|
| 806 |
+
# Display results
|
| 807 |
+
print(f"\n๐ Training Results:")
|
| 808 |
+
print("-" * 60)
|
| 809 |
+
for model_name, result in results.items():
|
| 810 |
+
if 'error' not in result:
|
| 811 |
+
print(f"{model_name:20} | F1: {result['f1_macro']:.3f} | Accuracy: {result['accuracy']:.3f} | Time: {result['training_time']:.1f}s")
|
| 812 |
+
else:
|
| 813 |
+
print(f"{model_name:20} | Error: {result['error']}")
|
| 814 |
+
|
| 815 |
+
# Test prediction
|
| 816 |
+
print(f"\n๐ฎ Testing predictions...")
|
| 817 |
+
test_texts = [
|
| 818 |
+
"I love this chatbot! It's amazing!",
|
| 819 |
+
"This is terrible. I hate it.",
|
| 820 |
+
"Can you help me with my account?"
|
| 821 |
+
]
|
| 822 |
+
|
| 823 |
+
for text in test_texts:
|
| 824 |
+
try:
|
| 825 |
+
prediction = trainer.predict_sentiment(text, 'random_forest')
|
| 826 |
+
print(f"Text: '{text}'")
|
| 827 |
+
print(f"Prediction: {prediction['sentiment']} (confidence: {prediction['confidence']:.3f})")
|
| 828 |
+
except Exception as e:
|
| 829 |
+
print(f"Prediction failed: {e}")
|
| 830 |
+
print()
|
| 831 |
+
|
| 832 |
+
# Save best model
|
| 833 |
+
best_model = max(results.keys(), key=lambda k: results[k].get('f1_macro', 0) if 'error' not in results[k] else 0)
|
| 834 |
+
if 'error' not in results[best_model]:
|
| 835 |
+
model_path = f"sentiments_ai_{best_model}_model.pkl"
|
| 836 |
+
trainer.save_model(best_model, model_path)
|
| 837 |
+
print(f"๐พ Best model ({best_model}) saved to {model_path}")
|
| 838 |
+
|
| 839 |
+
print("\nโ
SentilensAI ML training demo completed!")
|
| 840 |
+
print("๐ Ready for production sentiment analysis!")
|
| 841 |
+
|
| 842 |
+
|
| 843 |
+
if __name__ == "__main__":
|
| 844 |
+
main()
|