a2c-AntBulletEnv-v0 / config.json
pratsy's picture
Initial commit
06d18cf
{"policy_class": {":type:": "<class 'abc.ABCMeta'>", ":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==", "__module__": "stable_baselines3.common.policies", "__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ", "__init__": "<function ActorCriticPolicy.__init__ at 0x7d348a49f130>", "_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x7d348a49f1c0>", "reset_noise": "<function ActorCriticPolicy.reset_noise at 0x7d348a49f250>", "_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x7d348a49f2e0>", "_build": "<function ActorCriticPolicy._build at 0x7d348a49f370>", "forward": "<function ActorCriticPolicy.forward at 0x7d348a49f400>", "extract_features": "<function ActorCriticPolicy.extract_features at 0x7d348a49f490>", "_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x7d348a49f520>", "_predict": "<function ActorCriticPolicy._predict at 0x7d348a49f5b0>", "evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x7d348a49f640>", "get_distribution": "<function ActorCriticPolicy.get_distribution at 0x7d348a49f6d0>", "predict_values": "<function ActorCriticPolicy.predict_values at 0x7d348a49f760>", "__abstractmethods__": "frozenset()", "_abc_impl": "<_abc._abc_data object at 0x7d348a4a1900>"}, "verbose": 1, "policy_kwargs": {":type:": "<class 'dict'>", ":serialized:": "gAWVowAAAAAAAAB9lCiMDGxvZ19zdGRfaW5pdJRK/v///4wKb3J0aG9faW5pdJSJjA9vcHRpbWl6ZXJfY2xhc3OUjBN0b3JjaC5vcHRpbS5ybXNwcm9wlIwHUk1TcHJvcJSTlIwQb3B0aW1pemVyX2t3YXJnc5R9lCiMBWFscGhhlEc/764UeuFHrowDZXBzlEc+5Pi1iONo8YwMd2VpZ2h0X2RlY2F5lEsAdXUu", "log_std_init": -2, "ortho_init": false, "optimizer_class": "<class 'torch.optim.rmsprop.RMSprop'>", "optimizer_kwargs": {"alpha": 0.99, "eps": 1e-05, "weight_decay": 0}}, "num_timesteps": 2000000, "_total_timesteps": 2000000, "_num_timesteps_at_start": 0, "seed": null, "action_noise": null, "start_time": 1690702394688013396, "learning_rate": 0.00096, "tensorboard_log": null, "lr_schedule": {":type:": "<class 'function'>", ":serialized:": "gAWVxQIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSS91c3IvbG9jYWwvbGliL3B5dGhvbjMuMTAvZGlzdC1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUjARmdW5jlEuCQwIEAZSMA3ZhbJSFlCl0lFKUfZQojAtfX3BhY2thZ2VfX5SMGHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbpSMCF9fbmFtZV9flIwec3RhYmxlX2Jhc2VsaW5lczMuY29tbW9uLnV0aWxzlIwIX19maWxlX1+UjEkvdXNyL2xvY2FsL2xpYi9weXRob24zLjEwL2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaB99lH2UKGgWaA2MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgXjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz9PdRBNVR1phZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"}, "_last_obs": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVNQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJbAAQAAAAAAABCt1D2IlD4+M9WNPj2eAEDXPMs/k5jtPqcBnL4dvBi/d16KPk8e2z7gb4+/pUSAOwtQdj/ioAs/FHxKPwO8aT9JHFW9l7xDv6rCcj5KL6s/FKlAv8tiwr/IDTs/Q5CnvhP5I7+yDFI/iO2cPpWHQz81ECS+CMvvPbsvrz74B4M/AbhmvjzULsDnJie/YvZ8vR2+tj7bHvW+b1s4PzbK5T8Fkau+k5MBwCILiT8PqOQ/3Y7GvYOYwL8BWVm+LYp6v3lDOz8UQAVAgxznu4jn2D0T+SO/UgCcv4jtnD77lae/JQmVPfhqvTy7h9k+4DdEP/XEVT4DlwHAJxKOvq+4gD4PXNI+ls9Zv8gCAz9jH94/bSwlP/1ys7+TUOY+ObXzPlTZ6j6XLn2/m0qwvipLlr9tg5u+FOamP5fTab4zHAU/E/kjv1IAnL+I7Zw++5Wnv+kuVD8aMW+/Vdp4PyQ0Dj9OFyK+8eahPyrdMD+n9dW/zzedP6ctUL3qXY+/LdyuOVzdHT8jFfk+NRyAPpcqHz8njs0/OrkFvrUEKz+vbeE9+Oepv6nKtr/sKJg/c2xOvhP5I7+yDFI/iO2cPpWHQz+UjAVudW1weZSMBWR0eXBllJOUjAJmNJSJiIeUUpQoSwOMATyUTk5OSv////9K/////0sAdJRiSwRLHIaUjAFDlHSUUpQu"}, "_last_episode_starts": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVdwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYEAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSwSFlIwBQ5R0lFKULg=="}, "_last_original_obs": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVNQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJbAAQAAAAAAAAAAAADzmBq3AACAPwAAAAAAAAAAAAAAAAAAAAAAAACA+paAPAAAAACcr+C/AAAAAAMhCb4AAAAAXub0PwAAAAB2Ifu9AAAAAPMW9T8AAAAAB8L1PQAAAABAbt2/AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAlw0eNwAAgD8AAAAAAAAAAAAAAAAAAAAAAAAAgKN9gb0AAAAAnFLbvwAAAACtSak9AAAAAH7a+D8AAAAAHiEIPgAAAACyH/U/AAAAAK3KCL4AAAAArQ/mvwAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAC+azLYAAIA/AAAAAAAAAAAAAAAAAAAAAAAAAICo2Aw9AAAAAPwS/78AAAAAHwPDvQAAAAAwxfE/AAAAADIG9b0AAAAAdi8AQAAAAACBQx08AAAAACIE2b8AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAChIRu2AACAPwAAAAAAAAAAAAAAAAAAAAAAAACAFAEKPgAAAAAhH+y/AAAAANuPsz0AAAAArWHzPwAAAABkwVS8AAAAAJ9+7T8AAAAAAXhDPQAAAAA4oOy/AAAAAAAAAAAAAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJmNJSJiIeUUpQoSwOMATyUTk5OSv////9K/////0sAdJRiSwRLHIaUjAFDlHSUUpQu"}, "_episode_num": 0, "use_sde": true, "sde_sample_freq": -1, "_current_progress_remaining": 0.0, "_stats_window_size": 100, "ep_info_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVRAwAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpRHQJ4Kj0OEug+MAWyUTegDjAF0lEdAqVcJPwd8zHV9lChoBkdAoGNWmm+Cb2gHTegDaAhHQKlgGcf/3nJ1fZQoaAZHQJ7aZ3EAHVxoB03oA2gIR0CpYEY2S+xodX2UKGgGR0CgcIeYlY2baAdN6ANoCEdAqWQVhXr+pHV9lChoBkdAoVNvkaMrE2gHTegDaAhHQKlkjn9vS+h1fZQoaAZHQJzEkBKcurZoB03oA2gIR0CpbF0WdmQKdX2UKGgGR0CfMjC0WuYAaAdN6ANoCEdAqWyL/Ot4iXV9lChoBkdAnlzGMn7YTWgHTegDaAhHQKlw+TJQtSR1fZQoaAZHQKA6Q+yquKZoB03oA2gIR0CpcZ4NiH6/dX2UKGgGR0CgLCp6IFeOaAdN6ANoCEdAqXrAGB4D93V9lChoBkdAnatY9kjHGWgHTegDaAhHQKl67feDWbx1fZQoaAZHQJqa/1yvLYBoB03oA2gIR0Cpfw/SH/LldX2UKGgGR0Cd6Dt/FzdUaAdN6ANoCEdAqX+DE9+w1XV9lChoBkdAnaXbnLaEjGgHTegDaAhHQKmHQZgogFJ1fZQoaAZHQJ6i1qnFYMhoB03oA2gIR0Cph2yuZCv6dX2UKGgGR0CduLO1v2oOaAdN6ANoCEdAqYvMwQDmsHV9lChoBkdAoMt6cf/3nWgHTegDaAhHQKmMcY1He8B1fZQoaAZHQKBdlDjzZpVoB03oA2gIR0CplYvP9kz5dX2UKGgGR0CfJmMr3CbdaAdN6ANoCEdAqZW2bAk9lnV9lChoBkdAoC1wJJGvwGgHTegDaAhHQKmZdFRYRul1fZQoaAZHQJ9XCqYJE6VoB03oA2gIR0Cpmenn+yZ8dX2UKGgGR0CfCFnDiwSraAdN6ANoCEdAqaGeq//Nq3V9lChoBkdAnKU/5P/JeWgHTegDaAhHQKmhyXTmW+p1fZQoaAZHQJ1WxV7x/d9oB03oA2gIR0CppgpKSPludX2UKGgGR0CcVCCeEqUeaAdN6ANoCEdAqaauFtbcGnV9lChoBkdAnMbd/SYw7GgHTegDaAhHQKmv2sFMZgp1fZQoaAZHQJ1Ambwz+FVoB03oA2gIR0CpsAqGtZFHdX2UKGgGR0CgSelA3T/iaAdN6ANoCEdAqbPRtpEhJXV9lChoBkdAnjh2seXAumgHTegDaAhHQKm0SJO32El1fZQoaAZHQJxOKIhyKeloB03oA2gIR0CpvFSeiBXkdX2UKGgGR0Cc9Sk9lmOEaAdN6ANoCEdAqbyADTz/ZXV9lChoBkdAnaWVRLsa9GgHTegDaAhHQKnAtbh3qzJ1fZQoaAZHQJ1WdUCJXQtoB03oA2gIR0CpwV5kkKNRdX2UKGgGR0CetIEcsDnvaAdN6ANoCEdAqcqsOwxFiXV9lChoBkdAmdrsqnWJ8GgHTegDaAhHQKnK3LUTcqR1fZQoaAZHQJyz+GdqcmVoB03oA2gIR0Cpzos6zVtodX2UKGgGR0CcDWXbdrO8aAdN6ANoCEdAqc8GtyPuHHV9lChoBkdAnwfwdOqNqGgHTegDaAhHQKnWqdbxEv11fZQoaAZHQJ2IHQF9roJoB03oA2gIR0Cp1tTtsvZidX2UKGgGR0CdvkdrftQbaAdN6ANoCEdAqdr5xHXmNnV9lChoBkdAoLeuWjXWfGgHTegDaAhHQKnbodhiLEV1fZQoaAZHQJdmKB7NSqFoB03oA2gIR0Cp5QQNsnAqdX2UKGgGR0Ca8dDBuXNUaAdN6ANoCEdAqeUv5vcafnV9lChoBkdAnEZkH6dlNGgHTegDaAhHQKno99ycTal1fZQoaAZHQJw2mYXwb2loB03oA2gIR0Cp6WiJGe+VdX2UKGgGR0CdTvkZ75VPaAdN6ANoCEdAqfFTiKiwjnV9lChoBkdAnBuJZntfHGgHTegDaAhHQKnxgNcW0qp1fZQoaAZHQJw1OXgLqlhoB03oA2gIR0Cp9bACnxaxdX2UKGgGR0Cc+/bXHzYmaAdN6ANoCEdAqfZe+9Jz1nV9lChoBkdAnpthm9QGfWgHTegDaAhHQKn/7JyQxN91fZQoaAZHQJ2sC9du5z5oB03oA2gIR0CqABtBF/hEdX2UKGgGR0Cdi3eVs1sMaAdN6ANoCEdAqgPgoJAt4HV9lChoBkdAnlw+biIcimgHTegDaAhHQKoEXCLuQZJ1fZQoaAZHQJmTDpOerdZoB03oA2gIR0CqDB2d/axpdX2UKGgGR0Cc4y9YOlO5aAdN6ANoCEdAqgxJHy3CsXV9lChoBkdAnbdZsj3VTmgHTegDaAhHQKoQWctoSL91fZQoaAZHQJ8DkMLF4s5oB03oA2gIR0CqEQZKODJ2dX2UKGgGR0CdKDLCemNzaAdN6ANoCEdAqhp38AJb+3V9lChoBkdAn7VSThYNiGgHTegDaAhHQKoao704BFN1fZQoaAZHQJucW1SflIVoB03oA2gIR0CqHm2WpqASdX2UKGgGR0Cea2HZsbeeaAdN6ANoCEdAqh7l36hxpHV9lChoBkdAl30YnKGL1mgHTegDaAhHQKomlmeUY9B1fZQoaAZHQJ1RI3FUADJoB03oA2gIR0CqJsG0u14PdX2UKGgGR0CaCtUAksz3aAdN6ANoCEdAqiqbqv/za3V9lChoBkdAmOO+pCKJmGgHTegDaAhHQKorStSydFx1fZQoaAZHQJ1Cxu5z5oJoB03oA2gIR0CqNRXhfjS5dX2UKGgGR0CeA8+cpb2UaAdN6ANoCEdAqjVBvLowEnV9lChoBkdAmpodVea8YmgHTegDaAhHQKo4/YjjaPF1fZQoaAZHQJ1xI1DSgGtoB03oA2gIR0CqOXF2FFlTdX2UKGgGR0Cffc/Z/Tb4aAdN6ANoCEdAqkESMDOkcnV9lChoBkdAnOWEzbeuWGgHTegDaAhHQKpBQEpRXOp1fZQoaAZHQKANmI+nqFBoB03oA2gIR0CqRP642CNCdX2UKGgGR0Cf1+AAyVOcaAdN6ANoCEdAqkWZnpSrHXV9lChoBkdAoEPugOBlMGgHTegDaAhHQKpPlk7Omix1fZQoaAZHQJ5gaxMWXTpoB03oA2gIR0CqT8GVzIV/dX2UKGgGR0Cf0V/bCaZyaAdN6ANoCEdAqlOasZHd43V9lChoBkdAnxmdH6MzdmgHTegDaAhHQKpUEdU83dd1fZQoaAZHQKAQE1cdHUdoB03oA2gIR0CqW81W0Z3tdX2UKGgGR0CfH3Vzp5eJaAdN6ANoCEdAqlv4bOu7pXV9lChoBkdAoGJMjAzpHWgHTegDaAhHQKpf0GHpKSR1fZQoaAZHQJ7KhtxdY4hoB03oA2gIR0CqYFdMbm2cdX2UKGgGR0CdhTATZg5SaAdN6ANoCEdAqmpbV4HHFXV9lChoBkdAnuUynLq2SmgHTegDaAhHQKpqiJhOP/91fZQoaAZHQJpokUdq+JxoB03oA2gIR0Cqbl3sgMc7dX2UKGgGR0CfD0K+zt1IaAdN6ANoCEdAqm7ccZLqU3V9lChoBkdAmq5IAKfFrGgHTegDaAhHQKp24bgCOm11fZQoaAZHQJtRZkauOjtoB03oA2gIR0CqdxYBV+7UdX2UKGgGR0CX21aVUuL8aAdN6ANoCEdAqnr2TvAoHHV9lChoBkdAmt0Rm9QGfWgHTegDaAhHQKp7rGaQV9F1fZQoaAZHQJqImP6sQupoB03oA2gIR0CqhYF4C6pYdX2UKGgGR0CaS7E4NqgzaAdN6ANoCEdAqoWucx0uDnV9lChoBkdAm509eD3/P2gHTegDaAhHQKqJg4RVZLZ1fZQoaAZHQJ1on+3pfQdoB03oA2gIR0Cqifg1ejVQdX2UKGgGR0CeEuPacqe9aAdN6ANoCEdAqpH2Tq0MPXV9lChoBkdAmmrQJkXk52gHTegDaAhHQKqSIXu3MIN1fZQoaAZHQJ90zaVUuL9oB03oA2gIR0Cqlgk5QxetdX2UKGgGR0CcjrRlHz6KaAdN6ANoCEdAqpatDIBBA3V9lChoBkdAnk1rT2FnI2gHTegDaAhHQKqgYpMHryF1fZQoaAZHQKA9b9RaX8hoB03oA2gIR0CqoIyU1Q67dX2UKGgGR0CgPqGT1TR6aAdN6ANoCEdAqqRegvlEJHVlLg=="}, "ep_success_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="}, "_n_updates": 62500, "n_steps": 8, "gamma": 0.99, "gae_lambda": 0.9, "ent_coef": 0.0, "vf_coef": 0.4, "max_grad_norm": 0.5, "normalize_advantage": false, "observation_space": {":type:": "<class 'gym.spaces.box.Box'>", ":serialized:": "gAWVbQIAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lIwFZHR5cGWUk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLHIWUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWcAAAAAAAAAAAAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/lGgLSxyFlIwBQ5R0lFKUjARoaWdolGgTKJZwAAAAAAAAAAAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH+UaAtLHIWUaBZ0lFKUjA1ib3VuZGVkX2JlbG93lGgTKJYcAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUaAiMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLHIWUaBZ0lFKUjA1ib3VuZGVkX2Fib3ZllGgTKJYcAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUaCJLHIWUaBZ0lFKUjApfbnBfcmFuZG9tlE51Yi4=", "dtype": "float32", "_shape": [28], "low": "[-inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf\n -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf]", "high": "[inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf\n inf inf inf inf inf inf inf inf inf inf]", "bounded_below": "[False False False False False False False False False False False False\n False False False False False False False False False False False False\n False False False False]", "bounded_above": "[False False False False False False False False False False False False\n False False False False False False False False False False False False\n False False False False]", "_np_random": null}, "action_space": {":type:": "<class 'gym.spaces.box.Box'>", ":serialized:": "gAWVpQEAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lIwFZHR5cGWUk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLCIWUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWIAAAAAAAAAAAAIC/AACAvwAAgL8AAIC/AACAvwAAgL8AAIC/AACAv5RoC0sIhZSMAUOUdJRSlIwEaGlnaJRoEyiWIAAAAAAAAAAAAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAP5RoC0sIhZRoFnSUUpSMDWJvdW5kZWRfYmVsb3eUaBMolggAAAAAAAAAAQEBAQEBAQGUaAiMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLCIWUaBZ0lFKUjA1ib3VuZGVkX2Fib3ZllGgTKJYIAAAAAAAAAAEBAQEBAQEBlGgiSwiFlGgWdJRSlIwKX25wX3JhbmRvbZROdWIu", "dtype": "float32", "_shape": [8], "low": "[-1. -1. -1. -1. -1. -1. -1. -1.]", "high": "[1. 1. 1. 1. 1. 1. 1. 1.]", "bounded_below": "[ True True True True True True True True]", "bounded_above": "[ True True True True True True True True]", "_np_random": null}, "n_envs": 4, "system_info": {"OS": "Linux-5.15.109+-x86_64-with-glibc2.35 # 1 SMP Fri Jun 9 10:57:30 UTC 2023", "Python": "3.10.6", "Stable-Baselines3": "1.8.0", "PyTorch": "2.0.1+cu118", "GPU Enabled": "True", "Numpy": "1.22.4", "Gym": "0.21.0"}}