pratikstha commited on
Commit
807315e
1 Parent(s): fe7edad

End of training

Browse files
README.md ADDED
@@ -0,0 +1,80 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ base_model: microsoft/layoutlm-base-uncased
3
+ tags:
4
+ - generated_from_trainer
5
+ datasets:
6
+ - funsd
7
+ model-index:
8
+ - name: layoutlm-funsd
9
+ results: []
10
+ ---
11
+
12
+ <!-- This model card has been generated automatically according to the information the Trainer had access to. You
13
+ should probably proofread and complete it, then remove this comment. -->
14
+
15
+ # layoutlm-funsd
16
+
17
+ This model is a fine-tuned version of [microsoft/layoutlm-base-uncased](https://huggingface.co/microsoft/layoutlm-base-uncased) on the funsd dataset.
18
+ It achieves the following results on the evaluation set:
19
+ - Loss: 0.6565
20
+ - Answer: {'precision': 0.7244897959183674, 'recall': 0.7898640296662547, 'f1': 0.7557658190419871, 'number': 809}
21
+ - Header: {'precision': 0.34710743801652894, 'recall': 0.35294117647058826, 'f1': 0.35000000000000003, 'number': 119}
22
+ - Question: {'precision': 0.7786458333333334, 'recall': 0.8422535211267606, 'f1': 0.8092016238159676, 'number': 1065}
23
+ - Overall Precision: 0.7323
24
+ - Overall Recall: 0.7918
25
+ - Overall F1: 0.7608
26
+ - Overall Accuracy: 0.8097
27
+
28
+ ## Model description
29
+
30
+ More information needed
31
+
32
+ ## Intended uses & limitations
33
+
34
+ More information needed
35
+
36
+ ## Training and evaluation data
37
+
38
+ More information needed
39
+
40
+ ## Training procedure
41
+
42
+ ### Training hyperparameters
43
+
44
+ The following hyperparameters were used during training:
45
+ - learning_rate: 3e-05
46
+ - train_batch_size: 16
47
+ - eval_batch_size: 8
48
+ - seed: 42
49
+ - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
50
+ - lr_scheduler_type: linear
51
+ - num_epochs: 15
52
+ - mixed_precision_training: Native AMP
53
+
54
+ ### Training results
55
+
56
+ | Training Loss | Epoch | Step | Validation Loss | Answer | Header | Question | Overall Precision | Overall Recall | Overall F1 | Overall Accuracy |
57
+ |:-------------:|:-----:|:----:|:---------------:|:------------------------------------------------------------------------------------------------------------:|:-------------------------------------------------------------------------------------------------------------:|:------------------------------------------------------------------------------------------------------------:|:-----------------:|:--------------:|:----------:|:----------------:|
58
+ | 1.7236 | 1.0 | 10 | 1.5431 | {'precision': 0.03571428571428571, 'recall': 0.029666254635352288, 'f1': 0.03241053342336259, 'number': 809} | {'precision': 0.0, 'recall': 0.0, 'f1': 0.0, 'number': 119} | {'precision': 0.37149532710280375, 'recall': 0.29859154929577464, 'f1': 0.33107756376887043, 'number': 1065} | 0.2238 | 0.1716 | 0.1943 | 0.3796 |
59
+ | 1.3695 | 2.0 | 20 | 1.1737 | {'precision': 0.2528032619775739, 'recall': 0.3065512978986403, 'f1': 0.2770949720670391, 'number': 809} | {'precision': 0.0, 'recall': 0.0, 'f1': 0.0, 'number': 119} | {'precision': 0.4624819624819625, 'recall': 0.6018779342723005, 'f1': 0.5230518155854754, 'number': 1065} | 0.3748 | 0.4461 | 0.4073 | 0.6106 |
60
+ | 1.0404 | 3.0 | 30 | 0.9013 | {'precision': 0.5138613861386139, 'recall': 0.6415327564894932, 'f1': 0.5706432105552502, 'number': 809} | {'precision': 0.07894736842105263, 'recall': 0.025210084033613446, 'f1': 0.038216560509554146, 'number': 119} | {'precision': 0.5854601701469451, 'recall': 0.7107981220657277, 'f1': 0.642069550466497, 'number': 1065} | 0.5463 | 0.6417 | 0.5902 | 0.7217 |
61
+ | 0.8081 | 4.0 | 40 | 0.7592 | {'precision': 0.5993914807302231, 'recall': 0.73053152039555, 'f1': 0.6584958217270194, 'number': 809} | {'precision': 0.16417910447761194, 'recall': 0.09243697478991597, 'f1': 0.1182795698924731, 'number': 119} | {'precision': 0.6539379474940334, 'recall': 0.7718309859154929, 'f1': 0.7080103359173127, 'number': 1065} | 0.6165 | 0.7145 | 0.6619 | 0.7633 |
62
+ | 0.6544 | 5.0 | 50 | 0.6873 | {'precision': 0.6234817813765182, 'recall': 0.761433868974042, 'f1': 0.6855870895937674, 'number': 809} | {'precision': 0.2972972972972973, 'recall': 0.18487394957983194, 'f1': 0.22797927461139897, 'number': 119} | {'precision': 0.7099236641221374, 'recall': 0.7859154929577464, 'f1': 0.7459893048128342, 'number': 1065} | 0.6582 | 0.7401 | 0.6967 | 0.7795 |
63
+ | 0.5597 | 6.0 | 60 | 0.6540 | {'precision': 0.674217907227616, 'recall': 0.7725587144622992, 'f1': 0.7200460829493088, 'number': 809} | {'precision': 0.3157894736842105, 'recall': 0.20168067226890757, 'f1': 0.24615384615384614, 'number': 119} | {'precision': 0.7269681742043551, 'recall': 0.8150234741784037, 'f1': 0.7684816290393979, 'number': 1065} | 0.6905 | 0.7612 | 0.7241 | 0.7894 |
64
+ | 0.4916 | 7.0 | 70 | 0.6434 | {'precision': 0.6870229007633588, 'recall': 0.7787391841779975, 'f1': 0.7300115874855155, 'number': 809} | {'precision': 0.31683168316831684, 'recall': 0.2689075630252101, 'f1': 0.29090909090909095, 'number': 119} | {'precision': 0.7291311754684838, 'recall': 0.8037558685446009, 'f1': 0.7646270656543098, 'number': 1065} | 0.6925 | 0.7617 | 0.7254 | 0.7949 |
65
+ | 0.4415 | 8.0 | 80 | 0.6266 | {'precision': 0.7018498367791077, 'recall': 0.7972805933250927, 'f1': 0.7465277777777779, 'number': 809} | {'precision': 0.3090909090909091, 'recall': 0.2857142857142857, 'f1': 0.296943231441048, 'number': 119} | {'precision': 0.7609630266552021, 'recall': 0.8309859154929577, 'f1': 0.7944344703770198, 'number': 1065} | 0.7135 | 0.7847 | 0.7474 | 0.8045 |
66
+ | 0.3702 | 9.0 | 90 | 0.6265 | {'precision': 0.706858407079646, 'recall': 0.7898640296662547, 'f1': 0.7460595446584939, 'number': 809} | {'precision': 0.3786407766990291, 'recall': 0.3277310924369748, 'f1': 0.35135135135135137, 'number': 119} | {'precision': 0.7695614789337919, 'recall': 0.8403755868544601, 'f1': 0.8034111310592459, 'number': 1065} | 0.7249 | 0.7893 | 0.7557 | 0.8026 |
67
+ | 0.341 | 10.0 | 100 | 0.6384 | {'precision': 0.7091319052987599, 'recall': 0.7775030902348579, 'f1': 0.741745283018868, 'number': 809} | {'precision': 0.37, 'recall': 0.31092436974789917, 'f1': 0.3378995433789954, 'number': 119} | {'precision': 0.7773000859845228, 'recall': 0.8488262910798122, 'f1': 0.8114901256732495, 'number': 1065} | 0.7302 | 0.7878 | 0.7579 | 0.8042 |
68
+ | 0.3141 | 11.0 | 110 | 0.6472 | {'precision': 0.7158962795941376, 'recall': 0.7849196538936959, 'f1': 0.7488207547169812, 'number': 809} | {'precision': 0.34782608695652173, 'recall': 0.33613445378151263, 'f1': 0.3418803418803419, 'number': 119} | {'precision': 0.7785467128027682, 'recall': 0.8450704225352113, 'f1': 0.810445745159838, 'number': 1065} | 0.7298 | 0.7903 | 0.7589 | 0.8054 |
69
+ | 0.2951 | 12.0 | 120 | 0.6467 | {'precision': 0.7165532879818595, 'recall': 0.7812113720642769, 'f1': 0.7474866942637493, 'number': 809} | {'precision': 0.34959349593495936, 'recall': 0.36134453781512604, 'f1': 0.35537190082644626, 'number': 119} | {'precision': 0.7713546160483176, 'recall': 0.8394366197183099, 'f1': 0.8039568345323741, 'number': 1065} | 0.7250 | 0.7873 | 0.7549 | 0.8095 |
70
+ | 0.2803 | 13.0 | 130 | 0.6506 | {'precision': 0.7177777777777777, 'recall': 0.7985166872682324, 'f1': 0.7559976594499708, 'number': 809} | {'precision': 0.35537190082644626, 'recall': 0.36134453781512604, 'f1': 0.3583333333333333, 'number': 119} | {'precision': 0.7685738684884714, 'recall': 0.8450704225352113, 'f1': 0.8050089445438282, 'number': 1065} | 0.7249 | 0.7973 | 0.7594 | 0.8049 |
71
+ | 0.2623 | 14.0 | 140 | 0.6554 | {'precision': 0.7228506787330317, 'recall': 0.7898640296662547, 'f1': 0.754873006497342, 'number': 809} | {'precision': 0.3559322033898305, 'recall': 0.35294117647058826, 'f1': 0.35443037974683544, 'number': 119} | {'precision': 0.7793223284100782, 'recall': 0.8422535211267606, 'f1': 0.8095667870036102, 'number': 1065} | 0.7329 | 0.7918 | 0.7612 | 0.8102 |
72
+ | 0.2699 | 15.0 | 150 | 0.6565 | {'precision': 0.7244897959183674, 'recall': 0.7898640296662547, 'f1': 0.7557658190419871, 'number': 809} | {'precision': 0.34710743801652894, 'recall': 0.35294117647058826, 'f1': 0.35000000000000003, 'number': 119} | {'precision': 0.7786458333333334, 'recall': 0.8422535211267606, 'f1': 0.8092016238159676, 'number': 1065} | 0.7323 | 0.7918 | 0.7608 | 0.8097 |
73
+
74
+
75
+ ### Framework versions
76
+
77
+ - Transformers 4.35.2
78
+ - Pytorch 2.1.0+cu118
79
+ - Datasets 2.15.0
80
+ - Tokenizers 0.15.0
logs/events.out.tfevents.1701496677.c0c31398db08.6950.0 CHANGED
@@ -1,3 +1,3 @@
1
  version https://git-lfs.github.com/spec/v1
2
- oid sha256:943e0f1fa20174317dbfbaeb9f395b9b188f592065899943ea405b06d7d8cdb7
3
- size 12912
 
1
  version https://git-lfs.github.com/spec/v1
2
+ oid sha256:af62127b53e755efe0131eacc604e216a7441a697b9dbd6a714f748b97488352
3
+ size 14588
model.safetensors CHANGED
@@ -1,3 +1,3 @@
1
  version https://git-lfs.github.com/spec/v1
2
- oid sha256:e7df75f5d24ab812e7fa86d12accf2c67455d4c219529b6ec31e726e0e6abd0a
3
  size 450558212
 
1
  version https://git-lfs.github.com/spec/v1
2
+ oid sha256:c95a6d7e0080dfce8dd05242ddcb196ca40d8998e75278806aaefa585fe6f2a1
3
  size 450558212
preprocessor_config.json ADDED
@@ -0,0 +1,14 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "apply_ocr": true,
3
+ "do_resize": true,
4
+ "feature_extractor_type": "LayoutLMv2FeatureExtractor",
5
+ "image_processor_type": "LayoutLMv2ImageProcessor",
6
+ "ocr_lang": null,
7
+ "processor_class": "LayoutLMv2Processor",
8
+ "resample": 2,
9
+ "size": {
10
+ "height": 224,
11
+ "width": 224
12
+ },
13
+ "tesseract_config": ""
14
+ }
special_tokens_map.json ADDED
@@ -0,0 +1,37 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "cls_token": {
3
+ "content": "[CLS]",
4
+ "lstrip": false,
5
+ "normalized": false,
6
+ "rstrip": false,
7
+ "single_word": false
8
+ },
9
+ "mask_token": {
10
+ "content": "[MASK]",
11
+ "lstrip": false,
12
+ "normalized": false,
13
+ "rstrip": false,
14
+ "single_word": false
15
+ },
16
+ "pad_token": {
17
+ "content": "[PAD]",
18
+ "lstrip": false,
19
+ "normalized": false,
20
+ "rstrip": false,
21
+ "single_word": false
22
+ },
23
+ "sep_token": {
24
+ "content": "[SEP]",
25
+ "lstrip": false,
26
+ "normalized": false,
27
+ "rstrip": false,
28
+ "single_word": false
29
+ },
30
+ "unk_token": {
31
+ "content": "[UNK]",
32
+ "lstrip": false,
33
+ "normalized": false,
34
+ "rstrip": false,
35
+ "single_word": false
36
+ }
37
+ }
tokenizer.json ADDED
The diff for this file is too large to render. See raw diff
 
tokenizer_config.json ADDED
@@ -0,0 +1,80 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "added_tokens_decoder": {
3
+ "0": {
4
+ "content": "[PAD]",
5
+ "lstrip": false,
6
+ "normalized": false,
7
+ "rstrip": false,
8
+ "single_word": false,
9
+ "special": true
10
+ },
11
+ "100": {
12
+ "content": "[UNK]",
13
+ "lstrip": false,
14
+ "normalized": false,
15
+ "rstrip": false,
16
+ "single_word": false,
17
+ "special": true
18
+ },
19
+ "101": {
20
+ "content": "[CLS]",
21
+ "lstrip": false,
22
+ "normalized": false,
23
+ "rstrip": false,
24
+ "single_word": false,
25
+ "special": true
26
+ },
27
+ "102": {
28
+ "content": "[SEP]",
29
+ "lstrip": false,
30
+ "normalized": false,
31
+ "rstrip": false,
32
+ "single_word": false,
33
+ "special": true
34
+ },
35
+ "103": {
36
+ "content": "[MASK]",
37
+ "lstrip": false,
38
+ "normalized": false,
39
+ "rstrip": false,
40
+ "single_word": false,
41
+ "special": true
42
+ }
43
+ },
44
+ "additional_special_tokens": [],
45
+ "apply_ocr": false,
46
+ "clean_up_tokenization_spaces": true,
47
+ "cls_token": "[CLS]",
48
+ "cls_token_box": [
49
+ 0,
50
+ 0,
51
+ 0,
52
+ 0
53
+ ],
54
+ "do_basic_tokenize": true,
55
+ "do_lower_case": true,
56
+ "mask_token": "[MASK]",
57
+ "model_max_length": 512,
58
+ "never_split": null,
59
+ "only_label_first_subword": true,
60
+ "pad_token": "[PAD]",
61
+ "pad_token_box": [
62
+ 0,
63
+ 0,
64
+ 0,
65
+ 0
66
+ ],
67
+ "pad_token_label": -100,
68
+ "processor_class": "LayoutLMv2Processor",
69
+ "sep_token": "[SEP]",
70
+ "sep_token_box": [
71
+ 1000,
72
+ 1000,
73
+ 1000,
74
+ 1000
75
+ ],
76
+ "strip_accents": null,
77
+ "tokenize_chinese_chars": true,
78
+ "tokenizer_class": "LayoutLMv2Tokenizer",
79
+ "unk_token": "[UNK]"
80
+ }
vocab.txt ADDED
The diff for this file is too large to render. See raw diff