pranaydeeps
commited on
Commit
•
1d0a9e7
1
Parent(s):
9d31bbe
Upload folder using huggingface_hub
Browse files- .gitattributes +1 -0
- README.md +108 -0
- all_results.json +17 -0
- config.json +359 -0
- eval_results.json +12 -0
- pytorch_model.bin +3 -0
- sentencepiece.bpe.model +3 -0
- special_tokens_map.json +15 -0
- tokenizer.json +3 -0
- tokenizer_config.json +21 -0
- train_results.json +8 -0
- trainer_state.json +535 -0
- training_args.bin +3 -0
.gitattributes
CHANGED
@@ -33,3 +33,4 @@ saved_model/**/* filter=lfs diff=lfs merge=lfs -text
|
|
33 |
*.zip filter=lfs diff=lfs merge=lfs -text
|
34 |
*.zst filter=lfs diff=lfs merge=lfs -text
|
35 |
*tfevents* filter=lfs diff=lfs merge=lfs -text
|
|
|
|
33 |
*.zip filter=lfs diff=lfs merge=lfs -text
|
34 |
*.zst filter=lfs diff=lfs merge=lfs -text
|
35 |
*tfevents* filter=lfs diff=lfs merge=lfs -text
|
36 |
+
tokenizer.json filter=lfs diff=lfs merge=lfs -text
|
README.md
ADDED
@@ -0,0 +1,108 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
---
|
2 |
+
license: mit
|
3 |
+
tags:
|
4 |
+
- generated_from_trainer
|
5 |
+
metrics:
|
6 |
+
- precision
|
7 |
+
- recall
|
8 |
+
- f1
|
9 |
+
- accuracy
|
10 |
+
model-index:
|
11 |
+
- name: pos_final_xlm_nl
|
12 |
+
results: []
|
13 |
+
---
|
14 |
+
|
15 |
+
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
|
16 |
+
should probably proofread and complete it, then remove this comment. -->
|
17 |
+
|
18 |
+
# pos_final_xlm_nl
|
19 |
+
|
20 |
+
This model is a fine-tuned version of [xlm-roberta-base](https://huggingface.co/xlm-roberta-base) on the None dataset.
|
21 |
+
It achieves the following results on the evaluation set:
|
22 |
+
- Loss: 0.1066
|
23 |
+
- Precision: 0.9780
|
24 |
+
- Recall: 0.9783
|
25 |
+
- F1: 0.9782
|
26 |
+
- Accuracy: 0.9789
|
27 |
+
|
28 |
+
## Model description
|
29 |
+
|
30 |
+
More information needed
|
31 |
+
|
32 |
+
## Intended uses & limitations
|
33 |
+
|
34 |
+
More information needed
|
35 |
+
|
36 |
+
## Training and evaluation data
|
37 |
+
|
38 |
+
More information needed
|
39 |
+
|
40 |
+
## Training procedure
|
41 |
+
|
42 |
+
### Training hyperparameters
|
43 |
+
|
44 |
+
The following hyperparameters were used during training:
|
45 |
+
- learning_rate: 5e-05
|
46 |
+
- train_batch_size: 256
|
47 |
+
- eval_batch_size: 256
|
48 |
+
- seed: 42
|
49 |
+
- gradient_accumulation_steps: 4
|
50 |
+
- total_train_batch_size: 1024
|
51 |
+
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
|
52 |
+
- lr_scheduler_type: linear
|
53 |
+
- lr_scheduler_warmup_steps: 500
|
54 |
+
- num_epochs: 40.0
|
55 |
+
- mixed_precision_training: Native AMP
|
56 |
+
|
57 |
+
### Training results
|
58 |
+
|
59 |
+
| Training Loss | Epoch | Step | Validation Loss | Precision | Recall | F1 | Accuracy |
|
60 |
+
|:-------------:|:-----:|:----:|:---------------:|:---------:|:------:|:------:|:--------:|
|
61 |
+
| No log | 1.0 | 69 | 3.4837 | 0.2936 | 0.1709 | 0.2161 | 0.3200 |
|
62 |
+
| No log | 2.0 | 138 | 0.8299 | 0.8501 | 0.8416 | 0.8459 | 0.8497 |
|
63 |
+
| No log | 3.0 | 207 | 0.2765 | 0.9419 | 0.9408 | 0.9414 | 0.9429 |
|
64 |
+
| No log | 4.0 | 276 | 0.1704 | 0.9601 | 0.9596 | 0.9599 | 0.9611 |
|
65 |
+
| No log | 5.0 | 345 | 0.1259 | 0.9685 | 0.9686 | 0.9686 | 0.9693 |
|
66 |
+
| No log | 6.0 | 414 | 0.1085 | 0.9711 | 0.9713 | 0.9712 | 0.9719 |
|
67 |
+
| No log | 7.0 | 483 | 0.0984 | 0.9728 | 0.9731 | 0.9729 | 0.9738 |
|
68 |
+
| 1.1448 | 8.0 | 552 | 0.0906 | 0.9742 | 0.9745 | 0.9743 | 0.9752 |
|
69 |
+
| 1.1448 | 9.0 | 621 | 0.0888 | 0.9749 | 0.9752 | 0.9751 | 0.9758 |
|
70 |
+
| 1.1448 | 10.0 | 690 | 0.0864 | 0.9757 | 0.9759 | 0.9758 | 0.9765 |
|
71 |
+
| 1.1448 | 11.0 | 759 | 0.0842 | 0.9764 | 0.9767 | 0.9765 | 0.9772 |
|
72 |
+
| 1.1448 | 12.0 | 828 | 0.0840 | 0.9764 | 0.9768 | 0.9766 | 0.9773 |
|
73 |
+
| 1.1448 | 13.0 | 897 | 0.0846 | 0.9766 | 0.9769 | 0.9768 | 0.9775 |
|
74 |
+
| 1.1448 | 14.0 | 966 | 0.0854 | 0.9768 | 0.9771 | 0.9769 | 0.9776 |
|
75 |
+
| 0.0668 | 15.0 | 1035 | 0.0867 | 0.9767 | 0.9770 | 0.9768 | 0.9776 |
|
76 |
+
| 0.0668 | 16.0 | 1104 | 0.0859 | 0.9769 | 0.9772 | 0.9771 | 0.9778 |
|
77 |
+
| 0.0668 | 17.0 | 1173 | 0.0858 | 0.9772 | 0.9775 | 0.9773 | 0.9781 |
|
78 |
+
| 0.0668 | 18.0 | 1242 | 0.0878 | 0.9776 | 0.9779 | 0.9778 | 0.9785 |
|
79 |
+
| 0.0668 | 19.0 | 1311 | 0.0887 | 0.9775 | 0.9779 | 0.9777 | 0.9785 |
|
80 |
+
| 0.0668 | 20.0 | 1380 | 0.0902 | 0.9774 | 0.9777 | 0.9775 | 0.9783 |
|
81 |
+
| 0.0668 | 21.0 | 1449 | 0.0910 | 0.9772 | 0.9775 | 0.9774 | 0.9782 |
|
82 |
+
| 0.0375 | 22.0 | 1518 | 0.0926 | 0.9774 | 0.9777 | 0.9775 | 0.9783 |
|
83 |
+
| 0.0375 | 23.0 | 1587 | 0.0930 | 0.9777 | 0.9780 | 0.9779 | 0.9787 |
|
84 |
+
| 0.0375 | 24.0 | 1656 | 0.0955 | 0.9777 | 0.9781 | 0.9779 | 0.9787 |
|
85 |
+
| 0.0375 | 25.0 | 1725 | 0.0955 | 0.9778 | 0.9781 | 0.9780 | 0.9787 |
|
86 |
+
| 0.0375 | 26.0 | 1794 | 0.0978 | 0.9776 | 0.9779 | 0.9777 | 0.9785 |
|
87 |
+
| 0.0375 | 27.0 | 1863 | 0.0997 | 0.9772 | 0.9775 | 0.9774 | 0.9782 |
|
88 |
+
| 0.0375 | 28.0 | 1932 | 0.1000 | 0.9776 | 0.9779 | 0.9778 | 0.9786 |
|
89 |
+
| 0.0238 | 29.0 | 2001 | 0.1022 | 0.9775 | 0.9778 | 0.9776 | 0.9785 |
|
90 |
+
| 0.0238 | 30.0 | 2070 | 0.1030 | 0.9777 | 0.9780 | 0.9779 | 0.9787 |
|
91 |
+
| 0.0238 | 31.0 | 2139 | 0.1041 | 0.9778 | 0.9780 | 0.9779 | 0.9787 |
|
92 |
+
| 0.0238 | 32.0 | 2208 | 0.1054 | 0.9778 | 0.9781 | 0.9779 | 0.9787 |
|
93 |
+
| 0.0238 | 33.0 | 2277 | 0.1055 | 0.9777 | 0.9779 | 0.9778 | 0.9786 |
|
94 |
+
| 0.0238 | 34.0 | 2346 | 0.1063 | 0.9778 | 0.9780 | 0.9779 | 0.9787 |
|
95 |
+
| 0.0238 | 35.0 | 2415 | 0.1066 | 0.9780 | 0.9783 | 0.9782 | 0.9789 |
|
96 |
+
| 0.0238 | 36.0 | 2484 | 0.1075 | 0.9779 | 0.9781 | 0.9780 | 0.9788 |
|
97 |
+
| 0.0167 | 37.0 | 2553 | 0.1083 | 0.9780 | 0.9783 | 0.9781 | 0.9789 |
|
98 |
+
| 0.0167 | 38.0 | 2622 | 0.1083 | 0.9780 | 0.9783 | 0.9781 | 0.9789 |
|
99 |
+
| 0.0167 | 39.0 | 2691 | 0.1087 | 0.9779 | 0.9782 | 0.9781 | 0.9789 |
|
100 |
+
| 0.0167 | 40.0 | 2760 | 0.1088 | 0.9780 | 0.9782 | 0.9781 | 0.9789 |
|
101 |
+
|
102 |
+
|
103 |
+
### Framework versions
|
104 |
+
|
105 |
+
- Transformers 4.25.1
|
106 |
+
- Pytorch 1.12.0
|
107 |
+
- Datasets 2.18.0
|
108 |
+
- Tokenizers 0.13.2
|
all_results.json
ADDED
@@ -0,0 +1,17 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"epoch": 40.0,
|
3 |
+
"eval_accuracy": 0.9789456158142492,
|
4 |
+
"eval_f1": 0.978172514732208,
|
5 |
+
"eval_loss": 0.10656328499317169,
|
6 |
+
"eval_precision": 0.9780147183087772,
|
7 |
+
"eval_recall": 0.9783303620827442,
|
8 |
+
"eval_runtime": 11.1833,
|
9 |
+
"eval_samples": 2619,
|
10 |
+
"eval_samples_per_second": 703.641,
|
11 |
+
"eval_steps_per_second": 2.772,
|
12 |
+
"train_loss": 0.23496506378270576,
|
13 |
+
"train_runtime": 2350.6684,
|
14 |
+
"train_samples": 70812,
|
15 |
+
"train_samples_per_second": 1204.968,
|
16 |
+
"train_steps_per_second": 1.174
|
17 |
+
}
|
config.json
ADDED
@@ -0,0 +1,359 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"_name_or_path": "xlm-roberta-base",
|
3 |
+
"architectures": [
|
4 |
+
"XLMRobertaForTokenClassification"
|
5 |
+
],
|
6 |
+
"attention_probs_dropout_prob": 0.1,
|
7 |
+
"bos_token_id": 0,
|
8 |
+
"classifier_dropout": null,
|
9 |
+
"eos_token_id": 2,
|
10 |
+
"finetuning_task": "pos",
|
11 |
+
"hidden_act": "gelu",
|
12 |
+
"hidden_dropout_prob": 0.1,
|
13 |
+
"hidden_size": 768,
|
14 |
+
"id2label": {
|
15 |
+
"0": "",
|
16 |
+
"1": "VNW(bez,det,2v,mv)",
|
17 |
+
"2": "TW(rang,prenom,stan)",
|
18 |
+
"3": "LID(onbep)",
|
19 |
+
"4": "VNW(aanw,pron,3o,ev)",
|
20 |
+
"5": "VNW(onbep,adv-pron,3o,getal)",
|
21 |
+
"6": "WW(od,nom,met-e,zonder-n)",
|
22 |
+
"7": "WW(vd,nom,met-e,mv-n)",
|
23 |
+
"8": "WW(pv,tegw,ev)",
|
24 |
+
"9": "VNW(pers,pron,2b,getal)",
|
25 |
+
"10": "VNW(onbep,grad,basis)",
|
26 |
+
"11": "N(soort,ev,basis,dat)",
|
27 |
+
"12": "VNW(aanw,pron,3,getal)",
|
28 |
+
"13": "TSW()",
|
29 |
+
"14": "WW(inf,prenom,zonder)",
|
30 |
+
"15": "VNW(pers,pron,3v,ev,fem)",
|
31 |
+
"16": "VNW(pr,pron,1,ev)",
|
32 |
+
"17": "VNW(excl,pron,3,getal)",
|
33 |
+
"18": "FW",
|
34 |
+
"19": "VNW(pers,pron,3,ev,onz)",
|
35 |
+
"20": "WW(pv,tgw,ev)",
|
36 |
+
"21": "N(soort,ev,basis,zijd,stan)",
|
37 |
+
"22": "SPEC(deeleigen)",
|
38 |
+
"23": "VNW(vb,pron,3p,mv)",
|
39 |
+
"24": "ADJ(prenom,basis,met-e,stan)",
|
40 |
+
"25": "~",
|
41 |
+
"26": "ADJ(postnom,basis,zonder)",
|
42 |
+
"27": "VNW(betr,det)",
|
43 |
+
"28": "VNW(vb,pron,3v,ev)",
|
44 |
+
"29": "ADJ(nom,basis,zonder,mv-n)",
|
45 |
+
"30": "ADJ(prenom,basis,met-e,bijz)",
|
46 |
+
"31": "#not\t#",
|
47 |
+
"32": "ADJ(postnom,comp,zonder)",
|
48 |
+
"33": "U",
|
49 |
+
"34": "LET()",
|
50 |
+
"35": "VNW(onbep,pron,3p,ev)",
|
51 |
+
"36": "VNW(pers,pron,3p,mv)",
|
52 |
+
"37": "VNW(pr,pron,1,mv)",
|
53 |
+
"38": "VNW(pers,pron,2,getal)",
|
54 |
+
"39": "VNW(pers,pron,1,mv)",
|
55 |
+
"40": "VZ(versm)",
|
56 |
+
"41": "#NS\t#",
|
57 |
+
"42": "ADJ(vrij,dim,zonder)",
|
58 |
+
"43": "WW(inf,prenom,met-e)",
|
59 |
+
"44": "ADJ(nom,basis,zonder,zonder-n)",
|
60 |
+
"45": "N(eigen,ev,basis,gen)",
|
61 |
+
"46": "TW(hoofd,prenom,stan)",
|
62 |
+
"47": "@",
|
63 |
+
"48": "VNW(bez,det,1,mv)",
|
64 |
+
"49": "VNW(vb,det)",
|
65 |
+
"50": "VNW(aanw,det)",
|
66 |
+
"51": "zonder-n)",
|
67 |
+
"52": "SPEC(symb)",
|
68 |
+
"53": "BW()",
|
69 |
+
"54": "VNW(vb,pron,3p,getal)",
|
70 |
+
"55": "N(eigen,mv,dim)",
|
71 |
+
"56": "WW(vd,nom,met-e,zonder-n)",
|
72 |
+
"57": "VNW(bez,det,2,getal)",
|
73 |
+
"58": "VNW(bez,det,3,ev)",
|
74 |
+
"59": "ADJ(nom,comp,met-e,mv-n)",
|
75 |
+
"60": "VNW(onbep,grad,comp)",
|
76 |
+
"61": "ADJ(prenom,basis,zonder,stan)",
|
77 |
+
"62": "TW(rang,prenom,bijz)",
|
78 |
+
"63": "N(eigen,ev,basis,zijd,stan)",
|
79 |
+
"64": "VNW(bez,det,3p,mv)",
|
80 |
+
"65": "N(soort,ev,basis,genus,stan)",
|
81 |
+
"66": "VNW(pers,pron,3,ev,fem)",
|
82 |
+
"67": "VNW(aanw,pron,3m,ev)",
|
83 |
+
"68": "VNW(pr,pron,2v,getal)",
|
84 |
+
"69": "ADJ(prenom,comp,met-e,stan)",
|
85 |
+
"70": "VNW(pers,pron,3,getal,fem)",
|
86 |
+
"71": "SPEC(vreemd)",
|
87 |
+
"72": "VNW(vb,pron,3o,ev)",
|
88 |
+
"73": "ADJ(nom,basis,met-e,zonder-n,bijz)",
|
89 |
+
"74": "VNW(pers,pron,3v,getal,fem)",
|
90 |
+
"75": "TW(rang,nom,mv-n)",
|
91 |
+
"76": "ADJ(vrij,comp,zonder)",
|
92 |
+
"77": "N(soort,mv,dim)",
|
93 |
+
"78": "WW(pv,tgw,mv)",
|
94 |
+
"79": "VNW(pers,pron,3,ev,masc)",
|
95 |
+
"80": "WW(od,nom,met-e,mv-n)",
|
96 |
+
"81": "VNW(betr,pron,persoon,getal)",
|
97 |
+
"82": "VNW(bez,det,2v,ev)",
|
98 |
+
"83": "WW(od,prenom,met-e)",
|
99 |
+
"84": "TW(hoofd,nom,zonder-n,basis)",
|
100 |
+
"85": "ADJ(vrij,verder,zonder)",
|
101 |
+
"86": "ADJ(nom,sup,met-e,mv-n)",
|
102 |
+
"87": "N(soort,ev,basis,gen)",
|
103 |
+
"88": "WW(od,prenom,zonder)",
|
104 |
+
"89": "WW(pv,tgw,met-t)",
|
105 |
+
"90": "TW(hoofd,nom,zonder-n,dim)",
|
106 |
+
"91": "ADJ(nom,sup,met-e,zonder-n,stan)",
|
107 |
+
"92": "N(soort,ev,basis,onz,stan)",
|
108 |
+
"93": "ADJ(prenom,sup,zonder)",
|
109 |
+
"94": "VNW(bez,det,3,mv)",
|
110 |
+
"95": "VNW(pers,pron,3m,ev)",
|
111 |
+
"96": "VNW(pers,pron,2v,ev)",
|
112 |
+
"97": "WW(inf,nom,zonder,zonder-n)",
|
113 |
+
"98": "WW(od,vrij,zonder)",
|
114 |
+
"99": "WW(pv,verl,mv)",
|
115 |
+
"100": "SPEC(afk)",
|
116 |
+
"101": "SPEC(meta)",
|
117 |
+
"102": "VNW(pr,pron,2,getal)",
|
118 |
+
"103": "ADJ(prenom,basis,zonder)",
|
119 |
+
"104": "VGW()",
|
120 |
+
"105": "VNW(bez,det,1,ev)",
|
121 |
+
"106": "Jan",
|
122 |
+
"107": "N(soort,mv,basis,zijd,stan)",
|
123 |
+
"108": "VNW(pers,pron,3,mv)",
|
124 |
+
"109": "VNW(vb,pron,3m,ev)",
|
125 |
+
"110": "ADJ(nom,sup,zonder,zonder-n)",
|
126 |
+
"111": "VG(onder)",
|
127 |
+
"112": "VNW(aanw,adv-pron,3,getal)",
|
128 |
+
"113": "VNW(betr,pron,3,ev)",
|
129 |
+
"114": "VNW(onbep,pron,3o,ev)",
|
130 |
+
"115": "ADJ(prenom,comp,zonder)",
|
131 |
+
"116": "WW(vd,vrij,zonder)",
|
132 |
+
"117": "N(eigen,ev,basis,genus,stan)",
|
133 |
+
"118": "VZ(init)",
|
134 |
+
"119": "ADJ(prenom,sup,met-e,stan)",
|
135 |
+
"120": "ADJ(vrij,basis,zonder)",
|
136 |
+
"121": "VNW(onbep,grad,sup)",
|
137 |
+
"122": "VNW(pers,pron,1,ev)",
|
138 |
+
"123": "#",
|
139 |
+
"124": "VNW(aanw,adv-pron,3o,getal)",
|
140 |
+
"125": "TW(hoofd,nom,zonder,zonder-n)",
|
141 |
+
"126": "VNW(pers,pron,3m,ev,masc)",
|
142 |
+
"127": "TW(hoofd,prenom,bijz)",
|
143 |
+
"128": "WW(vd,prenom,met-e)",
|
144 |
+
"129": "TW(rang,nom,zonder-n)",
|
145 |
+
"130": "VNW(bez,det,3v,ev)",
|
146 |
+
"131": "VNW(bez,det,3m,ev)",
|
147 |
+
"132": "ADJ(nom,comp,met-e,zonder-n,stan)",
|
148 |
+
"133": "WW(pv,conj,ev)",
|
149 |
+
"134": "LID(bep)",
|
150 |
+
"135": "VNW(bez,det,2,mv)",
|
151 |
+
"136": "SPEC(enof)",
|
152 |
+
"137": "VNW(pers,pron,2v,mv)",
|
153 |
+
"138": "VNW(onbep,det)",
|
154 |
+
"139": "ADJ(postnom,basis,met-s)",
|
155 |
+
"140": "VNW(vb,adv-pron,3o,getal)",
|
156 |
+
"141": "WW(vd,prenom,zonder)",
|
157 |
+
"142": "VNW(recip,pron,persoon,mv)",
|
158 |
+
"143": "Boulevard\tN(eigen,ev,basis,genus,stan)",
|
159 |
+
"144": "WW(inf,vrij,zonder)",
|
160 |
+
"145": "VNW(onbep,adv-pron,3,getal)",
|
161 |
+
"146": "ADJ(nom,basis,met-e,mv-n)",
|
162 |
+
"147": "N(soort,mv,basis)",
|
163 |
+
"148": "TW(hoofd,nom,mv-n,basis)",
|
164 |
+
"149": "TW(hoofd,vrij)",
|
165 |
+
"150": "N(soort,ev,dim,onz,stan)",
|
166 |
+
"151": "N(eigen,ev,dim,onz,stan)",
|
167 |
+
"152": "N(eigen,ev,basis,onz,stan)",
|
168 |
+
"153": "VZ(fin)",
|
169 |
+
"154": "VG(neven)",
|
170 |
+
"155": "VNW(pers,pron,3p,ev,masc)",
|
171 |
+
"156": "N(eigen,mv,basis)",
|
172 |
+
"157": "VNW(refl,pron,3,getal)",
|
173 |
+
"158": "SPEC(afgebr)",
|
174 |
+
"159": "WW(pv,verl,ev)",
|
175 |
+
"160": "ADJ(vrij,sup,zonder)",
|
176 |
+
"161": "ADJ(nom,basis,met-e,zonder-n,stan)",
|
177 |
+
"162": "ADJ(postnom,comp,met-s)"
|
178 |
+
},
|
179 |
+
"initializer_range": 0.02,
|
180 |
+
"intermediate_size": 3072,
|
181 |
+
"label2id": {
|
182 |
+
"": 0,
|
183 |
+
"#": 123,
|
184 |
+
"#NS\t#": 41,
|
185 |
+
"#not\t#": 31,
|
186 |
+
"@": 47,
|
187 |
+
"ADJ(nom,basis,met-e,mv-n)": 146,
|
188 |
+
"ADJ(nom,basis,met-e,zonder-n,bijz)": 73,
|
189 |
+
"ADJ(nom,basis,met-e,zonder-n,stan)": 161,
|
190 |
+
"ADJ(nom,basis,zonder,mv-n)": 29,
|
191 |
+
"ADJ(nom,basis,zonder,zonder-n)": 44,
|
192 |
+
"ADJ(nom,comp,met-e,mv-n)": 59,
|
193 |
+
"ADJ(nom,comp,met-e,zonder-n,stan)": 132,
|
194 |
+
"ADJ(nom,sup,met-e,mv-n)": 86,
|
195 |
+
"ADJ(nom,sup,met-e,zonder-n,stan)": 91,
|
196 |
+
"ADJ(nom,sup,zonder,zonder-n)": 110,
|
197 |
+
"ADJ(postnom,basis,met-s)": 139,
|
198 |
+
"ADJ(postnom,basis,zonder)": 26,
|
199 |
+
"ADJ(postnom,comp,met-s)": 162,
|
200 |
+
"ADJ(postnom,comp,zonder)": 32,
|
201 |
+
"ADJ(prenom,basis,met-e,bijz)": 30,
|
202 |
+
"ADJ(prenom,basis,met-e,stan)": 24,
|
203 |
+
"ADJ(prenom,basis,zonder)": 103,
|
204 |
+
"ADJ(prenom,basis,zonder,stan)": 61,
|
205 |
+
"ADJ(prenom,comp,met-e,stan)": 69,
|
206 |
+
"ADJ(prenom,comp,zonder)": 115,
|
207 |
+
"ADJ(prenom,sup,met-e,stan)": 119,
|
208 |
+
"ADJ(prenom,sup,zonder)": 93,
|
209 |
+
"ADJ(vrij,basis,zonder)": 120,
|
210 |
+
"ADJ(vrij,comp,zonder)": 76,
|
211 |
+
"ADJ(vrij,dim,zonder)": 42,
|
212 |
+
"ADJ(vrij,sup,zonder)": 160,
|
213 |
+
"ADJ(vrij,verder,zonder)": 85,
|
214 |
+
"BW()": 53,
|
215 |
+
"Boulevard\tN(eigen,ev,basis,genus,stan)": 143,
|
216 |
+
"FW": 18,
|
217 |
+
"Jan": 106,
|
218 |
+
"LET()": 34,
|
219 |
+
"LID(bep)": 134,
|
220 |
+
"LID(onbep)": 3,
|
221 |
+
"N(eigen,ev,basis,gen)": 45,
|
222 |
+
"N(eigen,ev,basis,genus,stan)": 117,
|
223 |
+
"N(eigen,ev,basis,onz,stan)": 152,
|
224 |
+
"N(eigen,ev,basis,zijd,stan)": 63,
|
225 |
+
"N(eigen,ev,dim,onz,stan)": 151,
|
226 |
+
"N(eigen,mv,basis)": 156,
|
227 |
+
"N(eigen,mv,dim)": 55,
|
228 |
+
"N(soort,ev,basis,dat)": 11,
|
229 |
+
"N(soort,ev,basis,gen)": 87,
|
230 |
+
"N(soort,ev,basis,genus,stan)": 65,
|
231 |
+
"N(soort,ev,basis,onz,stan)": 92,
|
232 |
+
"N(soort,ev,basis,zijd,stan)": 21,
|
233 |
+
"N(soort,ev,dim,onz,stan)": 150,
|
234 |
+
"N(soort,mv,basis)": 147,
|
235 |
+
"N(soort,mv,basis,zijd,stan)": 107,
|
236 |
+
"N(soort,mv,dim)": 77,
|
237 |
+
"SPEC(afgebr)": 158,
|
238 |
+
"SPEC(afk)": 100,
|
239 |
+
"SPEC(deeleigen)": 22,
|
240 |
+
"SPEC(enof)": 136,
|
241 |
+
"SPEC(meta)": 101,
|
242 |
+
"SPEC(symb)": 52,
|
243 |
+
"SPEC(vreemd)": 71,
|
244 |
+
"TSW()": 13,
|
245 |
+
"TW(hoofd,nom,mv-n,basis)": 148,
|
246 |
+
"TW(hoofd,nom,zonder,zonder-n)": 125,
|
247 |
+
"TW(hoofd,nom,zonder-n,basis)": 84,
|
248 |
+
"TW(hoofd,nom,zonder-n,dim)": 90,
|
249 |
+
"TW(hoofd,prenom,bijz)": 127,
|
250 |
+
"TW(hoofd,prenom,stan)": 46,
|
251 |
+
"TW(hoofd,vrij)": 149,
|
252 |
+
"TW(rang,nom,mv-n)": 75,
|
253 |
+
"TW(rang,nom,zonder-n)": 129,
|
254 |
+
"TW(rang,prenom,bijz)": 62,
|
255 |
+
"TW(rang,prenom,stan)": 2,
|
256 |
+
"U": 33,
|
257 |
+
"VG(neven)": 154,
|
258 |
+
"VG(onder)": 111,
|
259 |
+
"VGW()": 104,
|
260 |
+
"VNW(aanw,adv-pron,3,getal)": 112,
|
261 |
+
"VNW(aanw,adv-pron,3o,getal)": 124,
|
262 |
+
"VNW(aanw,det)": 50,
|
263 |
+
"VNW(aanw,pron,3,getal)": 12,
|
264 |
+
"VNW(aanw,pron,3m,ev)": 67,
|
265 |
+
"VNW(aanw,pron,3o,ev)": 4,
|
266 |
+
"VNW(betr,det)": 27,
|
267 |
+
"VNW(betr,pron,3,ev)": 113,
|
268 |
+
"VNW(betr,pron,persoon,getal)": 81,
|
269 |
+
"VNW(bez,det,1,ev)": 105,
|
270 |
+
"VNW(bez,det,1,mv)": 48,
|
271 |
+
"VNW(bez,det,2,getal)": 57,
|
272 |
+
"VNW(bez,det,2,mv)": 135,
|
273 |
+
"VNW(bez,det,2v,ev)": 82,
|
274 |
+
"VNW(bez,det,2v,mv)": 1,
|
275 |
+
"VNW(bez,det,3,ev)": 58,
|
276 |
+
"VNW(bez,det,3,mv)": 94,
|
277 |
+
"VNW(bez,det,3m,ev)": 131,
|
278 |
+
"VNW(bez,det,3p,mv)": 64,
|
279 |
+
"VNW(bez,det,3v,ev)": 130,
|
280 |
+
"VNW(excl,pron,3,getal)": 17,
|
281 |
+
"VNW(onbep,adv-pron,3,getal)": 145,
|
282 |
+
"VNW(onbep,adv-pron,3o,getal)": 5,
|
283 |
+
"VNW(onbep,det)": 138,
|
284 |
+
"VNW(onbep,grad,basis)": 10,
|
285 |
+
"VNW(onbep,grad,comp)": 60,
|
286 |
+
"VNW(onbep,grad,sup)": 121,
|
287 |
+
"VNW(onbep,pron,3o,ev)": 114,
|
288 |
+
"VNW(onbep,pron,3p,ev)": 35,
|
289 |
+
"VNW(pers,pron,1,ev)": 122,
|
290 |
+
"VNW(pers,pron,1,mv)": 39,
|
291 |
+
"VNW(pers,pron,2,getal)": 38,
|
292 |
+
"VNW(pers,pron,2b,getal)": 9,
|
293 |
+
"VNW(pers,pron,2v,ev)": 96,
|
294 |
+
"VNW(pers,pron,2v,mv)": 137,
|
295 |
+
"VNW(pers,pron,3,ev,fem)": 66,
|
296 |
+
"VNW(pers,pron,3,ev,masc)": 79,
|
297 |
+
"VNW(pers,pron,3,ev,onz)": 19,
|
298 |
+
"VNW(pers,pron,3,getal,fem)": 70,
|
299 |
+
"VNW(pers,pron,3,mv)": 108,
|
300 |
+
"VNW(pers,pron,3m,ev)": 95,
|
301 |
+
"VNW(pers,pron,3m,ev,masc)": 126,
|
302 |
+
"VNW(pers,pron,3p,ev,masc)": 155,
|
303 |
+
"VNW(pers,pron,3p,mv)": 36,
|
304 |
+
"VNW(pers,pron,3v,ev,fem)": 15,
|
305 |
+
"VNW(pers,pron,3v,getal,fem)": 74,
|
306 |
+
"VNW(pr,pron,1,ev)": 16,
|
307 |
+
"VNW(pr,pron,1,mv)": 37,
|
308 |
+
"VNW(pr,pron,2,getal)": 102,
|
309 |
+
"VNW(pr,pron,2v,getal)": 68,
|
310 |
+
"VNW(recip,pron,persoon,mv)": 142,
|
311 |
+
"VNW(refl,pron,3,getal)": 157,
|
312 |
+
"VNW(vb,adv-pron,3o,getal)": 140,
|
313 |
+
"VNW(vb,det)": 49,
|
314 |
+
"VNW(vb,pron,3m,ev)": 109,
|
315 |
+
"VNW(vb,pron,3o,ev)": 72,
|
316 |
+
"VNW(vb,pron,3p,getal)": 54,
|
317 |
+
"VNW(vb,pron,3p,mv)": 23,
|
318 |
+
"VNW(vb,pron,3v,ev)": 28,
|
319 |
+
"VZ(fin)": 153,
|
320 |
+
"VZ(init)": 118,
|
321 |
+
"VZ(versm)": 40,
|
322 |
+
"WW(inf,nom,zonder,zonder-n)": 97,
|
323 |
+
"WW(inf,prenom,met-e)": 43,
|
324 |
+
"WW(inf,prenom,zonder)": 14,
|
325 |
+
"WW(inf,vrij,zonder)": 144,
|
326 |
+
"WW(od,nom,met-e,mv-n)": 80,
|
327 |
+
"WW(od,nom,met-e,zonder-n)": 6,
|
328 |
+
"WW(od,prenom,met-e)": 83,
|
329 |
+
"WW(od,prenom,zonder)": 88,
|
330 |
+
"WW(od,vrij,zonder)": 98,
|
331 |
+
"WW(pv,conj,ev)": 133,
|
332 |
+
"WW(pv,tegw,ev)": 8,
|
333 |
+
"WW(pv,tgw,ev)": 20,
|
334 |
+
"WW(pv,tgw,met-t)": 89,
|
335 |
+
"WW(pv,tgw,mv)": 78,
|
336 |
+
"WW(pv,verl,ev)": 159,
|
337 |
+
"WW(pv,verl,mv)": 99,
|
338 |
+
"WW(vd,nom,met-e,mv-n)": 7,
|
339 |
+
"WW(vd,nom,met-e,zonder-n)": 56,
|
340 |
+
"WW(vd,prenom,met-e)": 128,
|
341 |
+
"WW(vd,prenom,zonder)": 141,
|
342 |
+
"WW(vd,vrij,zonder)": 116,
|
343 |
+
"zonder-n)": 51,
|
344 |
+
"~": 25
|
345 |
+
},
|
346 |
+
"layer_norm_eps": 1e-05,
|
347 |
+
"max_position_embeddings": 514,
|
348 |
+
"model_type": "xlm-roberta",
|
349 |
+
"num_attention_heads": 12,
|
350 |
+
"num_hidden_layers": 12,
|
351 |
+
"output_past": true,
|
352 |
+
"pad_token_id": 1,
|
353 |
+
"position_embedding_type": "absolute",
|
354 |
+
"torch_dtype": "float32",
|
355 |
+
"transformers_version": "4.25.1",
|
356 |
+
"type_vocab_size": 1,
|
357 |
+
"use_cache": true,
|
358 |
+
"vocab_size": 250002
|
359 |
+
}
|
eval_results.json
ADDED
@@ -0,0 +1,12 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"epoch": 40.0,
|
3 |
+
"eval_accuracy": 0.9789456158142492,
|
4 |
+
"eval_f1": 0.978172514732208,
|
5 |
+
"eval_loss": 0.10656328499317169,
|
6 |
+
"eval_precision": 0.9780147183087772,
|
7 |
+
"eval_recall": 0.9783303620827442,
|
8 |
+
"eval_runtime": 11.1833,
|
9 |
+
"eval_samples": 2619,
|
10 |
+
"eval_samples_per_second": 703.641,
|
11 |
+
"eval_steps_per_second": 2.772
|
12 |
+
}
|
pytorch_model.bin
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:3c207b4075f596543a4c83655dde81906eb9a11707924c585e674ccb3361eee9
|
3 |
+
size 1110384689
|
sentencepiece.bpe.model
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:cfc8146abe2a0488e9e2a0c56de7952f7c11ab059eca145a0a727afce0db2865
|
3 |
+
size 5069051
|
special_tokens_map.json
ADDED
@@ -0,0 +1,15 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"bos_token": "<s>",
|
3 |
+
"cls_token": "<s>",
|
4 |
+
"eos_token": "</s>",
|
5 |
+
"mask_token": {
|
6 |
+
"content": "<mask>",
|
7 |
+
"lstrip": true,
|
8 |
+
"normalized": false,
|
9 |
+
"rstrip": false,
|
10 |
+
"single_word": false
|
11 |
+
},
|
12 |
+
"pad_token": "<pad>",
|
13 |
+
"sep_token": "</s>",
|
14 |
+
"unk_token": "<unk>"
|
15 |
+
}
|
tokenizer.json
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:f2c509a525eb51aebb33fb59c24ee923c1d4c1db23c3ae81fe05ccf354084f7b
|
3 |
+
size 17082758
|
tokenizer_config.json
ADDED
@@ -0,0 +1,21 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"bos_token": "<s>",
|
3 |
+
"cls_token": "<s>",
|
4 |
+
"eos_token": "</s>",
|
5 |
+
"mask_token": {
|
6 |
+
"__type": "AddedToken",
|
7 |
+
"content": "<mask>",
|
8 |
+
"lstrip": true,
|
9 |
+
"normalized": true,
|
10 |
+
"rstrip": false,
|
11 |
+
"single_word": false
|
12 |
+
},
|
13 |
+
"model_max_length": 512,
|
14 |
+
"name_or_path": "xlm-roberta-base",
|
15 |
+
"pad_token": "<pad>",
|
16 |
+
"sep_token": "</s>",
|
17 |
+
"special_tokens_map_file": null,
|
18 |
+
"token": null,
|
19 |
+
"tokenizer_class": "XLMRobertaTokenizer",
|
20 |
+
"unk_token": "<unk>"
|
21 |
+
}
|
train_results.json
ADDED
@@ -0,0 +1,8 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"epoch": 40.0,
|
3 |
+
"train_loss": 0.23496506378270576,
|
4 |
+
"train_runtime": 2350.6684,
|
5 |
+
"train_samples": 70812,
|
6 |
+
"train_samples_per_second": 1204.968,
|
7 |
+
"train_steps_per_second": 1.174
|
8 |
+
}
|
trainer_state.json
ADDED
@@ -0,0 +1,535 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"best_metric": 0.978172514732208,
|
3 |
+
"best_model_checkpoint": "models/pos_final_xlm_nl/checkpoint-2415",
|
4 |
+
"epoch": 39.99638989169675,
|
5 |
+
"global_step": 2760,
|
6 |
+
"is_hyper_param_search": false,
|
7 |
+
"is_local_process_zero": true,
|
8 |
+
"is_world_process_zero": true,
|
9 |
+
"log_history": [
|
10 |
+
{
|
11 |
+
"epoch": 1.0,
|
12 |
+
"eval_accuracy": 0.3200084762438131,
|
13 |
+
"eval_f1": 0.2160928249139116,
|
14 |
+
"eval_loss": 3.483713388442993,
|
15 |
+
"eval_precision": 0.2936494317356812,
|
16 |
+
"eval_recall": 0.17094424294584126,
|
17 |
+
"eval_runtime": 10.7415,
|
18 |
+
"eval_samples_per_second": 732.58,
|
19 |
+
"eval_steps_per_second": 2.886,
|
20 |
+
"step": 69
|
21 |
+
},
|
22 |
+
{
|
23 |
+
"epoch": 2.0,
|
24 |
+
"eval_accuracy": 0.8496904657393253,
|
25 |
+
"eval_f1": 0.8458663165617639,
|
26 |
+
"eval_loss": 0.8298526406288147,
|
27 |
+
"eval_precision": 0.8501404908642128,
|
28 |
+
"eval_recall": 0.8416349050224381,
|
29 |
+
"eval_runtime": 11.2158,
|
30 |
+
"eval_samples_per_second": 701.6,
|
31 |
+
"eval_steps_per_second": 2.764,
|
32 |
+
"step": 138
|
33 |
+
},
|
34 |
+
{
|
35 |
+
"epoch": 3.0,
|
36 |
+
"eval_accuracy": 0.9429140115337461,
|
37 |
+
"eval_f1": 0.9413686917810061,
|
38 |
+
"eval_loss": 0.27647557854652405,
|
39 |
+
"eval_precision": 0.941929974380871,
|
40 |
+
"eval_recall": 0.9408080777033258,
|
41 |
+
"eval_runtime": 10.9493,
|
42 |
+
"eval_samples_per_second": 718.679,
|
43 |
+
"eval_steps_per_second": 2.831,
|
44 |
+
"step": 207
|
45 |
+
},
|
46 |
+
{
|
47 |
+
"epoch": 4.0,
|
48 |
+
"eval_accuracy": 0.961107663432576,
|
49 |
+
"eval_f1": 0.9598816317903192,
|
50 |
+
"eval_loss": 0.17041535675525665,
|
51 |
+
"eval_precision": 0.9601288546848211,
|
52 |
+
"eval_recall": 0.9596345361775374,
|
53 |
+
"eval_runtime": 10.8629,
|
54 |
+
"eval_samples_per_second": 724.391,
|
55 |
+
"eval_steps_per_second": 2.854,
|
56 |
+
"step": 276
|
57 |
+
},
|
58 |
+
{
|
59 |
+
"epoch": 5.0,
|
60 |
+
"eval_accuracy": 0.969288752327183,
|
61 |
+
"eval_f1": 0.9685681024447033,
|
62 |
+
"eval_loss": 0.1259436309337616,
|
63 |
+
"eval_precision": 0.9685494963155347,
|
64 |
+
"eval_recall": 0.9685867092887441,
|
65 |
+
"eval_runtime": 11.2662,
|
66 |
+
"eval_samples_per_second": 698.46,
|
67 |
+
"eval_steps_per_second": 2.752,
|
68 |
+
"step": 345
|
69 |
+
},
|
70 |
+
{
|
71 |
+
"epoch": 6.0,
|
72 |
+
"eval_accuracy": 0.9719451465936095,
|
73 |
+
"eval_f1": 0.9712171621320507,
|
74 |
+
"eval_loss": 0.10845372825860977,
|
75 |
+
"eval_precision": 0.9711350819772891,
|
76 |
+
"eval_recall": 0.9712992561627836,
|
77 |
+
"eval_runtime": 10.8884,
|
78 |
+
"eval_samples_per_second": 722.693,
|
79 |
+
"eval_steps_per_second": 2.847,
|
80 |
+
"step": 414
|
81 |
+
},
|
82 |
+
{
|
83 |
+
"epoch": 7.0,
|
84 |
+
"eval_accuracy": 0.9737614845535593,
|
85 |
+
"eval_f1": 0.9729360106642491,
|
86 |
+
"eval_loss": 0.09838376194238663,
|
87 |
+
"eval_precision": 0.9727977383942906,
|
88 |
+
"eval_recall": 0.9730743222474949,
|
89 |
+
"eval_runtime": 11.171,
|
90 |
+
"eval_samples_per_second": 704.411,
|
91 |
+
"eval_steps_per_second": 2.775,
|
92 |
+
"step": 483
|
93 |
+
},
|
94 |
+
{
|
95 |
+
"epoch": 7.25,
|
96 |
+
"learning_rate": 4.99e-05,
|
97 |
+
"loss": 1.1448,
|
98 |
+
"step": 500
|
99 |
+
},
|
100 |
+
{
|
101 |
+
"epoch": 8.0,
|
102 |
+
"eval_accuracy": 0.9751691464725203,
|
103 |
+
"eval_f1": 0.9743453807855432,
|
104 |
+
"eval_loss": 0.09059575200080872,
|
105 |
+
"eval_precision": 0.9742256161268514,
|
106 |
+
"eval_recall": 0.9744651748939571,
|
107 |
+
"eval_runtime": 10.9149,
|
108 |
+
"eval_samples_per_second": 720.942,
|
109 |
+
"eval_steps_per_second": 2.84,
|
110 |
+
"step": 552
|
111 |
+
},
|
112 |
+
{
|
113 |
+
"epoch": 9.0,
|
114 |
+
"eval_accuracy": 0.9758427051326684,
|
115 |
+
"eval_f1": 0.9750796169168182,
|
116 |
+
"eval_loss": 0.08883357048034668,
|
117 |
+
"eval_precision": 0.9749410400006145,
|
118 |
+
"eval_recall": 0.9752182332329256,
|
119 |
+
"eval_runtime": 10.9703,
|
120 |
+
"eval_samples_per_second": 717.298,
|
121 |
+
"eval_steps_per_second": 2.826,
|
122 |
+
"step": 621
|
123 |
+
},
|
124 |
+
{
|
125 |
+
"epoch": 10.0,
|
126 |
+
"eval_accuracy": 0.9765313999424826,
|
127 |
+
"eval_f1": 0.975770544327188,
|
128 |
+
"eval_loss": 0.08642476052045822,
|
129 |
+
"eval_precision": 0.9756543517174092,
|
130 |
+
"eval_recall": 0.9758867646154792,
|
131 |
+
"eval_runtime": 10.8323,
|
132 |
+
"eval_samples_per_second": 726.436,
|
133 |
+
"eval_steps_per_second": 2.862,
|
134 |
+
"step": 690
|
135 |
+
},
|
136 |
+
{
|
137 |
+
"epoch": 11.0,
|
138 |
+
"eval_accuracy": 0.9772427989767963,
|
139 |
+
"eval_f1": 0.9765426312513927,
|
140 |
+
"eval_loss": 0.08421829342842102,
|
141 |
+
"eval_precision": 0.9764300969531214,
|
142 |
+
"eval_recall": 0.9766551914919777,
|
143 |
+
"eval_runtime": 11.0199,
|
144 |
+
"eval_samples_per_second": 714.071,
|
145 |
+
"eval_steps_per_second": 2.813,
|
146 |
+
"step": 759
|
147 |
+
},
|
148 |
+
{
|
149 |
+
"epoch": 12.0,
|
150 |
+
"eval_accuracy": 0.9773260477999607,
|
151 |
+
"eval_f1": 0.9765903503380455,
|
152 |
+
"eval_loss": 0.08395781368017197,
|
153 |
+
"eval_precision": 0.9764103115590241,
|
154 |
+
"eval_recall": 0.9767704555234524,
|
155 |
+
"eval_runtime": 10.9053,
|
156 |
+
"eval_samples_per_second": 721.579,
|
157 |
+
"eval_steps_per_second": 2.843,
|
158 |
+
"step": 828
|
159 |
+
},
|
160 |
+
{
|
161 |
+
"epoch": 13.0,
|
162 |
+
"eval_accuracy": 0.9775076815959556,
|
163 |
+
"eval_f1": 0.976759194523621,
|
164 |
+
"eval_loss": 0.08459737151861191,
|
165 |
+
"eval_precision": 0.9765866248790155,
|
166 |
+
"eval_recall": 0.9769318251675171,
|
167 |
+
"eval_runtime": 11.552,
|
168 |
+
"eval_samples_per_second": 681.178,
|
169 |
+
"eval_steps_per_second": 2.684,
|
170 |
+
"step": 897
|
171 |
+
},
|
172 |
+
{
|
173 |
+
"epoch": 14.0,
|
174 |
+
"eval_accuracy": 0.9776363388681187,
|
175 |
+
"eval_f1": 0.9769464516897355,
|
176 |
+
"eval_loss": 0.0853676050901413,
|
177 |
+
"eval_precision": 0.9768151124290356,
|
178 |
+
"eval_recall": 0.9770778262740517,
|
179 |
+
"eval_runtime": 11.6095,
|
180 |
+
"eval_samples_per_second": 677.81,
|
181 |
+
"eval_steps_per_second": 2.67,
|
182 |
+
"step": 966
|
183 |
+
},
|
184 |
+
{
|
185 |
+
"epoch": 14.49,
|
186 |
+
"learning_rate": 3.896017699115044e-05,
|
187 |
+
"loss": 0.0668,
|
188 |
+
"step": 1000
|
189 |
+
},
|
190 |
+
{
|
191 |
+
"epoch": 15.0,
|
192 |
+
"eval_accuracy": 0.9775909304191199,
|
193 |
+
"eval_f1": 0.976843172808015,
|
194 |
+
"eval_loss": 0.08673886954784393,
|
195 |
+
"eval_precision": 0.9766930924287119,
|
196 |
+
"eval_recall": 0.9769932993176369,
|
197 |
+
"eval_runtime": 11.3435,
|
198 |
+
"eval_samples_per_second": 693.7,
|
199 |
+
"eval_steps_per_second": 2.733,
|
200 |
+
"step": 1035
|
201 |
+
},
|
202 |
+
{
|
203 |
+
"epoch": 16.0,
|
204 |
+
"eval_accuracy": 0.9778028365144474,
|
205 |
+
"eval_f1": 0.9770540169876339,
|
206 |
+
"eval_loss": 0.0859028622508049,
|
207 |
+
"eval_precision": 0.9769226632660116,
|
208 |
+
"eval_recall": 0.9771854060367615,
|
209 |
+
"eval_runtime": 11.0228,
|
210 |
+
"eval_samples_per_second": 713.886,
|
211 |
+
"eval_steps_per_second": 2.812,
|
212 |
+
"step": 1104
|
213 |
+
},
|
214 |
+
{
|
215 |
+
"epoch": 17.0,
|
216 |
+
"eval_accuracy": 0.9780979914329393,
|
217 |
+
"eval_f1": 0.9773386449285661,
|
218 |
+
"eval_loss": 0.08584524691104889,
|
219 |
+
"eval_precision": 0.9771922412137507,
|
220 |
+
"eval_recall": 0.9774850925185959,
|
221 |
+
"eval_runtime": 11.0063,
|
222 |
+
"eval_samples_per_second": 714.952,
|
223 |
+
"eval_steps_per_second": 2.817,
|
224 |
+
"step": 1173
|
225 |
+
},
|
226 |
+
{
|
227 |
+
"epoch": 18.0,
|
228 |
+
"eval_accuracy": 0.9784990993990949,
|
229 |
+
"eval_f1": 0.9777723141226096,
|
230 |
+
"eval_loss": 0.08779104799032211,
|
231 |
+
"eval_precision": 0.9776446185757087,
|
232 |
+
"eval_recall": 0.977900043031905,
|
233 |
+
"eval_runtime": 11.0526,
|
234 |
+
"eval_samples_per_second": 711.958,
|
235 |
+
"eval_steps_per_second": 2.805,
|
236 |
+
"step": 1242
|
237 |
+
},
|
238 |
+
{
|
239 |
+
"epoch": 19.0,
|
240 |
+
"eval_accuracy": 0.9784839632494287,
|
241 |
+
"eval_f1": 0.9777277546442126,
|
242 |
+
"eval_loss": 0.08868438750505447,
|
243 |
+
"eval_precision": 0.9775324914738686,
|
244 |
+
"eval_recall": 0.9779230958382,
|
245 |
+
"eval_runtime": 10.952,
|
246 |
+
"eval_samples_per_second": 718.498,
|
247 |
+
"eval_steps_per_second": 2.831,
|
248 |
+
"step": 1311
|
249 |
+
},
|
250 |
+
{
|
251 |
+
"epoch": 20.0,
|
252 |
+
"eval_accuracy": 0.9782796252289343,
|
253 |
+
"eval_f1": 0.977526622308957,
|
254 |
+
"eval_loss": 0.09024880826473236,
|
255 |
+
"eval_precision": 0.9773914513105737,
|
256 |
+
"eval_recall": 0.9776618307001905,
|
257 |
+
"eval_runtime": 10.9428,
|
258 |
+
"eval_samples_per_second": 719.1,
|
259 |
+
"eval_steps_per_second": 2.833,
|
260 |
+
"step": 1380
|
261 |
+
},
|
262 |
+
{
|
263 |
+
"epoch": 21.0,
|
264 |
+
"eval_accuracy": 0.9782115125554361,
|
265 |
+
"eval_f1": 0.9773772343294419,
|
266 |
+
"eval_loss": 0.09100791066884995,
|
267 |
+
"eval_precision": 0.9772233190194889,
|
268 |
+
"eval_recall": 0.9775311981311858,
|
269 |
+
"eval_runtime": 10.9089,
|
270 |
+
"eval_samples_per_second": 721.337,
|
271 |
+
"eval_steps_per_second": 2.842,
|
272 |
+
"step": 1449
|
273 |
+
},
|
274 |
+
{
|
275 |
+
"epoch": 21.74,
|
276 |
+
"learning_rate": 2.7898230088495575e-05,
|
277 |
+
"loss": 0.0375,
|
278 |
+
"step": 1500
|
279 |
+
},
|
280 |
+
{
|
281 |
+
"epoch": 22.0,
|
282 |
+
"eval_accuracy": 0.9783098975282668,
|
283 |
+
"eval_f1": 0.9775235578160474,
|
284 |
+
"eval_loss": 0.09260567277669907,
|
285 |
+
"eval_precision": 0.9773546062789501,
|
286 |
+
"eval_recall": 0.9776925677752505,
|
287 |
+
"eval_runtime": 10.9627,
|
288 |
+
"eval_samples_per_second": 717.797,
|
289 |
+
"eval_steps_per_second": 2.828,
|
290 |
+
"step": 1518
|
291 |
+
},
|
292 |
+
{
|
293 |
+
"epoch": 23.0,
|
294 |
+
"eval_accuracy": 0.9786731651202567,
|
295 |
+
"eval_f1": 0.9778607567218708,
|
296 |
+
"eval_loss": 0.09297080338001251,
|
297 |
+
"eval_precision": 0.9777292945433315,
|
298 |
+
"eval_recall": 0.9779922542570849,
|
299 |
+
"eval_runtime": 11.0584,
|
300 |
+
"eval_samples_per_second": 711.584,
|
301 |
+
"eval_steps_per_second": 2.803,
|
302 |
+
"step": 1587
|
303 |
+
},
|
304 |
+
{
|
305 |
+
"epoch": 24.0,
|
306 |
+
"eval_accuracy": 0.9787034374195892,
|
307 |
+
"eval_f1": 0.9779114614545398,
|
308 |
+
"eval_loss": 0.09545727074146271,
|
309 |
+
"eval_precision": 0.9777461975725918,
|
310 |
+
"eval_recall": 0.9780767812134997,
|
311 |
+
"eval_runtime": 12.1178,
|
312 |
+
"eval_samples_per_second": 649.374,
|
313 |
+
"eval_steps_per_second": 2.558,
|
314 |
+
"step": 1656
|
315 |
+
},
|
316 |
+
{
|
317 |
+
"epoch": 25.0,
|
318 |
+
"eval_accuracy": 0.9787488458685879,
|
319 |
+
"eval_f1": 0.9779918790071952,
|
320 |
+
"eval_loss": 0.09549739956855774,
|
321 |
+
"eval_precision": 0.9778378669042919,
|
322 |
+
"eval_recall": 0.9781459396323846,
|
323 |
+
"eval_runtime": 11.1672,
|
324 |
+
"eval_samples_per_second": 704.655,
|
325 |
+
"eval_steps_per_second": 2.776,
|
326 |
+
"step": 1725
|
327 |
+
},
|
328 |
+
{
|
329 |
+
"epoch": 26.0,
|
330 |
+
"eval_accuracy": 0.9785445078480935,
|
331 |
+
"eval_f1": 0.977742949116863,
|
332 |
+
"eval_loss": 0.09780567139387131,
|
333 |
+
"eval_precision": 0.9775551902662345,
|
334 |
+
"eval_recall": 0.977930780106965,
|
335 |
+
"eval_runtime": 10.9619,
|
336 |
+
"eval_samples_per_second": 717.851,
|
337 |
+
"eval_steps_per_second": 2.828,
|
338 |
+
"step": 1794
|
339 |
+
},
|
340 |
+
{
|
341 |
+
"epoch": 27.0,
|
342 |
+
"eval_accuracy": 0.9782115125554361,
|
343 |
+
"eval_f1": 0.9773690296457643,
|
344 |
+
"eval_loss": 0.09968989342451096,
|
345 |
+
"eval_precision": 0.9772376335742984,
|
346 |
+
"eval_recall": 0.9775004610561259,
|
347 |
+
"eval_runtime": 10.8805,
|
348 |
+
"eval_samples_per_second": 723.22,
|
349 |
+
"eval_steps_per_second": 2.849,
|
350 |
+
"step": 1863
|
351 |
+
},
|
352 |
+
{
|
353 |
+
"epoch": 28.0,
|
354 |
+
"eval_accuracy": 0.9785596439977599,
|
355 |
+
"eval_f1": 0.9777683870843819,
|
356 |
+
"eval_loss": 0.10001282393932343,
|
357 |
+
"eval_precision": 0.9776444468344998,
|
358 |
+
"eval_recall": 0.9778923587631401,
|
359 |
+
"eval_runtime": 11.0278,
|
360 |
+
"eval_samples_per_second": 713.561,
|
361 |
+
"eval_steps_per_second": 2.811,
|
362 |
+
"step": 1932
|
363 |
+
},
|
364 |
+
{
|
365 |
+
"epoch": 28.98,
|
366 |
+
"learning_rate": 1.683628318584071e-05,
|
367 |
+
"loss": 0.0238,
|
368 |
+
"step": 2000
|
369 |
+
},
|
370 |
+
{
|
371 |
+
"epoch": 29.0,
|
372 |
+
"eval_accuracy": 0.9784612590249292,
|
373 |
+
"eval_f1": 0.9776150651725449,
|
374 |
+
"eval_loss": 0.10220629721879959,
|
375 |
+
"eval_precision": 0.977476127922073,
|
376 |
+
"eval_recall": 0.9777540419253704,
|
377 |
+
"eval_runtime": 11.5178,
|
378 |
+
"eval_samples_per_second": 683.205,
|
379 |
+
"eval_steps_per_second": 2.691,
|
380 |
+
"step": 2001
|
381 |
+
},
|
382 |
+
{
|
383 |
+
"epoch": 30.0,
|
384 |
+
"eval_accuracy": 0.9787034374195892,
|
385 |
+
"eval_f1": 0.9778532436450527,
|
386 |
+
"eval_loss": 0.10299359261989594,
|
387 |
+
"eval_precision": 0.9777142725449978,
|
388 |
+
"eval_recall": 0.9779922542570849,
|
389 |
+
"eval_runtime": 11.5247,
|
390 |
+
"eval_samples_per_second": 682.796,
|
391 |
+
"eval_steps_per_second": 2.69,
|
392 |
+
"step": 2070
|
393 |
+
},
|
394 |
+
{
|
395 |
+
"epoch": 31.0,
|
396 |
+
"eval_accuracy": 0.9786504608957574,
|
397 |
+
"eval_f1": 0.9778916595277151,
|
398 |
+
"eval_loss": 0.10408657044172287,
|
399 |
+
"eval_precision": 0.9777526829680502,
|
400 |
+
"eval_recall": 0.9780306756009098,
|
401 |
+
"eval_runtime": 11.971,
|
402 |
+
"eval_samples_per_second": 657.341,
|
403 |
+
"eval_steps_per_second": 2.59,
|
404 |
+
"step": 2139
|
405 |
+
},
|
406 |
+
{
|
407 |
+
"epoch": 32.0,
|
408 |
+
"eval_accuracy": 0.9787185735692554,
|
409 |
+
"eval_f1": 0.9779299058419483,
|
410 |
+
"eval_loss": 0.10540538281202316,
|
411 |
+
"eval_precision": 0.9777984343671018,
|
412 |
+
"eval_recall": 0.9780614126759698,
|
413 |
+
"eval_runtime": 11.5819,
|
414 |
+
"eval_samples_per_second": 679.422,
|
415 |
+
"eval_steps_per_second": 2.677,
|
416 |
+
"step": 2208
|
417 |
+
},
|
418 |
+
{
|
419 |
+
"epoch": 33.0,
|
420 |
+
"eval_accuracy": 0.978635324746091,
|
421 |
+
"eval_f1": 0.9777916076017933,
|
422 |
+
"eval_loss": 0.10549841076135635,
|
423 |
+
"eval_precision": 0.9776601547195612,
|
424 |
+
"eval_recall": 0.9779230958382,
|
425 |
+
"eval_runtime": 12.6843,
|
426 |
+
"eval_samples_per_second": 620.372,
|
427 |
+
"eval_steps_per_second": 2.444,
|
428 |
+
"step": 2277
|
429 |
+
},
|
430 |
+
{
|
431 |
+
"epoch": 34.0,
|
432 |
+
"eval_accuracy": 0.9787488458685879,
|
433 |
+
"eval_f1": 0.9778990030925261,
|
434 |
+
"eval_loss": 0.10634943097829819,
|
435 |
+
"eval_precision": 0.9777750462859821,
|
436 |
+
"eval_recall": 0.9780229913321449,
|
437 |
+
"eval_runtime": 11.6157,
|
438 |
+
"eval_samples_per_second": 677.447,
|
439 |
+
"eval_steps_per_second": 2.669,
|
440 |
+
"step": 2346
|
441 |
+
},
|
442 |
+
{
|
443 |
+
"epoch": 35.0,
|
444 |
+
"eval_accuracy": 0.9789456158142492,
|
445 |
+
"eval_f1": 0.978172514732208,
|
446 |
+
"eval_loss": 0.10656328499317169,
|
447 |
+
"eval_precision": 0.9780147183087772,
|
448 |
+
"eval_recall": 0.9783303620827442,
|
449 |
+
"eval_runtime": 11.2324,
|
450 |
+
"eval_samples_per_second": 700.56,
|
451 |
+
"eval_steps_per_second": 2.76,
|
452 |
+
"step": 2415
|
453 |
+
},
|
454 |
+
{
|
455 |
+
"epoch": 36.0,
|
456 |
+
"eval_accuracy": 0.978756413943421,
|
457 |
+
"eval_f1": 0.9780024740493733,
|
458 |
+
"eval_loss": 0.10749900341033936,
|
459 |
+
"eval_precision": 0.9778897715225174,
|
460 |
+
"eval_recall": 0.9781152025573246,
|
461 |
+
"eval_runtime": 11.1336,
|
462 |
+
"eval_samples_per_second": 706.779,
|
463 |
+
"eval_steps_per_second": 2.784,
|
464 |
+
"step": 2484
|
465 |
+
},
|
466 |
+
{
|
467 |
+
"epoch": 36.23,
|
468 |
+
"learning_rate": 5.774336283185841e-06,
|
469 |
+
"loss": 0.0167,
|
470 |
+
"step": 2500
|
471 |
+
},
|
472 |
+
{
|
473 |
+
"epoch": 37.0,
|
474 |
+
"eval_accuracy": 0.9789153435149167,
|
475 |
+
"eval_f1": 0.9781257443163047,
|
476 |
+
"eval_loss": 0.10826310515403748,
|
477 |
+
"eval_precision": 0.977998002611969,
|
478 |
+
"eval_recall": 0.9782535193950944,
|
479 |
+
"eval_runtime": 11.1448,
|
480 |
+
"eval_samples_per_second": 706.071,
|
481 |
+
"eval_steps_per_second": 2.782,
|
482 |
+
"step": 2553
|
483 |
+
},
|
484 |
+
{
|
485 |
+
"epoch": 38.0,
|
486 |
+
"eval_accuracy": 0.9789002073652504,
|
487 |
+
"eval_f1": 0.9781295019304278,
|
488 |
+
"eval_loss": 0.1082502156496048,
|
489 |
+
"eval_precision": 0.978005515906245,
|
490 |
+
"eval_recall": 0.9782535193950944,
|
491 |
+
"eval_runtime": 11.2628,
|
492 |
+
"eval_samples_per_second": 698.669,
|
493 |
+
"eval_steps_per_second": 2.752,
|
494 |
+
"step": 2622
|
495 |
+
},
|
496 |
+
{
|
497 |
+
"epoch": 39.0,
|
498 |
+
"eval_accuracy": 0.9788547989162517,
|
499 |
+
"eval_f1": 0.9780682040821029,
|
500 |
+
"eval_loss": 0.10867351293563843,
|
501 |
+
"eval_precision": 0.9779367140146423,
|
502 |
+
"eval_recall": 0.9781997295137395,
|
503 |
+
"eval_runtime": 11.7323,
|
504 |
+
"eval_samples_per_second": 670.712,
|
505 |
+
"eval_steps_per_second": 2.642,
|
506 |
+
"step": 2691
|
507 |
+
},
|
508 |
+
{
|
509 |
+
"epoch": 40.0,
|
510 |
+
"eval_accuracy": 0.9788926392904173,
|
511 |
+
"eval_f1": 0.978110377786144,
|
512 |
+
"eval_loss": 0.1087782010436058,
|
513 |
+
"eval_precision": 0.9779826380886533,
|
514 |
+
"eval_recall": 0.9782381508575644,
|
515 |
+
"eval_runtime": 11.2634,
|
516 |
+
"eval_samples_per_second": 698.633,
|
517 |
+
"eval_steps_per_second": 2.752,
|
518 |
+
"step": 2760
|
519 |
+
},
|
520 |
+
{
|
521 |
+
"epoch": 40.0,
|
522 |
+
"step": 2760,
|
523 |
+
"total_flos": 1.673403126150724e+17,
|
524 |
+
"train_loss": 0.23496506378270576,
|
525 |
+
"train_runtime": 2350.6684,
|
526 |
+
"train_samples_per_second": 1204.968,
|
527 |
+
"train_steps_per_second": 1.174
|
528 |
+
}
|
529 |
+
],
|
530 |
+
"max_steps": 2760,
|
531 |
+
"num_train_epochs": 40,
|
532 |
+
"total_flos": 1.673403126150724e+17,
|
533 |
+
"trial_name": null,
|
534 |
+
"trial_params": null
|
535 |
+
}
|
training_args.bin
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:051e61435d7b641c10abb33ee47d32f1634a495820d849ba85d07be0a799abcb
|
3 |
+
size 3439
|