pranay-j commited on
Commit
a2727e8
1 Parent(s): e6396b8

added usage code

Browse files
Files changed (1) hide show
  1. README.md +45 -0
README.md CHANGED
@@ -33,6 +33,51 @@ Mistral 7B NL2BASH Agent is a fine-tuned model that converts natural language qu
33
  - The model's performance may vary based on the complexity and specificity of the natural language queries.
34
  - It may not handle all edge cases or uncommon scenarios effectively.
35
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
36
  ## Training and evaluation data
37
 
38
  More information needed
 
33
  - The model's performance may vary based on the complexity and specificity of the natural language queries.
34
  - It may not handle all edge cases or uncommon scenarios effectively.
35
 
36
+ ## Installation
37
+ ```bash
38
+ pip install transformers accelerate torch bitsandbytes peft
39
+ ```
40
+
41
+ ## Usage
42
+ ```python
43
+ from transformers import AutoModelForCausalLM, AutoTokenizer, BitsAndBytesConfig
44
+ import torch
45
+ from peft import PeftModel, PeftConfig
46
+
47
+ read_token="YOUR HUGGINGFACE TOKEN"
48
+
49
+ nf4_config = BitsAndBytesConfig(
50
+ load_in_4bit=True,
51
+ bnb_4bit_quant_type="nf4",
52
+ bnb_4bit_use_double_quant=True,
53
+ bnb_4bit_compute_dtype=torch.bfloat16
54
+ )
55
+
56
+ model = AutoModelForCausalLM.from_pretrained(
57
+ "mistralai/Mistral-7B-Instruct-v0.2",
58
+ device_map='auto',
59
+ quantization_config=nf4_config,
60
+ use_cache=False,
61
+ token=read_token
62
+ )
63
+
64
+
65
+ model = PeftModel.from_pretrained(model, "pranay-j/mistral-7b-nl2bash-agent",device_map='auto',token=read_token)
66
+
67
+ tokenizer=AutoTokenizer.from_pretrained("pranay-j/mistral-7b-nl2bash-agent",add_eos_token=False)
68
+ nl='Add "execute" to the permissions of all directories in the home directory tree'
69
+ prompt= f"[INST] {nl} [/INST]"
70
+
71
+ inputs=tokenizer(prompt,return_tensors="pt")
72
+ input_ids=inputs["input_ids"].to("cuda")
73
+
74
+ with torch.no_grad():
75
+ out=model.generate(input_ids,top_p=0.5, temperature=0.7, max_new_tokens=30)
76
+
77
+ tokenizer.decode(out[0][input_ids.shape[-1]:])
78
+ # Output: find ~ -type d -exec chmod +x {} </s>
79
+ ```
80
+
81
  ## Training and evaluation data
82
 
83
  More information needed