|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
"""Tests for ops_general.""" |
|
|
|
import copy |
|
|
|
import big_vision.pp.ops_general as pp |
|
import numpy as np |
|
import tensorflow as tf |
|
|
|
|
|
class PreprocessOpsTest(tf.test.TestCase): |
|
|
|
def tfrun(self, ppfn, data): |
|
|
|
yield {k: np.array(v) for k, v in ppfn(copy.deepcopy(data)).items()} |
|
|
|
|
|
|
|
tfdata = tf.data.Dataset.from_tensors(copy.deepcopy(data)) |
|
for npdata in tfdata.map(ppfn).as_numpy_iterator(): |
|
yield npdata |
|
|
|
def test_value_range(self): |
|
img = tf.random.uniform((640, 480, 3), 0, 255, tf.int32) |
|
data = {"image": tf.cast(img, tf.uint8)} |
|
for out in self.tfrun(pp.get_value_range(-0.5, 0.5), data): |
|
self.assertLessEqual(np.max(out["image"]), 0.5) |
|
self.assertGreaterEqual(np.min(out["image"]), -0.5) |
|
|
|
def test_value_range_custom_input_range(self): |
|
img = tf.random.uniform((640, 480, 3), 0, 255, tf.int32) |
|
data = {"image": tf.cast(img, tf.uint8)} |
|
for out in self.tfrun(pp.get_value_range(-0.5, 0.5, -256, 255, True), data): |
|
self.assertLessEqual(np.max(out["image"]), 0.5) |
|
self.assertGreaterEqual(np.min(out["image"]), 0.0) |
|
|
|
def test_get_keep_drop(self): |
|
data = {"image": 1, "labels": 2, "something": 3} |
|
|
|
for data_keep in self.tfrun(pp.get_keep("image", "labels"), data): |
|
self.assertAllEqual(set(data_keep.keys()), {"image", "labels"}) |
|
|
|
for data_drop in self.tfrun(pp.get_drop("image", "labels"), data): |
|
self.assertAllEqual(set(data_drop.keys()), {"something"}) |
|
|
|
def test_onehot(self): |
|
data = {"labels": tf.constant(2, dtype=tf.int64)} |
|
for out in self.tfrun(pp.get_onehot(4, "labels", multi=True), data): |
|
self.assertAllClose(out["labels"], [0., 0., 1., 0.]) |
|
|
|
def test_onehot_multi(self): |
|
data = {"labels": tf.constant([2, 3, 0], dtype=tf.int64)} |
|
for out in self.tfrun(pp.get_onehot(4, "labels", multi=False), data): |
|
self.assertAllClose(out["labels"], [ |
|
[0., 0., 1., 0.], |
|
[0., 0., 0., 1.], |
|
[1., 0., 0., 0.]]) |
|
|
|
for out in self.tfrun(pp.get_onehot(4, "labels", multi=True), data): |
|
self.assertAllClose(out["labels"], [1., 0., 1., 1.]) |
|
|
|
def test_onehot_2d(self): |
|
data = {"labels": tf.constant([[2, 3], [0, 1]], dtype=tf.int64)} |
|
for out in self.tfrun(pp.get_onehot(4, "labels", multi=False), data): |
|
self.assertAllClose(out["labels"], [ |
|
[[0., 0., 1., 0.], [0., 0., 0., 1.]], |
|
[[1., 0., 0., 0.], [0., 1., 0., 0.]]]) |
|
|
|
def test_onehot_smoothing(self): |
|
data = {"labels": tf.constant([2, 3, 0], dtype=tf.int64)} |
|
for out in self.tfrun( |
|
pp.get_onehot(4, "labels", multi=False, on=0.8, off=0.1), data): |
|
self.assertAllClose(out["labels"], [ |
|
[0.1, 0.1, 0.8, 0.1], |
|
[0.1, 0.1, 0.1, 0.8], |
|
[0.8, 0.1, 0.1, 0.1]]) |
|
|
|
for out in self.tfrun( |
|
pp.get_onehot(4, "labels", multi=True, on=0.8, off=0.1), data): |
|
self.assertAllClose(out["labels"], [0.8, 0.1, 0.8, 0.8]) |
|
|
|
def test_squeeze_last_dim(self): |
|
data = {"image": tf.constant(np.zeros((32, 32, 3, 1)))} |
|
for out in self.tfrun(pp.get_squeeze_last_dim(), data): |
|
self.assertAllEqual(out["image"].shape, [32, 32, 3]) |
|
|
|
def test_pad_to_shape(self): |
|
desired_shape = (8, 10) |
|
for input_shape in [(8, 4), (8, 3), (8, 10), (8, 1)]: |
|
data = {"x": tf.ones(input_shape, dtype=tf.float32)} |
|
for out in self.tfrun( |
|
pp.get_pad_to_shape(desired_shape, pad_value=-1, key="x"), data): |
|
self.assertEqual( |
|
tf.reduce_sum(out["x"]), |
|
2 * np.prod(input_shape) - np.prod(desired_shape)) |
|
|
|
def test_pad_to_shape_none(self): |
|
data = {"x": tf.ones((8, 4), dtype=tf.float32)} |
|
for out in self.tfrun( |
|
pp.get_pad_to_shape((None, 6), pad_value=-1, key="x"), data): |
|
self.assertEqual(out["x"].shape, (8, 6)) |
|
self.assertEqual(tf.reduce_sum(out["x"]), 8*4 - 8*2) |
|
|
|
def test_pad_to_shape_which_side(self): |
|
data = {"x": tf.ones((8, 4), dtype=tf.float32)} |
|
for where, idxs in [("before", [0]), ("both", [0, -1]), ("after", [-1])]: |
|
for out in self.tfrun( |
|
pp.get_pad_to_shape((8, 6), key="x", where=where), data): |
|
self.assertEqual(out["x"].shape, (8, 6)) |
|
self.assertEqual(tf.reduce_sum(out["x"]), 8*4) |
|
for i in idxs: |
|
self.assertEqual(out["x"][0, i], 0) |
|
|
|
def test_flatten(self): |
|
d = {"a": {"b": tf.constant([1, 2, 3])}, "c": "str"} |
|
self.assertEqual(pp.get_flatten()(d), { |
|
"a/b": tf.constant([1, 2, 3]), |
|
"c": "str" |
|
}) |
|
|
|
def test_reshape(self): |
|
data = {"image": tf.constant(np.zeros((8, 32 * 32 * 3)))} |
|
for out in self.tfrun(pp.get_reshape(new_shape=(8, 32, 32, 3)), data): |
|
self.assertAllEqual(out["image"].shape, [8, 32, 32, 3]) |
|
|
|
def test_setdefault(self): |
|
data = { |
|
"empty_image": tf.zeros([0, 0, 0]), |
|
"image": tf.constant(np.arange(9).reshape(3, 3)), |
|
"empty_text": tf.zeros([0], tf.string), |
|
"text": tf.constant(["Hello", "World"], tf.string), |
|
} |
|
for out in self.tfrun(pp.get_setdefault("empty_image", 1), data): |
|
self.assertAllEqual(out["empty_image"], np.array([[[1]]])) |
|
for out in self.tfrun(pp.get_setdefault("image", 1), data): |
|
self.assertAllEqual(out["image"], data["image"]) |
|
for out in self.tfrun(pp.get_setdefault("empty_text", "Lucas"), data): |
|
self.assertAllEqual(out["empty_text"], np.array(["Lucas"])) |
|
for out in self.tfrun(pp.get_setdefault("text", "Lucas"), data): |
|
self.assertAllEqual(out["text"], data["text"]) |
|
|
|
def _data_for_choice(self): |
|
return { |
|
"one_f32": tf.constant([0.42], tf.float32), |
|
"two_f32": tf.constant([3.14, 0.42], tf.float32), |
|
"one_str": tf.constant(["Hi"], tf.string), |
|
"two_str": tf.constant(["Hi", "Lucas"], tf.string), |
|
"one_vec": tf.reshape(tf.range(2, dtype=tf.float32), (1, 2)), |
|
"two_vec": tf.reshape(tf.range(4, dtype=tf.float32), (2, 2)), |
|
} |
|
|
|
def test_choice(self): |
|
|
|
data = self._data_for_choice() |
|
self.assertEqual( |
|
pp.get_choice(inkey="one_f32", outkey="choice")(data)["choice"], 0.42) |
|
self.assertEqual( |
|
pp.get_choice(inkey="one_str", outkey="choice")(data)["choice"], "Hi") |
|
self.assertIn( |
|
pp.get_choice(inkey="two_f32", outkey="choice")(data)["choice"], |
|
[3.14, 0.42]) |
|
self.assertIn( |
|
pp.get_choice(inkey="two_str", outkey="choice")(data)["choice"], |
|
["Hi", "Lucas"]) |
|
|
|
def test_choice_nmax(self): |
|
|
|
data = self._data_for_choice() |
|
for k in ("one_f32", "one_str", "one_vec"): |
|
for out in self.tfrun(pp.get_choice(n=1, key=[k]), data): |
|
self.assertAllEqual(out[k], data[k]) |
|
for out in self.tfrun(pp.get_choice(n=[1, 1], key=[k]), data): |
|
self.assertAllEqual(out[k], data[k]) |
|
for k in ("two_f32", "two_str", "two_vec"): |
|
for out in self.tfrun(pp.get_choice(n=2, key=[k]), data): |
|
self.assertAllEqual(out[k], data[k]) |
|
for out in self.tfrun(pp.get_choice(n=[2, 2], key=[k]), data): |
|
self.assertAllEqual(out[k], data[k]) |
|
|
|
def test_choice_n(self): |
|
|
|
data = self._data_for_choice() |
|
for k in ("two_f32", "two_str"): |
|
for out in self.tfrun(pp.get_choice(n=1, key=[k]), data): |
|
self.assertIn(out[k], data[k]) |
|
|
|
|
|
for out in self.tfrun(pp.get_choice(n=1, key=["two_vec"]), data): |
|
self.assertTrue(tf.logical_or( |
|
tf.reduce_all(out["two_vec"][0] == data["two_vec"][0]), |
|
tf.reduce_all(out["two_vec"][0] == data["two_vec"][1]), |
|
)) |
|
|
|
def test_choice_multi(self): |
|
|
|
data = self._data_for_choice() |
|
op = pp.get_choice(n=1, key=["two_f32", "two_str"]) |
|
for out in self.tfrun(op, data): |
|
self.assertTrue(tf.logical_or( |
|
tf.logical_and( |
|
tf.reduce_all(out["two_f32"][0] == data["two_f32"][0]), |
|
tf.reduce_all(out["two_str"][0] == data["two_str"][0]), |
|
), |
|
tf.logical_and( |
|
tf.reduce_all(out["two_f32"][0] == data["two_f32"][1]), |
|
tf.reduce_all(out["two_str"][0] == data["two_str"][1]), |
|
), |
|
)) |
|
|
|
def test_choice_n_range(self): |
|
|
|
data = self._data_for_choice() |
|
for k in ("two_f32", "two_str", "two_vec"): |
|
for out in self.tfrun(pp.get_choice(n=[1, 2], key=[k]), data): |
|
self.assertTrue(tf.reduce_any([ |
|
tf.reduce_all(out[k] == data[k][0:1]), |
|
tf.reduce_all(out[k] == data[k][1:2]), |
|
tf.reduce_all(out[k] == data[k][0:2]), |
|
])) |
|
|
|
|
|
if __name__ == "__main__": |
|
tf.test.main() |
|
|