|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
"""gemma reimplementation for big_vision. |
|
|
|
We follow this einsum axis naming convention: |
|
B: batch |
|
T: query length |
|
S: k/v length |
|
N: num query heads |
|
K: num k/v heads |
|
G: num query heads per k/v head |
|
H: head dim |
|
D: d_model ("features") |
|
|
|
Example Colab using the models via the PaliGemma decoding logic: |
|
(internal link) |
|
|
|
Doc locating the variable initializers in the original code and validating them: |
|
(internal link) |
|
""" |
|
|
|
|
|
from big_vision.models import common |
|
import big_vision.utils as u |
|
import einops |
|
import flax |
|
import flax.linen as nn |
|
import jax |
|
import jax.numpy as jnp |
|
import ml_collections |
|
import numpy as np |
|
import orbax.checkpoint |
|
|
|
|
|
def get_config(variant): |
|
"""Returns config for specified gemma variant.""" |
|
if variant == "gemma_2b": |
|
return ml_collections.ConfigDict( |
|
dict( |
|
variant=variant, |
|
width=2048, |
|
depth=18, |
|
mlp_dim=16_384, |
|
num_heads=8, |
|
num_kv_heads=1, |
|
head_dim=256, |
|
norm_eps=1e-6, |
|
vocab_size=256_128, |
|
scan=True, |
|
remat_policy="nothing_saveable", |
|
) |
|
) |
|
if variant == "gemma_7b": |
|
return ml_collections.ConfigDict( |
|
dict( |
|
variant=variant, |
|
width=3072, |
|
depth=28, |
|
mlp_dim=24_576, |
|
num_heads=16, |
|
num_kv_heads=16, |
|
head_dim=256, |
|
norm_eps=1e-6, |
|
vocab_size=256_128, |
|
scan=True, |
|
remat_policy="nothing_saveable", |
|
) |
|
) |
|
raise ValueError(f"Unknown variant: {variant}") |
|
|
|
|
|
def _apply_rope(x, *, positions, max_wavelength=10_000): |
|
"""Applies RoPE positions [B, L] to x [B, L, H, D].""" |
|
freq_exponents = (2. / x.shape[-1]) * jnp.arange(x.shape[-1] // 2) |
|
timescale = (max_wavelength ** freq_exponents) |
|
radians = positions[..., None] / timescale[None, None, :] |
|
radians = radians[..., None, :] |
|
|
|
sin, cos = jnp.sin(radians), jnp.cos(radians) |
|
x1, x2 = jnp.split(x, 2, axis=-1) |
|
res = jnp.concatenate([x1 * cos - x2 * sin, x2 * cos + x1 * sin], axis=-1) |
|
return res |
|
|
|
|
|
def _update_kv_cache(module, k, v, cache_size, cache_dtype): |
|
"""Updates KV cache and returns its current contents.""" |
|
initialized = module.has_variable("cache", "idx") |
|
batch_size, update_len, num_heads, head_dim = k.shape |
|
cache_dtype = cache_dtype or k.dtype |
|
|
|
|
|
|
|
|
|
|
|
idx = module.variable("cache", "idx", jnp.zeros, (batch_size,), jnp.int32) |
|
|
|
kv_shape = (batch_size, cache_size, num_heads, head_dim) |
|
k_cache = module.variable( |
|
"cache", "k_cache", jnp.zeros, kv_shape, cache_dtype) |
|
v_cache = module.variable( |
|
"cache", "v_cache", jnp.zeros, kv_shape, cache_dtype) |
|
|
|
if initialized: |
|
assert update_len == 1, update_len |
|
|
|
indices = (0, idx.value[0], 0, 0) |
|
k_cache.value = jax.lax.dynamic_update_slice( |
|
k_cache.value, k.astype(cache_dtype), indices) |
|
v_cache.value = jax.lax.dynamic_update_slice( |
|
v_cache.value, v.astype(cache_dtype), indices) |
|
idx.value = idx.value + 1 |
|
else: |
|
prefill_len = k.shape[1] |
|
pad_width = ((0, 0), (0, cache_size - prefill_len), (0, 0), (0, 0)) |
|
k_cache.value = jnp.pad(k.astype(cache_dtype), pad_width) |
|
v_cache.value = jnp.pad(v.astype(cache_dtype), pad_width) |
|
idx.value = idx.value + prefill_len |
|
|
|
return k_cache.value.astype(k.dtype), v_cache.value.astype(v.dtype) |
|
|
|
|
|
def trunc_norm_init(in_axis, out_axis, batch_axis): |
|
return nn.initializers.variance_scaling( |
|
1.0, "fan_in", "truncated_normal", |
|
in_axis=in_axis, out_axis=out_axis, batch_axis=batch_axis) |
|
|
|
|
|
class Einsum(nn.Module): |
|
shape: tuple[int, ...] |
|
w_init: nn.initializers.Initializer = nn.initializers.zeros_init() |
|
|
|
@nn.compact |
|
def __call__(self, eqn, x): |
|
w = self.param("w", self.w_init, self.shape) |
|
return jnp.einsum(eqn, x, w) |
|
|
|
|
|
class RMSNorm(nn.Module): |
|
|
|
@nn.compact |
|
def __call__(self, x): |
|
scale = self.param("scale", nn.initializers.zeros_init(), (x.shape[-1])) |
|
var = jnp.mean(jnp.square(x), axis=-1, keepdims=True) |
|
normed_inputs = jnp.asarray(x * jnp.reciprocal(jnp.sqrt(var + 1e-06))) |
|
normed_inputs = normed_inputs * (1 + scale) |
|
return normed_inputs |
|
|
|
|
|
class Embedder(nn.Module): |
|
"""Embedder module.""" |
|
|
|
vocab_size: int |
|
embed_dim: int |
|
|
|
def setup(self): |
|
self.input_embedding_table = self.param( |
|
"input_embedding", |
|
nn.initializers.variance_scaling( |
|
scale=1.0, mode="fan_in", distribution="normal", |
|
in_axis=1, out_axis=0,), |
|
(self.vocab_size, self.embed_dim), |
|
) |
|
|
|
def encode(self, x): |
|
x = self.input_embedding_table[(x,)] |
|
x *= jnp.sqrt(self.embed_dim).astype(x.dtype) |
|
return x |
|
|
|
def decode(self, x): |
|
return jnp.dot(x, self.input_embedding_table.T) |
|
|
|
|
|
class Attention(nn.Module): |
|
"""Attention module.""" |
|
|
|
num_heads: int |
|
num_kv_heads: int |
|
features: int |
|
head_dim: int |
|
|
|
cache_dtype: str | None = None |
|
|
|
def setup(self): |
|
if self.num_kv_heads == self.num_heads: |
|
self.qkv_einsum = Einsum( |
|
shape=(3, self.num_heads, self.features, self.head_dim), |
|
w_init=trunc_norm_init( |
|
in_axis=(2,), out_axis=(0, 1, 3), batch_axis=()), |
|
) |
|
else: |
|
|
|
self.q_einsum = Einsum( |
|
shape=(self.num_heads, self.features, self.head_dim), |
|
w_init=trunc_norm_init(in_axis=(1,), out_axis=(0, 2), batch_axis=()), |
|
) |
|
self.kv_einsum = Einsum( |
|
shape=(2, self.num_kv_heads, self.features, self.head_dim), |
|
w_init=trunc_norm_init( |
|
in_axis=(2,), out_axis=(0, 1, 3), batch_axis=()), |
|
) |
|
self.attn_vec_einsum = Einsum( |
|
shape=(self.num_heads, self.head_dim, self.features), |
|
w_init=trunc_norm_init(in_axis=(0, 1), out_axis=(2,), batch_axis=()), |
|
) |
|
|
|
@nn.compact |
|
def __call__(self, x, positions, attn_mask, decode, deterministic=True): |
|
if self.num_kv_heads == self.num_heads: |
|
q, k, v = self.qkv_einsum("BSD,3KDH->3BSKH", x) |
|
else: |
|
q = self.q_einsum("BTD,NDH->BTNH", x) |
|
k, v = self.kv_einsum("BSD,2KDH->2BSKH", x) |
|
|
|
q = _apply_rope(q, positions=positions) |
|
q *= self.head_dim**-0.5 |
|
|
|
k = _apply_rope(k, positions=positions) |
|
if decode: |
|
k, v = _update_kv_cache(self, k, v, |
|
cache_size=attn_mask.shape[-1], |
|
cache_dtype=self.cache_dtype) |
|
|
|
q = einops.rearrange(q, "B T (K G) H -> B T K G H", K=self.num_kv_heads) |
|
logits = jnp.einsum("BTKGH,BSKH->BKGTS", q, k) |
|
logits = logits.astype(jnp.float32) |
|
|
|
if attn_mask.shape != (q.shape[0], 1, q.shape[1], k.shape[1]): |
|
raise ValueError( |
|
f"Attention mask with shape {attn_mask.shape} but shapes for q and k " |
|
f"are: {q.shape} and {k.shape}" |
|
) |
|
|
|
|
|
big_neg = -2.3819763e38 |
|
masked_logits = jnp.where(attn_mask[:, :, None, :, :], logits, big_neg) |
|
|
|
probs = jax.nn.softmax(masked_logits, axis=-1).astype(k.dtype) |
|
|
|
encoded = jnp.einsum("BKGTS,BSKH->BTKGH", probs, v) |
|
encoded = einops.rearrange(encoded, "B T K G H -> B T (K G) H") |
|
attn_output = self.attn_vec_einsum("BTNH,NHD->BTD", encoded) |
|
|
|
return attn_output |
|
|
|
|
|
class FeedForward(nn.Module): |
|
"""Feed forward module.""" |
|
|
|
features: int |
|
hidden_dim: int |
|
|
|
@nn.compact |
|
def __call__(self, x): |
|
w_gating = self.param( |
|
"gating_einsum", |
|
trunc_norm_init(in_axis=(1,), out_axis=(0, 2), batch_axis=()), |
|
((2, self.features, self.hidden_dim)), |
|
) |
|
ff_gate = jnp.dot(x, w_gating[0]) |
|
gate_value = nn.gelu(ff_gate) |
|
|
|
ff1 = jnp.dot(x, w_gating[1]) |
|
activations = gate_value * ff1 |
|
|
|
w_linear = self.param( |
|
"linear", |
|
trunc_norm_init(in_axis=(0,), out_axis=(1,), batch_axis=()), |
|
(self.hidden_dim, self.features), |
|
) |
|
outputs = jnp.dot(activations, w_linear) |
|
|
|
return outputs |
|
|
|
|
|
class Block(nn.Module): |
|
"""Transformer block.""" |
|
|
|
num_heads: int |
|
num_kv_heads: int |
|
embed_dim: int |
|
head_dim: int |
|
hidden_dim: int |
|
|
|
dropout: float = 0.0 |
|
dropout_bdims: tuple[int, ...] = () |
|
cache_dtype: str | None = None |
|
|
|
def setup(self): |
|
self.pre_attention_norm = RMSNorm() |
|
self.attn = Attention( |
|
num_heads=self.num_heads, |
|
num_kv_heads=self.num_kv_heads, |
|
features=self.embed_dim, |
|
head_dim=self.head_dim, |
|
cache_dtype=self.cache_dtype, |
|
) |
|
self.pre_ffw_norm = RMSNorm() |
|
self.mlp = FeedForward(features=self.embed_dim, hidden_dim=self.hidden_dim) |
|
if self.dropout: |
|
self.drop = nn.Dropout(self.dropout, self.dropout_bdims) |
|
else: |
|
self.drop = lambda x, _: x |
|
|
|
def __call__(self, x, unused_scan_arg, positions, attn_mask, |
|
decode, deterministic=True): |
|
x = nn.with_logical_constraint(x, ("act_batch", "act_len", "act_emb")) |
|
inputs_normalized = self.pre_attention_norm(x) |
|
attn_output = self.attn(inputs_normalized, positions, attn_mask, |
|
decode, deterministic) |
|
attn_output = self.drop(attn_output, deterministic) |
|
attn_output += x |
|
residual = attn_output |
|
attn_output = self.pre_ffw_norm(attn_output) |
|
outputs = self.mlp(attn_output) |
|
outputs = self.drop(outputs, deterministic) |
|
outputs = residual + outputs |
|
return outputs, unused_scan_arg |
|
|
|
|
|
class Model(nn.Module): |
|
"""gemma model.""" |
|
|
|
variant: str |
|
|
|
width: int |
|
depth: int |
|
mlp_dim: int |
|
num_heads: int |
|
num_kv_heads: int |
|
head_dim: int |
|
norm_eps: float |
|
vocab_size: int |
|
|
|
dropout: float = 0.0 |
|
dropout_bdims: tuple[int, ...] = () |
|
cache_dtype: str | None = None |
|
|
|
|
|
|
|
embed_dtype: str = "float32" |
|
|
|
scan: bool = False |
|
remat_policy: str = "none" |
|
|
|
@nn.compact |
|
def __call__( |
|
self, tokens, *, |
|
embedded_prefix=None, |
|
embed_only=False, |
|
pre_logits=None, |
|
positions=None, mask=None, |
|
decode=False, deterministic=True, |
|
): |
|
"""Embed only, or complete forward pass. |
|
|
|
Args: |
|
tokens: Embedded, then and appended to `embedded_prefix`. Can be None. |
|
embedded_prefix: Optional prefix that is already embedded. |
|
embed_only: Whether to compute embeddings only. |
|
pre_logits: If present computes logits from pre_logits and returns. |
|
positions: Optional `[B, T]` allows to specify the absolute position of |
|
the tokens. |
|
mask: Optional attention mask `[B, T, S]`. |
|
decode: Whether to use kv-cache. Caller must pass masks and positions. |
|
deterministic: Forwarded to all dropout layers. |
|
|
|
Returns: |
|
If `embed_only=False`, then `(logits, out)` will be returned. |
|
If `embed_only=True`, then the embeddings will be returned. |
|
""" |
|
out = {} |
|
|
|
embedder = Embedder( |
|
vocab_size=self.vocab_size, |
|
embed_dim=self.width, |
|
name="embedder") |
|
|
|
if pre_logits is not None: |
|
x = out["pre_logits"] = pre_logits |
|
logits = out["logits"] = embedder.decode(x) |
|
return logits, out |
|
|
|
x = [] |
|
if embedded_prefix is not None: |
|
x.append(embedded_prefix) |
|
if tokens is not None: |
|
x.append(embedder.encode(tokens)) |
|
|
|
x = jnp.concatenate(x, axis=-2) |
|
x = x.astype(self.embed_dtype) |
|
batch_size, seq_len, width = x.shape |
|
|
|
if embed_only: |
|
return x |
|
|
|
if decode: |
|
assert positions is not None and mask is not None, ( |
|
"Must explicitly pass positions and mask for decoding.") |
|
|
|
if positions is None: |
|
positions = jnp.arange(seq_len).astype(jnp.int32)[None, :] |
|
assert positions.shape[1] == x.shape[1], (positions.shape, x.shape) |
|
|
|
if mask is None: |
|
mask = nn.attention.make_causal_mask(jnp.ones([batch_size, seq_len])) |
|
if mask.ndim == 3: |
|
mask = mask[:, None, :, :] |
|
cache_size = max(seq_len, mask.shape[-1]) |
|
assert mask.shape == (batch_size, 1, seq_len, cache_size), mask.shape |
|
|
|
if self.remat_policy == "none": |
|
block_cls = Block |
|
else: |
|
block_cls = nn.remat( |
|
Block, |
|
prevent_cse=not self.scan, |
|
static_argnums=(5, 6), |
|
policy=getattr(jax.checkpoint_policies, self.remat_policy), |
|
) |
|
|
|
block_kw = dict( |
|
num_heads=self.num_heads, |
|
head_dim=self.head_dim, |
|
num_kv_heads=self.num_kv_heads, |
|
embed_dim=width, |
|
hidden_dim=self.mlp_dim, |
|
dropout=self.dropout, |
|
dropout_bdims=self.dropout_bdims, |
|
cache_dtype=self.cache_dtype, |
|
) |
|
layers = self.scope.push("layers") |
|
if self.scan: |
|
blocks = [nn.scan( |
|
block_cls, |
|
|
|
variable_axes={"params": 0, "cache": 1}, |
|
split_rngs={"params": True, "dropout": True}, |
|
in_axes=nn.broadcast, |
|
length=self.depth, |
|
)( |
|
parent=layers, **block_kw |
|
)] |
|
else: |
|
blocks = [ |
|
block_cls( |
|
parent=layers.push(str(layer)), |
|
**block_kw, |
|
) |
|
for layer in range(self.depth) |
|
] |
|
unused_scan_arg = () |
|
for block in blocks: |
|
x, unused_scan_arg = block( |
|
x, unused_scan_arg, positions, mask, decode, deterministic) |
|
|
|
assert x.dtype == jnp.dtype(self.embed_dtype) |
|
out["encoded"] = x |
|
|
|
x = RMSNorm(name="final_norm")(x) |
|
out["pre_logits"] = x |
|
|
|
x = embedder.decode(x) |
|
out["logits"] = x |
|
|
|
return x, out |
|
|
|
|
|
_ORBAX_INITS = {} |
|
_BV_INITS = {} |
|
|
|
|
|
def _load_orbax(path): |
|
"""Loads and coverts Orbax gemma checkpoint.""" |
|
checkpointer = orbax.checkpoint.PyTreeCheckpointer() |
|
params = checkpointer.restore(path) |
|
params = flax.traverse_util.unflatten_dict(params, sep="/")["transformer"] |
|
n = sum(1 for k in params if k.startswith("layer_")) |
|
params["layers"] = jax.tree.map( |
|
lambda *xs: np.stack(xs), *(params.pop(f"layer_{i}") for i in range(n)) |
|
) |
|
mlp = params["layers"]["mlp"] |
|
mlp["gating_einsum"] = mlp["gating_einsum"].pop("w") |
|
mlp["linear"] = mlp["linear"].pop("w") |
|
return params |
|
|
|
|
|
def _del_pad_rows(params): |
|
"""Some checkpoints have 128 unused padding tokens.""" |
|
emb = params["embedder"]["input_embedding"] |
|
assert emb.shape[0] == 256_128 |
|
params["embedder"]["input_embedding"] = np.asarray(emb)[:256_000] |
|
return params |
|
|
|
|
|
def load(init_params, init_file, model_cfg=None, dont_load=()): |
|
"""Loads existing weights.""" |
|
model_cfg = model_cfg or {} |
|
variant = model_cfg.get("variant", "gemma_2b") |
|
init_variant = f"{init_file} {variant}" |
|
if init_variant in _ORBAX_INITS: |
|
params = _del_pad_rows(_load_orbax(_ORBAX_INITS[init_variant])) |
|
elif init_variant in _BV_INITS: |
|
params = _del_pad_rows(u.load_params(_BV_INITS[init_variant])) |
|
else: |
|
params = u.load_params(init_file) |
|
|
|
def extend_rows(emb1, target_rows): |
|
if (missing_rows := target_rows - emb1.shape[0]) == 0: |
|
return emb1 |
|
assert missing_rows > 0, "You're asking to shrink vocab?!" |
|
new_rows = np.random.randn(missing_rows, emb1.shape[1]) |
|
new_rows = (new_rows * 0.02).astype(emb1.dtype) |
|
return np.r_[np.asarray(emb1), new_rows] |
|
|
|
if "vocab_size" in model_cfg: |
|
params["embedder"]["input_embedding"] = extend_rows( |
|
params["embedder"]["input_embedding"], |
|
model_cfg["vocab_size"], |
|
) |
|
|
|
return common.merge_params(params, init_params, dont_load) |
|
|