pranavSIT's picture
added pali inference
74e8f2f
# Copyright 2024 Big Vision Authors.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
# pylint: disable=line-too-long
r"""Implements ST-VQA dataset in TFDS.
It's small data, so simple to run locally.
First, download and unzip the dataset from https://rrc.cvc.uab.es/?ch=11
and place it in /tmp/data/stvqa.
Then, run conversion locally (make sure to install tensorflow-datasets for the `tfds` util):
cd third_party/py/big_vision/datasets
env TFDS_DATA_DIR=/tmp/tfds tfds build --datasets=stvqa
Example to load:
import tensorflow_datasets as tfds
dataset = tfds.load('stvqa', split='train', data_dir='/tmp/tfds')
Dataset splits:
train: 23446 examples/questions (subset of original train)
val: 2628 examples/questions (subset of original train)
test: 4070 examples/questions (no answers)
Note: original source data has no val/holdout split, and we therefore split the
original train split (26074 examples/questions) by ourselves into train & val
splits.
Recommended training splits:
train: train
minitrain: train[:5%]
eval: val
fulltrain: train+val
"""
import json
import os
from big_vision.datasets.stvqa import val_ids
import numpy as np
import tensorflow_datasets as tfds
_VAL_IDS = val_ids.PSEUDO_VAL_IMAGE_PATHS
_DESCRIPTION = """ST-VQA dataset."""
# pylint: disable=line-too-long
_CITATION = """
@inproceedings{Biten_2019,
title={Scene Text Visual Question Answering},
url={http://dx.doi.org/10.1109/ICCV.2019.00439},
DOI={10.1109/iccv.2019.00439},
booktitle={2019 IEEE/CVF International Conference on Computer Vision (ICCV)},
publisher={IEEE},
author={Biten, Ali Furkan and Tito, Ruben and Mafla, Andres and Gomez, Lluis and Rusinol, Marcal and Jawahar, C.V. and Valveny, Ernest and Karatzas, Dimosthenis},
year={2019},
month=oct }
"""
# pylint: enable=line-too-long
# When running locally (recommended), copy files as above an use these:
_STVQA_PATH = '/tmp/data/stvqa/'
class Stvqa(tfds.core.GeneratorBasedBuilder):
"""DatasetBuilder for ST-VQA dataset."""
VERSION = tfds.core.Version('1.2.0')
RELEASE_NOTES = {
'1.0.0': 'First release.',
'1.1.0': 'Switch to COCO high-res images and lower-case answers.',
'1.2.0': 'Rename pseudo splits and remove lower-case answers.',
}
def _info(self):
"""Returns the metadata."""
return tfds.core.DatasetInfo(
builder=self,
description=_DESCRIPTION,
features=tfds.features.FeaturesDict({
'question_id': tfds.features.Scalar(np.int32),
'filename': tfds.features.Text(),
'image': tfds.features.Image(encoding_format='jpeg'),
'question': tfds.features.Text(),
'answers': tfds.features.Sequence(tfds.features.Text()),
}),
supervised_keys=None,
homepage='https://rrc.cvc.uab.es/?ch=11',
citation=_CITATION,
)
def _split_generators(self, dl_manager: tfds.download.DownloadManager):
"""Returns SplitGenerators."""
return {split: self._generate_examples(split)
for split in ('train', 'val', 'test')}
def _generate_examples(self, split):
"""Yields (key, example) tuples."""
src_split = 'test' if split == 'test' else 'train'
annot_fname = os.path.join(_STVQA_PATH, f'{src_split}_task_3.json')
images_path = f'{src_split}{"_task3" if src_split == "test" else ""}_images'
with open(annot_fname, 'r') as f:
data = json.loads(f.read())
for x in data['data']:
if split == 'val' and x['file_path'] not in _VAL_IDS:
continue
elif split == 'train' and x['file_path'] in _VAL_IDS:
continue
image_path = os.path.join(_STVQA_PATH, images_path, x['file_path'])
# Always use high-res COCO images from train2014 directory.
if x['file_path'].startswith('coco-text'):
image_path = image_path.replace(os.path.join(images_path, 'coco-text'),
'train2014')
yield x['question_id'], {
'question_id': x['question_id'],
'filename': x['file_path'],
'image': image_path,
'question': x['question'],
'answers': x.get('answers', []),
}