|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
r"""Implements ST-VQA dataset in TFDS. |
|
|
|
It's small data, so simple to run locally. |
|
First, download and unzip the dataset from https://rrc.cvc.uab.es/?ch=11 |
|
and place it in /tmp/data/stvqa. |
|
|
|
Then, run conversion locally (make sure to install tensorflow-datasets for the `tfds` util): |
|
|
|
cd third_party/py/big_vision/datasets |
|
env TFDS_DATA_DIR=/tmp/tfds tfds build --datasets=stvqa |
|
|
|
Example to load: |
|
|
|
import tensorflow_datasets as tfds |
|
dataset = tfds.load('stvqa', split='train', data_dir='/tmp/tfds') |
|
|
|
Dataset splits: |
|
train: 23446 examples/questions (subset of original train) |
|
val: 2628 examples/questions (subset of original train) |
|
test: 4070 examples/questions (no answers) |
|
|
|
Note: original source data has no val/holdout split, and we therefore split the |
|
original train split (26074 examples/questions) by ourselves into train & val |
|
splits. |
|
|
|
Recommended training splits: |
|
train: train |
|
minitrain: train[:5%] |
|
eval: val |
|
fulltrain: train+val |
|
""" |
|
import json |
|
import os |
|
|
|
from big_vision.datasets.stvqa import val_ids |
|
import numpy as np |
|
import tensorflow_datasets as tfds |
|
|
|
_VAL_IDS = val_ids.PSEUDO_VAL_IMAGE_PATHS |
|
|
|
_DESCRIPTION = """ST-VQA dataset.""" |
|
|
|
|
|
_CITATION = """ |
|
@inproceedings{Biten_2019, |
|
title={Scene Text Visual Question Answering}, |
|
url={http://dx.doi.org/10.1109/ICCV.2019.00439}, |
|
DOI={10.1109/iccv.2019.00439}, |
|
booktitle={2019 IEEE/CVF International Conference on Computer Vision (ICCV)}, |
|
publisher={IEEE}, |
|
author={Biten, Ali Furkan and Tito, Ruben and Mafla, Andres and Gomez, Lluis and Rusinol, Marcal and Jawahar, C.V. and Valveny, Ernest and Karatzas, Dimosthenis}, |
|
year={2019}, |
|
month=oct } |
|
""" |
|
|
|
|
|
|
|
_STVQA_PATH = '/tmp/data/stvqa/' |
|
|
|
|
|
class Stvqa(tfds.core.GeneratorBasedBuilder): |
|
"""DatasetBuilder for ST-VQA dataset.""" |
|
|
|
VERSION = tfds.core.Version('1.2.0') |
|
RELEASE_NOTES = { |
|
'1.0.0': 'First release.', |
|
'1.1.0': 'Switch to COCO high-res images and lower-case answers.', |
|
'1.2.0': 'Rename pseudo splits and remove lower-case answers.', |
|
} |
|
|
|
def _info(self): |
|
"""Returns the metadata.""" |
|
|
|
return tfds.core.DatasetInfo( |
|
builder=self, |
|
description=_DESCRIPTION, |
|
features=tfds.features.FeaturesDict({ |
|
'question_id': tfds.features.Scalar(np.int32), |
|
'filename': tfds.features.Text(), |
|
'image': tfds.features.Image(encoding_format='jpeg'), |
|
'question': tfds.features.Text(), |
|
'answers': tfds.features.Sequence(tfds.features.Text()), |
|
}), |
|
supervised_keys=None, |
|
homepage='https://rrc.cvc.uab.es/?ch=11', |
|
citation=_CITATION, |
|
) |
|
|
|
def _split_generators(self, dl_manager: tfds.download.DownloadManager): |
|
"""Returns SplitGenerators.""" |
|
return {split: self._generate_examples(split) |
|
for split in ('train', 'val', 'test')} |
|
|
|
def _generate_examples(self, split): |
|
"""Yields (key, example) tuples.""" |
|
src_split = 'test' if split == 'test' else 'train' |
|
annot_fname = os.path.join(_STVQA_PATH, f'{src_split}_task_3.json') |
|
images_path = f'{src_split}{"_task3" if src_split == "test" else ""}_images' |
|
|
|
with open(annot_fname, 'r') as f: |
|
data = json.loads(f.read()) |
|
|
|
for x in data['data']: |
|
if split == 'val' and x['file_path'] not in _VAL_IDS: |
|
continue |
|
elif split == 'train' and x['file_path'] in _VAL_IDS: |
|
continue |
|
image_path = os.path.join(_STVQA_PATH, images_path, x['file_path']) |
|
|
|
if x['file_path'].startswith('coco-text'): |
|
image_path = image_path.replace(os.path.join(images_path, 'coco-text'), |
|
'train2014') |
|
yield x['question_id'], { |
|
'question_id': x['question_id'], |
|
'filename': x['file_path'], |
|
'image': image_path, |
|
'question': x['question'], |
|
'answers': x.get('answers', []), |
|
} |
|
|