Update README.md
Browse files
README.md
CHANGED
@@ -6,56 +6,33 @@ Usage:
|
|
6 |
from transformers import MBartForConditionalGeneration, AutoModelForSeq2SeqLM
|
7 |
from transformers import AlbertTokenizer, AutoTokenizer
|
8 |
|
9 |
-
tokenizer = AutoTokenizer.from_pretrained("prajdabre/
|
10 |
|
11 |
-
# Or use tokenizer = AlbertTokenizer.from_pretrained("prajdabre/
|
12 |
|
13 |
-
model = AutoModelForSeq2SeqLM.from_pretrained("prajdabre/
|
14 |
|
15 |
-
# Or use model = MBartForConditionalGeneration.from_pretrained("prajdabre/
|
16 |
|
17 |
# Some initial mapping
|
18 |
bos_id = tokenizer._convert_token_to_id_with_added_voc("<s>")
|
19 |
eos_id = tokenizer._convert_token_to_id_with_added_voc("</s>")
|
20 |
pad_id = tokenizer._convert_token_to_id_with_added_voc("<pad>")
|
21 |
-
# To get lang_id use any of [
|
22 |
|
23 |
-
# First tokenize the input and outputs. The format below is how
|
24 |
-
inp = tokenizer(
|
25 |
-
|
26 |
-
out = tokenizer("<2hi> मैं एक लड़का हूँ </s>", add_special_tokens=False, return_tensors="pt", padding=True).input_ids # tensor([[64006, 942, 43, 32720, 8384, 64001]])
|
27 |
-
|
28 |
-
model_outputs=model(input_ids=inp, decoder_input_ids=out[:,0:-1], labels=out[:,1:])
|
29 |
-
|
30 |
-
# For loss
|
31 |
-
model_outputs.loss ## This is not label smoothed.
|
32 |
-
|
33 |
-
# For logits
|
34 |
-
model_outputs.logits
|
35 |
-
|
36 |
-
# For generation. Pardon the messiness. Note the decoder_start_token_id.
|
37 |
|
38 |
model.eval() # Set dropouts to zero
|
39 |
|
40 |
-
model_output=model.generate(inp, use_cache=True, num_beams=4, max_length=
|
41 |
|
42 |
|
43 |
# Decode to get output strings
|
44 |
|
45 |
decoded_output=tokenizer.decode(model_output[0], skip_special_tokens=True, clean_up_tokenization_spaces=False)
|
46 |
|
47 |
-
print(decoded_output)
|
48 |
-
|
49 |
-
# What if we mask?
|
50 |
-
|
51 |
-
inp = tokenizer("I am [MASK] </s> <2en>", add_special_tokens=False, return_tensors="pt", padding=True).input_ids
|
52 |
-
|
53 |
-
model_output=model.generate(inp, use_cache=True, num_beams=4, max_length=20, min_length=1, early_stopping=True, pad_token_id=pad_id, bos_token_id=bos_id, eos_token_id=eos_id, decoder_start_token_id=tokenizer._convert_token_to_id_with_added_voc("<2en>"))
|
54 |
-
|
55 |
-
decoded_output=tokenizer.decode(model_output[0], skip_special_tokens=True, clean_up_tokenization_spaces=False)
|
56 |
-
|
57 |
-
print(decoded_output) # I am happy
|
58 |
-
```
|
59 |
|
60 |
Notes:
|
61 |
1. This is compatible with the latest version of transformers but was developed with version 4.3.2 so consider using 4.3.2 if possible.
|
|
|
6 |
from transformers import MBartForConditionalGeneration, AutoModelForSeq2SeqLM
|
7 |
from transformers import AlbertTokenizer, AutoTokenizer
|
8 |
|
9 |
+
tokenizer = AutoTokenizer.from_pretrained("prajdabre/CreoleM2M", do_lower_case=False, use_fast=False, keep_accents=True)
|
10 |
|
11 |
+
# Or use tokenizer = AlbertTokenizer.from_pretrained("prajdabre/CreoleM2M", do_lower_case=False, use_fast=False, keep_accents=True)
|
12 |
|
13 |
+
model = AutoModelForSeq2SeqLM.from_pretrained("prajdabre/CreoleM2M")
|
14 |
|
15 |
+
# Or use model = MBartForConditionalGeneration.from_pretrained("prajdabre/CreoleM2M")
|
16 |
|
17 |
# Some initial mapping
|
18 |
bos_id = tokenizer._convert_token_to_id_with_added_voc("<s>")
|
19 |
eos_id = tokenizer._convert_token_to_id_with_added_voc("</s>")
|
20 |
pad_id = tokenizer._convert_token_to_id_with_added_voc("<pad>")
|
21 |
+
# To get lang_id use any of ["<s>", "</s>", "<2acf>", "<2eng>", "<2bis>", "<2bzj>", "<2cbk>", "<2crs>", "<2djk>", "<2gul>", "<2hat>", "<2hwc>", "<2icr>", "<2jam>", "<2kri>", "<2ktu>", "<2mbf>", "<2mfe>", "<2mkn>", "<2pap>", "<2pcm>", "<2pis>", "<2rop>", "<2sag>", "<2srm>", "<2srn>", "<2tcs>", "<2tdt>", "<2tpi>"]
|
22 |
|
23 |
+
# First tokenize the input and outputs. The format below is how CreoleM2M was trained so the input should be "Sentence </s> <2xxx>" where xxx is the language code. Similarly, the output should be "<2yyy> Sentence </s>".
|
24 |
+
inp = tokenizer('Wen dey wen stretch him out fo whip him real hard , Paul wen tell da captain dat stay dea , “ Dis okay in da rules fo da Rome peopo ? fo you fo whip one guy dat get da same rights jalike da Rome peopo ? even one guy dat neva do notting wrong ? ' </s> <2hwc>", add_special_tokens=False, return_tensors="pt", padding=True).input_ids
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
25 |
|
26 |
model.eval() # Set dropouts to zero
|
27 |
|
28 |
+
model_output=model.generate(inp, use_cache=True, num_beams=4, max_length=60, min_length=1, early_stopping=True, pad_token_id=pad_id, bos_token_id=bos_id, eos_token_id=eos_id, decoder_start_token_id=tokenizer._convert_token_to_id_with_added_voc("<eng>"))
|
29 |
|
30 |
|
31 |
# Decode to get output strings
|
32 |
|
33 |
decoded_output=tokenizer.decode(model_output[0], skip_special_tokens=True, clean_up_tokenization_spaces=False)
|
34 |
|
35 |
+
print(decoded_output)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
36 |
|
37 |
Notes:
|
38 |
1. This is compatible with the latest version of transformers but was developed with version 4.3.2 so consider using 4.3.2 if possible.
|