Create listener.py
Browse files- listener.py +225 -0
listener.py
ADDED
@@ -0,0 +1,225 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
from dataclasses import dataclass
|
2 |
+
from typing import Optional, List
|
3 |
+
from transformers import AutoModelForSeq2SeqLM, AutoTokenizer, GenerationConfig
|
4 |
+
import regex as re
|
5 |
+
import torch
|
6 |
+
import torch.nn.functional as F
|
7 |
+
|
8 |
+
PROGRAM_SPECIAL_TOKEN="<extra_id_124>"
|
9 |
+
UTTERANCES_SPECIAL_TOKEN="<extra_id_123>"
|
10 |
+
GT_PROGRAM_SPECIAL_TOKEN="<extra_id_122>"
|
11 |
+
|
12 |
+
def consistent(rx, spec):
|
13 |
+
# spec is in the form of (string, '+'/'-') pairs
|
14 |
+
for s, label in spec:
|
15 |
+
if not label in ['+', '-']:
|
16 |
+
return None
|
17 |
+
try:
|
18 |
+
if re.fullmatch(rx, s, timeout=1):
|
19 |
+
if label == '-':
|
20 |
+
return False
|
21 |
+
else:
|
22 |
+
if label == '+':
|
23 |
+
return False
|
24 |
+
except re.error:
|
25 |
+
return None
|
26 |
+
except TimeoutError:
|
27 |
+
return None
|
28 |
+
|
29 |
+
return True
|
30 |
+
|
31 |
+
def get_utterance_processing_functions(label_pos, idx, separator=' '):
|
32 |
+
if label_pos == "suffix":
|
33 |
+
if idx:
|
34 |
+
def utterances_to_string(spec):
|
35 |
+
return ''.join([f"<extra_id_{i}>{s}{label}" for i, (s, label) in enumerate(spec)])
|
36 |
+
else:
|
37 |
+
def utterances_to_string(spec):
|
38 |
+
return separator.join([f"{s}{label}" for s, label in spec])
|
39 |
+
else:
|
40 |
+
if idx:
|
41 |
+
def utterances_to_string(spec):
|
42 |
+
return ''.join([f"<extra_id_{i}>{label}{s}" for i, (s, label) in enumerate(spec)])
|
43 |
+
else:
|
44 |
+
def utterances_to_string(spec):
|
45 |
+
return separator.join([f"{label}{s}" for s, label in spec])
|
46 |
+
|
47 |
+
if label_pos == "suffix":
|
48 |
+
if idx:
|
49 |
+
def string_to_utterances(string):
|
50 |
+
string = re.sub(r'<extra_id_\d+>', ' ', string)
|
51 |
+
return [(s[:-1], s[-1]) for s in string.split(' ') if len(s) > 0]
|
52 |
+
else:
|
53 |
+
def string_to_utterances(string):
|
54 |
+
return [(s[:-1], s[-1]) for s in string.split(separator) if len(s) > 0]
|
55 |
+
else:
|
56 |
+
if idx:
|
57 |
+
def string_to_utterances(string):
|
58 |
+
string = re.sub(r'<extra_id_\d+>', '', string)
|
59 |
+
return [(s[1:], s[0]) for s in string.split(separator) if len(s) > 0]
|
60 |
+
else:
|
61 |
+
def string_to_utterances(string):
|
62 |
+
return [(s[1:], s[0]) for s in string.split(separator) if len(s) > 0]
|
63 |
+
|
64 |
+
return utterances_to_string, string_to_utterances
|
65 |
+
|
66 |
+
def decode(c):
|
67 |
+
if c < 3:
|
68 |
+
return f"<{c}>"
|
69 |
+
elif c < 258:
|
70 |
+
return chr(c - 3)
|
71 |
+
else:
|
72 |
+
return f"<extra_id_{c - 259}>"
|
73 |
+
|
74 |
+
def byt5_decode_batch(outputs, skip_special_tokens=True, skip_position_token=False):
|
75 |
+
skipped_tokens = outputs
|
76 |
+
if skip_special_tokens:
|
77 |
+
skipped_tokens = [
|
78 |
+
[[t for t in x if t >= 3] for x in beam]
|
79 |
+
for beam in skipped_tokens
|
80 |
+
]
|
81 |
+
|
82 |
+
if skip_position_token:
|
83 |
+
skipped_tokens = [
|
84 |
+
[[t for t in x if t <= 258] for x in beam]
|
85 |
+
for beam in skipped_tokens
|
86 |
+
]
|
87 |
+
|
88 |
+
return [
|
89 |
+
[''.join([decode(t) for t in x]) for x in beam]
|
90 |
+
for beam in skipped_tokens
|
91 |
+
]
|
92 |
+
|
93 |
+
class Agent:
|
94 |
+
def __init__(self,
|
95 |
+
model_path: str,
|
96 |
+
gen_config: dict,
|
97 |
+
device: str = "cuda",
|
98 |
+
):
|
99 |
+
self.device = device
|
100 |
+
self.model = AutoModelForSeq2SeqLM.from_pretrained(model_path).to(device)
|
101 |
+
self.tokenizer = AutoTokenizer.from_pretrained(model_path)
|
102 |
+
self.gen_config = GenerationConfig(**gen_config)
|
103 |
+
|
104 |
+
@dataclass
|
105 |
+
class ListenerOutput:
|
106 |
+
programs: List[List[str]]
|
107 |
+
idx: Optional[List[List[int]]] = None
|
108 |
+
decoded: Optional[List[List[str]]] = None
|
109 |
+
decoded_scores: Optional[List[List[float]]] = None
|
110 |
+
pruned: Optional[List[List[str]]] = None
|
111 |
+
|
112 |
+
|
113 |
+
class Listener(Agent):
|
114 |
+
def __init__(self,
|
115 |
+
model_path,
|
116 |
+
gen_config,
|
117 |
+
device="cuda",
|
118 |
+
label_pos="suffix",
|
119 |
+
idx: bool=True,
|
120 |
+
program_special_token=PROGRAM_SPECIAL_TOKEN,
|
121 |
+
utterances_special_token=UTTERANCES_SPECIAL_TOKEN
|
122 |
+
):
|
123 |
+
super().__init__(
|
124 |
+
model_path,
|
125 |
+
gen_config,
|
126 |
+
device=device
|
127 |
+
)
|
128 |
+
self.label_pos = label_pos
|
129 |
+
self.idx = idx
|
130 |
+
self.program_special_token = program_special_token
|
131 |
+
self.utterances_special_token = utterances_special_token
|
132 |
+
self.utterances_to_string, self.string_to_utterances = (
|
133 |
+
get_utterance_processing_functions(
|
134 |
+
label_pos, idx, separator=utterances_special_token
|
135 |
+
)
|
136 |
+
)
|
137 |
+
|
138 |
+
def synthesize(self, context, return_scores=False, enforce_consistency=True):
|
139 |
+
# If context is a list of utterances, convert to string
|
140 |
+
if isinstance(context[0], list):
|
141 |
+
context_str = list(map(self.utterances_to_string, context))
|
142 |
+
else:
|
143 |
+
context_str = context
|
144 |
+
|
145 |
+
context_tokens = self.tokenizer(
|
146 |
+
[f"{self.utterances_special_token}{c}" if not c.startswith(self.utterances_special_token) else c
|
147 |
+
for c in context_str],
|
148 |
+
return_tensors="pt",
|
149 |
+
padding=True
|
150 |
+
).to(self.device)
|
151 |
+
|
152 |
+
decoder_inputs = self.tokenizer(
|
153 |
+
[self.program_special_token for _ in context], return_tensors="pt",
|
154 |
+
add_special_tokens=False
|
155 |
+
).to(self.device)
|
156 |
+
|
157 |
+
outputs = self.model.generate(**context_tokens,
|
158 |
+
decoder_input_ids=decoder_inputs.input_ids,
|
159 |
+
generation_config=self.gen_config,
|
160 |
+
return_dict_in_generate=True,
|
161 |
+
output_scores=True
|
162 |
+
)
|
163 |
+
|
164 |
+
decoded_batch = byt5_decode_batch(outputs.sequences.reshape((len(context), -1, outputs.sequences.shape[-1])).tolist(), skip_position_token=True, skip_special_tokens=True)
|
165 |
+
|
166 |
+
consistent_programs = []
|
167 |
+
idxs = []
|
168 |
+
for decoded, ctx in zip(decoded_batch, context):
|
169 |
+
cp = []
|
170 |
+
idx = []
|
171 |
+
for i, p in enumerate(decoded):
|
172 |
+
if enforce_consistency:
|
173 |
+
if consistent(p, ctx):
|
174 |
+
cp.append(p)
|
175 |
+
idx.append(i)
|
176 |
+
else:
|
177 |
+
cp.append(p)
|
178 |
+
idx.append(i)
|
179 |
+
|
180 |
+
consistent_programs.append(cp)
|
181 |
+
idxs.append(idx)
|
182 |
+
|
183 |
+
logprobs = torch.stack(outputs.scores, dim=1).log_softmax(dim=-1)
|
184 |
+
gen_probs = torch.gather(logprobs, 2, outputs.sequences[:, 1:, None]).squeeze(-1)
|
185 |
+
gen_probs.masked_fill_(gen_probs.isinf(), 0)
|
186 |
+
scores = gen_probs.sum(-1)
|
187 |
+
n_decoded = scores.shape[0]
|
188 |
+
n_seq = n_decoded // len(context)
|
189 |
+
scores = scores.reshape((len(context), n_seq))
|
190 |
+
scores_list = scores.tolist()
|
191 |
+
|
192 |
+
if return_scores:
|
193 |
+
return ListenerOutput(
|
194 |
+
consistent_programs,
|
195 |
+
idxs,
|
196 |
+
decoded_batch,
|
197 |
+
scores_list
|
198 |
+
)
|
199 |
+
else:
|
200 |
+
return ListenerOutput(consistent_programs)
|
201 |
+
|
202 |
+
|
203 |
+
def score_program(self, contexts, programs):
|
204 |
+
if isinstance(contexts[0], list):
|
205 |
+
context_str = list(map(self.utterances_to_string, contexts))
|
206 |
+
else:
|
207 |
+
context_str = contexts
|
208 |
+
|
209 |
+
context_tokens = self.tokenizer(
|
210 |
+
[f"{self.utterances_special_token}{c}" if not c.startswith(self.utterances_special_token) else c
|
211 |
+
for c in context_str],
|
212 |
+
return_tensors="pt",
|
213 |
+
padding=True
|
214 |
+
).to(self.device)
|
215 |
+
|
216 |
+
program_tokens = self.tokenizer([f"{self.program_special_token}{p}" for p in programs], return_tensors="pt").to(self.device)
|
217 |
+
outputs = self.model(input_ids=context_tokens.input_ids, decoder_input_ids=program_tokens.input_ids, return_dict=True)
|
218 |
+
|
219 |
+
logprobs = torch.gather(F.log_softmax(outputs.logits, dim=-1), 2, program_tokens.input_ids[:, 1:, None]).squeeze(-1)
|
220 |
+
|
221 |
+
logprobs.masked_fill_(program_tokens.input_ids[:, 1:] == 0, 0)
|
222 |
+
|
223 |
+
scores = logprobs.sum(-1)
|
224 |
+
|
225 |
+
return scores.tolist()
|