Add new SentenceTransformer model
Browse files- README.md +151 -149
- model.safetensors +1 -1
README.md
CHANGED
@@ -4,23 +4,23 @@ tags:
|
|
4 |
- sentence-similarity
|
5 |
- feature-extraction
|
6 |
- generated_from_trainer
|
7 |
-
- dataset_size:
|
8 |
- loss:BatchSemiHardTripletLoss
|
9 |
base_model: BAAI/bge-base-en
|
10 |
widget:
|
11 |
- source_sentence: '
|
12 |
|
13 |
-
Name :
|
14 |
|
15 |
-
Category:
|
16 |
|
17 |
-
Department:
|
18 |
|
19 |
-
Location:
|
20 |
|
21 |
-
Amount:
|
22 |
|
23 |
-
Card:
|
24 |
|
25 |
Trip Name: unknown
|
26 |
|
@@ -28,23 +28,6 @@ widget:
|
|
28 |
sentences:
|
29 |
- '
|
30 |
|
31 |
-
Name : Pardalis Digital
|
32 |
-
|
33 |
-
Category: Data Analytics Platform, Professional Networking Service
|
34 |
-
|
35 |
-
Department: Sales
|
36 |
-
|
37 |
-
Location: Dublin, Ireland
|
38 |
-
|
39 |
-
Amount: 1456.75
|
40 |
-
|
41 |
-
Card: Sales Intelligence & Networking Platform
|
42 |
-
|
43 |
-
Trip Name: unknown
|
44 |
-
|
45 |
-
'
|
46 |
-
- '
|
47 |
-
|
48 |
Name : Nimbus Networks Inc.
|
49 |
|
50 |
Category: Cloud Services, Application Hosting
|
@@ -62,71 +45,71 @@ widget:
|
|
62 |
'
|
63 |
- '
|
64 |
|
65 |
-
Name :
|
66 |
|
67 |
-
Category:
|
68 |
|
69 |
-
Department:
|
70 |
|
71 |
-
Location:
|
72 |
|
73 |
-
Amount:
|
74 |
|
75 |
-
Card:
|
76 |
|
77 |
Trip Name: unknown
|
78 |
|
79 |
'
|
80 |
-
-
|
81 |
|
82 |
-
Name :
|
83 |
|
84 |
-
Category:
|
85 |
|
86 |
-
Department:
|
87 |
|
88 |
-
Location:
|
89 |
|
90 |
-
Amount:
|
91 |
|
92 |
-
Card:
|
93 |
|
94 |
Trip Name: unknown
|
95 |
|
96 |
'
|
97 |
-
|
98 |
-
- '
|
99 |
|
100 |
-
Name :
|
101 |
|
102 |
-
Category:
|
103 |
|
104 |
Department: Office Administration
|
105 |
|
106 |
-
Location:
|
107 |
|
108 |
-
Amount:
|
109 |
|
110 |
-
Card:
|
111 |
|
112 |
Trip Name: unknown
|
113 |
|
114 |
'
|
|
|
115 |
- '
|
116 |
|
117 |
-
Name :
|
118 |
|
119 |
-
Category:
|
120 |
|
121 |
-
Department:
|
122 |
|
123 |
-
Location:
|
124 |
|
125 |
-
Amount:
|
126 |
|
127 |
-
Card:
|
128 |
|
129 |
-
Trip Name:
|
130 |
|
131 |
'
|
132 |
- '
|
@@ -145,20 +128,37 @@ widget:
|
|
145 |
|
146 |
Trip Name: unknown
|
147 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
148 |
'
|
149 |
- source_sentence: '
|
150 |
|
151 |
-
Name :
|
152 |
|
153 |
-
Category:
|
154 |
|
155 |
-
Department:
|
156 |
|
157 |
-
Location:
|
158 |
|
159 |
-
Amount:
|
160 |
|
161 |
-
Card:
|
162 |
|
163 |
Trip Name: unknown
|
164 |
|
@@ -166,68 +166,68 @@ widget:
|
|
166 |
sentences:
|
167 |
- '
|
168 |
|
169 |
-
Name :
|
170 |
|
171 |
-
Category:
|
172 |
|
173 |
-
Department:
|
174 |
|
175 |
-
Location:
|
176 |
|
177 |
-
Amount:
|
178 |
|
179 |
-
Card:
|
180 |
|
181 |
Trip Name: unknown
|
182 |
|
183 |
'
|
184 |
- '
|
185 |
|
186 |
-
Name :
|
187 |
|
188 |
-
Category:
|
189 |
|
190 |
-
Department:
|
191 |
|
192 |
-
Location:
|
193 |
|
194 |
-
Amount:
|
195 |
|
196 |
-
Card:
|
197 |
|
198 |
Trip Name: unknown
|
199 |
|
200 |
'
|
201 |
- '
|
202 |
|
203 |
-
Name :
|
204 |
|
205 |
-
Category:
|
206 |
|
207 |
-
Department:
|
208 |
|
209 |
-
Location:
|
210 |
|
211 |
-
Amount:
|
212 |
|
213 |
-
Card:
|
214 |
|
215 |
Trip Name: unknown
|
216 |
|
217 |
'
|
218 |
- source_sentence: '
|
219 |
|
220 |
-
Name :
|
221 |
|
222 |
-
Category:
|
223 |
|
224 |
-
Department:
|
225 |
|
226 |
-
Location:
|
227 |
|
228 |
-
Amount:
|
229 |
|
230 |
-
Card:
|
231 |
|
232 |
Trip Name: unknown
|
233 |
|
@@ -235,68 +235,68 @@ widget:
|
|
235 |
sentences:
|
236 |
- '
|
237 |
|
238 |
-
Name :
|
239 |
|
240 |
-
Category:
|
241 |
|
242 |
-
Department:
|
243 |
|
244 |
Location: London, UK
|
245 |
|
246 |
-
Amount:
|
247 |
|
248 |
-
Card:
|
249 |
|
250 |
Trip Name: unknown
|
251 |
|
252 |
'
|
253 |
- '
|
254 |
|
255 |
-
Name :
|
256 |
|
257 |
-
Category:
|
258 |
|
259 |
-
Department:
|
260 |
|
261 |
-
Location:
|
262 |
|
263 |
-
Amount:
|
264 |
|
265 |
-
Card:
|
266 |
|
267 |
Trip Name: unknown
|
268 |
|
269 |
'
|
270 |
- '
|
271 |
|
272 |
-
Name :
|
273 |
|
274 |
-
Category:
|
275 |
|
276 |
-
Department:
|
277 |
|
278 |
-
Location:
|
279 |
|
280 |
-
Amount:
|
281 |
|
282 |
-
Card:
|
283 |
|
284 |
Trip Name: unknown
|
285 |
|
286 |
'
|
287 |
- source_sentence: '
|
288 |
|
289 |
-
Name :
|
290 |
|
291 |
-
Category:
|
292 |
|
293 |
-
Department:
|
294 |
|
295 |
-
Location:
|
296 |
|
297 |
-
Amount:
|
298 |
|
299 |
-
Card:
|
300 |
|
301 |
Trip Name: unknown
|
302 |
|
@@ -304,51 +304,51 @@ widget:
|
|
304 |
sentences:
|
305 |
- '
|
306 |
|
307 |
-
Name :
|
308 |
|
309 |
-
Category:
|
310 |
|
311 |
-
Department:
|
312 |
|
313 |
-
Location:
|
314 |
|
315 |
-
Amount:
|
316 |
|
317 |
-
Card:
|
318 |
|
319 |
Trip Name: unknown
|
320 |
|
321 |
'
|
322 |
- '
|
323 |
|
324 |
-
Name :
|
325 |
|
326 |
-
Category:
|
327 |
|
328 |
-
Department:
|
329 |
|
330 |
-
Location:
|
331 |
|
332 |
-
Amount:
|
333 |
|
334 |
-
Card:
|
335 |
|
336 |
Trip Name: unknown
|
337 |
|
338 |
'
|
339 |
- '
|
340 |
|
341 |
-
Name :
|
342 |
|
343 |
-
Category:
|
344 |
|
345 |
Department: Compliance
|
346 |
|
347 |
-
Location:
|
348 |
|
349 |
-
Amount:
|
350 |
|
351 |
-
Card:
|
352 |
|
353 |
Trip Name: unknown
|
354 |
|
@@ -368,7 +368,7 @@ model-index:
|
|
368 |
type: bge-base-en-train
|
369 |
metrics:
|
370 |
- type: cosine_accuracy
|
371 |
-
value: 0.
|
372 |
name: Cosine Accuracy
|
373 |
- task:
|
374 |
type: triplet
|
@@ -378,7 +378,7 @@ model-index:
|
|
378 |
type: bge-base-en-eval
|
379 |
metrics:
|
380 |
- type: cosine_accuracy
|
381 |
-
value: 0.
|
382 |
name: Cosine Accuracy
|
383 |
---
|
384 |
|
@@ -432,9 +432,9 @@ from sentence_transformers import SentenceTransformer
|
|
432 |
model = SentenceTransformer("ppuva1/finetuned-bge-base-en")
|
433 |
# Run inference
|
434 |
sentences = [
|
435 |
-
'\nName :
|
436 |
-
'\nName :
|
437 |
-
'\nName :
|
438 |
]
|
439 |
embeddings = model.encode(sentences)
|
440 |
print(embeddings.shape)
|
@@ -481,7 +481,7 @@ You can finetune this model on your own dataset.
|
|
481 |
|
482 |
| Metric | bge-base-en-train | bge-base-en-eval |
|
483 |
|:--------------------|:------------------|:-----------------|
|
484 |
-
| **cosine_accuracy** | **0.
|
485 |
|
486 |
<!--
|
487 |
## Bias, Risks and Limitations
|
@@ -501,38 +501,38 @@ You can finetune this model on your own dataset.
|
|
501 |
|
502 |
#### Unnamed Dataset
|
503 |
|
504 |
-
* Size:
|
505 |
* Columns: <code>sentence</code> and <code>label</code>
|
506 |
-
* Approximate statistics based on the first
|
507 |
| | sentence | label |
|
508 |
|:--------|:-----------------------------------------------------------------------------------|:---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|
509 |
| type | string | int |
|
510 |
-
| details | <ul><li>min:
|
511 |
* Samples:
|
512 |
-
| sentence
|
513 |
-
|
514 |
-
| <code><br>Name :
|
515 |
-
| <code><br>Name :
|
516 |
-
| <code><br>Name :
|
517 |
* Loss: [<code>BatchSemiHardTripletLoss</code>](https://sbert.net/docs/package_reference/sentence_transformer/losses.html#batchsemihardtripletloss)
|
518 |
|
519 |
### Evaluation Dataset
|
520 |
|
521 |
#### Unnamed Dataset
|
522 |
|
523 |
-
* Size:
|
524 |
* Columns: <code>sentence</code> and <code>label</code>
|
525 |
-
* Approximate statistics based on the first
|
526 |
-
| | sentence | label
|
527 |
-
|
528 |
-
| type | string | int
|
529 |
-
| details | <ul><li>min: 32 tokens</li><li>mean: 39.19 tokens</li><li>max: 46 tokens</li></ul> | <ul><li>0: ~
|
530 |
* Samples:
|
531 |
-
| sentence
|
532 |
-
|
533 |
-
| <code><br>Name :
|
534 |
-
| <code><br>Name :
|
535 |
-
| <code><br>Name :
|
536 |
* Loss: [<code>BatchSemiHardTripletLoss</code>](https://sbert.net/docs/package_reference/sentence_transformer/losses.html#batchsemihardtripletloss)
|
537 |
|
538 |
### Training Hyperparameters
|
@@ -668,9 +668,11 @@ You can finetune this model on your own dataset.
|
|
668 |
</details>
|
669 |
|
670 |
### Training Logs
|
671 |
-
| Epoch
|
672 |
-
|
673 |
-
| -1
|
|
|
|
|
674 |
|
675 |
|
676 |
### Framework Versions
|
|
|
4 |
- sentence-similarity
|
5 |
- feature-extraction
|
6 |
- generated_from_trainer
|
7 |
+
- dataset_size:416
|
8 |
- loss:BatchSemiHardTripletLoss
|
9 |
base_model: BAAI/bge-base-en
|
10 |
widget:
|
11 |
- source_sentence: '
|
12 |
|
13 |
+
Name : CloudMetric Solutions
|
14 |
|
15 |
+
Category: Data Analytics, Virtual Infrastructure Management
|
16 |
|
17 |
+
Department: Engineering
|
18 |
|
19 |
+
Location: Toronto, Canada
|
20 |
|
21 |
+
Amount: 1644.75
|
22 |
|
23 |
+
Card: Real-Time Resource Monitoring
|
24 |
|
25 |
Trip Name: unknown
|
26 |
|
|
|
28 |
sentences:
|
29 |
- '
|
30 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
31 |
Name : Nimbus Networks Inc.
|
32 |
|
33 |
Category: Cloud Services, Application Hosting
|
|
|
45 |
'
|
46 |
- '
|
47 |
|
48 |
+
Name : Allianz
|
49 |
|
50 |
+
Category: Insurance Services, Financial Services
|
51 |
|
52 |
+
Department: Finance
|
53 |
|
54 |
+
Location: New York, NY
|
55 |
|
56 |
+
Amount: 2547.39
|
57 |
|
58 |
+
Card: Quarterly Coverage Evaluation
|
59 |
|
60 |
Trip Name: unknown
|
61 |
|
62 |
'
|
63 |
+
- '
|
64 |
|
65 |
+
Name : Connexis Group
|
66 |
|
67 |
+
Category: Venue Logistics Services, Corporate Membership Consultancy
|
68 |
|
69 |
+
Department: Sales
|
70 |
|
71 |
+
Location: Berlin, Germany
|
72 |
|
73 |
+
Amount: 1478.55
|
74 |
|
75 |
+
Card: International Trade Show Engagement
|
76 |
|
77 |
Trip Name: unknown
|
78 |
|
79 |
'
|
80 |
+
- source_sentence: '
|
|
|
81 |
|
82 |
+
Name : BuroPro Services
|
83 |
|
84 |
+
Category: Facilities Management, Maintenance Solutions
|
85 |
|
86 |
Department: Office Administration
|
87 |
|
88 |
+
Location: Berlin, Germany
|
89 |
|
90 |
+
Amount: 879.99
|
91 |
|
92 |
+
Card: Monthly Equipment Oversight
|
93 |
|
94 |
Trip Name: unknown
|
95 |
|
96 |
'
|
97 |
+
sentences:
|
98 |
- '
|
99 |
|
100 |
+
Name : SynthioSolutions Global
|
101 |
|
102 |
+
Category: Technology Consulting, Research Services
|
103 |
|
104 |
+
Department: Research & Development
|
105 |
|
106 |
+
Location: Singapore
|
107 |
|
108 |
+
Amount: 1342.67
|
109 |
|
110 |
+
Card: Advanced Data Integration Project
|
111 |
|
112 |
+
Trip Name: unknown
|
113 |
|
114 |
'
|
115 |
- '
|
|
|
128 |
|
129 |
Trip Name: unknown
|
130 |
|
131 |
+
'
|
132 |
+
- '
|
133 |
+
|
134 |
+
Name : City Shuttle Services
|
135 |
+
|
136 |
+
Category: Transportation, Logistics
|
137 |
+
|
138 |
+
Department: Sales
|
139 |
+
|
140 |
+
Location: San Francisco, CA
|
141 |
+
|
142 |
+
Amount: 85.0
|
143 |
+
|
144 |
+
Card: Sales Team Travel Fund
|
145 |
+
|
146 |
+
Trip Name: Client Meeting in Bay Area
|
147 |
+
|
148 |
'
|
149 |
- source_sentence: '
|
150 |
|
151 |
+
Name : SkillAdvance Academy
|
152 |
|
153 |
+
Category: Online Learning Platform, Professional Development
|
154 |
|
155 |
+
Department: Engineering
|
156 |
|
157 |
+
Location: Austin, TX
|
158 |
|
159 |
+
Amount: 1875.67
|
160 |
|
161 |
+
Card: Continuous Improvement Initiative
|
162 |
|
163 |
Trip Name: unknown
|
164 |
|
|
|
166 |
sentences:
|
167 |
- '
|
168 |
|
169 |
+
Name : ComplyTech Solutions
|
170 |
|
171 |
+
Category: Regulatory Software, Consultancy Services
|
172 |
|
173 |
+
Department: Compliance
|
174 |
|
175 |
+
Location: Brussels, Belgium
|
176 |
|
177 |
+
Amount: 1095.45
|
178 |
|
179 |
+
Card: Regulatory Compliance Optimization Plan
|
180 |
|
181 |
Trip Name: unknown
|
182 |
|
183 |
'
|
184 |
- '
|
185 |
|
186 |
+
Name : AlphaTech Solutions
|
187 |
|
188 |
+
Category: Computer & Electronics Retail
|
189 |
|
190 |
+
Department: Research & Development
|
191 |
|
192 |
+
Location: Toronto, Canada
|
193 |
|
194 |
+
Amount: 1599.99
|
195 |
|
196 |
+
Card: Innovative Hardware Acquisition
|
197 |
|
198 |
Trip Name: unknown
|
199 |
|
200 |
'
|
201 |
- '
|
202 |
|
203 |
+
Name : Craft Gate Systems
|
204 |
|
205 |
+
Category: Payment Processing Gateway, Data Analytics Software
|
206 |
|
207 |
+
Department: Finance
|
208 |
|
209 |
+
Location: Austin, TX
|
210 |
|
211 |
+
Amount: 1132.58
|
212 |
|
213 |
+
Card: Quarterly Revenue Analysis
|
214 |
|
215 |
Trip Name: unknown
|
216 |
|
217 |
'
|
218 |
- source_sentence: '
|
219 |
|
220 |
+
Name : Rising Tide Solutions
|
221 |
|
222 |
+
Category: IT Resource Management
|
223 |
|
224 |
+
Department: Engineering
|
225 |
|
226 |
+
Location: Amsterdam, Netherlands
|
227 |
|
228 |
+
Amount: 1423.57
|
229 |
|
230 |
+
Card: Cloud Transition Project
|
231 |
|
232 |
Trip Name: unknown
|
233 |
|
|
|
235 |
sentences:
|
236 |
- '
|
237 |
|
238 |
+
Name : GigaTrend
|
239 |
|
240 |
+
Category: Data Services, Cloud Software Solutions
|
241 |
|
242 |
+
Department: Research & Development
|
243 |
|
244 |
Location: London, UK
|
245 |
|
246 |
+
Amount: 1345.67
|
247 |
|
248 |
+
Card: Data-Driven Innovation Project
|
249 |
|
250 |
Trip Name: unknown
|
251 |
|
252 |
'
|
253 |
- '
|
254 |
|
255 |
+
Name : Apex Innovations Group
|
256 |
|
257 |
+
Category: Business Consulting, Training Services
|
258 |
|
259 |
+
Department: Executive
|
260 |
|
261 |
+
Location: Sydney, Australia
|
262 |
|
263 |
+
Amount: 1575.34
|
264 |
|
265 |
+
Card: Leadership Development Program
|
266 |
|
267 |
Trip Name: unknown
|
268 |
|
269 |
'
|
270 |
- '
|
271 |
|
272 |
+
Name : Aegis Risk Consultants
|
273 |
|
274 |
+
Category: Executive Risk Management, Enterprise Solutions
|
275 |
|
276 |
+
Department: Legal
|
277 |
|
278 |
+
Location: London, UK
|
279 |
|
280 |
+
Amount: 1743.56
|
281 |
|
282 |
+
Card: Leadership Liability Initiative
|
283 |
|
284 |
Trip Name: unknown
|
285 |
|
286 |
'
|
287 |
- source_sentence: '
|
288 |
|
289 |
+
Name : Allegro Integrations
|
290 |
|
291 |
+
Category: Payment Processing Solutions, Financial Technology Services
|
292 |
|
293 |
+
Department: Finance
|
294 |
|
295 |
+
Location: Dublin, Ireland
|
296 |
|
297 |
+
Amount: 1298.75
|
298 |
|
299 |
+
Card: Bi-annual Financial Systems Audit
|
300 |
|
301 |
Trip Name: unknown
|
302 |
|
|
|
304 |
sentences:
|
305 |
- '
|
306 |
|
307 |
+
Name : Banyan Tree Pte Ltd
|
308 |
|
309 |
+
Category: General Contractors - Residential and Commercial
|
310 |
|
311 |
+
Department: Office Administration
|
312 |
|
313 |
+
Location: Houston, TX
|
314 |
|
315 |
+
Amount: 987.65
|
316 |
|
317 |
+
Card: Operational Infrastructure Management
|
318 |
|
319 |
Trip Name: unknown
|
320 |
|
321 |
'
|
322 |
- '
|
323 |
|
324 |
+
Name : InsightWave Research
|
325 |
|
326 |
+
Category: Business Intelligence Consultations, Market Expansion Strategy Services
|
327 |
|
328 |
+
Department: Marketing
|
329 |
|
330 |
+
Location: Tokyo, Japan
|
331 |
|
332 |
+
Amount: 2034.67
|
333 |
|
334 |
+
Card: Global Market Insights Program
|
335 |
|
336 |
Trip Name: unknown
|
337 |
|
338 |
'
|
339 |
- '
|
340 |
|
341 |
+
Name : ComplyTech Solutions
|
342 |
|
343 |
+
Category: Regulatory Software, Consultancy Services
|
344 |
|
345 |
Department: Compliance
|
346 |
|
347 |
+
Location: Brussels, Belgium
|
348 |
|
349 |
+
Amount: 1095.45
|
350 |
|
351 |
+
Card: Regulatory Compliance Optimization Plan
|
352 |
|
353 |
Trip Name: unknown
|
354 |
|
|
|
368 |
type: bge-base-en-train
|
369 |
metrics:
|
370 |
- type: cosine_accuracy
|
371 |
+
value: 0.4759615361690521
|
372 |
name: Cosine Accuracy
|
373 |
- task:
|
374 |
type: triplet
|
|
|
378 |
type: bge-base-en-eval
|
379 |
metrics:
|
380 |
- type: cosine_accuracy
|
381 |
+
value: 0.0
|
382 |
name: Cosine Accuracy
|
383 |
---
|
384 |
|
|
|
432 |
model = SentenceTransformer("ppuva1/finetuned-bge-base-en")
|
433 |
# Run inference
|
434 |
sentences = [
|
435 |
+
'\nName : Allegro Integrations\nCategory: Payment Processing Solutions, Financial Technology Services\nDepartment: Finance\nLocation: Dublin, Ireland\nAmount: 1298.75\nCard: Bi-annual Financial Systems Audit\nTrip Name: unknown\n',
|
436 |
+
'\nName : Banyan Tree Pte Ltd\nCategory: General Contractors - Residential and Commercial\nDepartment: Office Administration\nLocation: Houston, TX\nAmount: 987.65\nCard: Operational Infrastructure Management\nTrip Name: unknown\n',
|
437 |
+
'\nName : ComplyTech Solutions\nCategory: Regulatory Software, Consultancy Services\nDepartment: Compliance\nLocation: Brussels, Belgium\nAmount: 1095.45\nCard: Regulatory Compliance Optimization Plan\nTrip Name: unknown\n',
|
438 |
]
|
439 |
embeddings = model.encode(sentences)
|
440 |
print(embeddings.shape)
|
|
|
481 |
|
482 |
| Metric | bge-base-en-train | bge-base-en-eval |
|
483 |
|:--------------------|:------------------|:-----------------|
|
484 |
+
| **cosine_accuracy** | **0.476** | **0.0** |
|
485 |
|
486 |
<!--
|
487 |
## Bias, Risks and Limitations
|
|
|
501 |
|
502 |
#### Unnamed Dataset
|
503 |
|
504 |
+
* Size: 416 training samples
|
505 |
* Columns: <code>sentence</code> and <code>label</code>
|
506 |
+
* Approximate statistics based on the first 416 samples:
|
507 |
| | sentence | label |
|
508 |
|:--------|:-----------------------------------------------------------------------------------|:---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|
509 |
| type | string | int |
|
510 |
+
| details | <ul><li>min: 32 tokens</li><li>mean: 39.99 tokens</li><li>max: 49 tokens</li></ul> | <ul><li>0: ~3.12%</li><li>1: ~3.12%</li><li>2: ~3.85%</li><li>3: ~4.81%</li><li>4: ~2.16%</li><li>5: ~4.33%</li><li>6: ~4.57%</li><li>7: ~3.85%</li><li>8: ~5.05%</li><li>9: ~4.09%</li><li>10: ~2.88%</li><li>11: ~4.33%</li><li>12: ~2.16%</li><li>13: ~4.09%</li><li>14: ~3.61%</li><li>15: ~5.77%</li><li>16: ~3.12%</li><li>17: ~6.01%</li><li>18: ~5.05%</li><li>19: ~2.64%</li><li>20: ~3.37%</li><li>21: ~2.88%</li><li>22: ~4.57%</li><li>23: ~2.64%</li><li>24: ~2.64%</li><li>25: ~3.85%</li><li>26: ~1.44%</li></ul> |
|
511 |
* Samples:
|
512 |
+
| sentence | label |
|
513 |
+
|:-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|:---------------|
|
514 |
+
| <code><br>Name : InnovaThink Global<br>Category: Management Consultancy, Technical Training Services<br>Department: HR<br>Location: Zurich, Switzerland<br>Amount: 1675.32<br>Card: Innovation and Efficiency Program<br>Trip Name: unknown<br></code> | <code>0</code> |
|
515 |
+
| <code><br>Name : Global Wellness Network<br>Category: Corporate Wellness Programs, Employee Engagement<br>Department: HR<br>Location: Berlin, Germany<br>Amount: 1285.75<br>Card: Wellness and Engagement Program<br>Trip Name: unknown<br></code> | <code>1</code> |
|
516 |
+
| <code><br>Name : Wong & Lim<br>Category: Technical Equipment Services, Facility Services<br>Department: Office Administration<br>Location: Berlin, Germany<br>Amount: 458.29<br>Card: Monthly Equipment Care Program<br>Trip Name: unknown<br></code> | <code>2</code> |
|
517 |
* Loss: [<code>BatchSemiHardTripletLoss</code>](https://sbert.net/docs/package_reference/sentence_transformer/losses.html#batchsemihardtripletloss)
|
518 |
|
519 |
### Evaluation Dataset
|
520 |
|
521 |
#### Unnamed Dataset
|
522 |
|
523 |
+
* Size: 104 evaluation samples
|
524 |
* Columns: <code>sentence</code> and <code>label</code>
|
525 |
+
* Approximate statistics based on the first 104 samples:
|
526 |
+
| | sentence | label |
|
527 |
+
|:--------|:-----------------------------------------------------------------------------------|:---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|
528 |
+
| type | string | int |
|
529 |
+
| details | <ul><li>min: 32 tokens</li><li>mean: 39.19 tokens</li><li>max: 46 tokens</li></ul> | <ul><li>0: ~1.92%</li><li>1: ~0.96%</li><li>2: ~4.81%</li><li>3: ~1.92%</li><li>5: ~5.77%</li><li>6: ~7.69%</li><li>7: ~4.81%</li><li>8: ~3.85%</li><li>9: ~5.77%</li><li>10: ~2.88%</li><li>11: ~4.81%</li><li>12: ~2.88%</li><li>13: ~1.92%</li><li>14: ~2.88%</li><li>15: ~0.96%</li><li>16: ~1.92%</li><li>17: ~3.85%</li><li>18: ~4.81%</li><li>19: ~3.85%</li><li>20: ~1.92%</li><li>21: ~0.96%</li><li>22: ~5.77%</li><li>23: ~7.69%</li><li>24: ~7.69%</li><li>25: ~4.81%</li><li>26: ~2.88%</li></ul> |
|
530 |
* Samples:
|
531 |
+
| sentence | label |
|
532 |
+
|:-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|:----------------|
|
533 |
+
| <code><br>Name : Aegis Risk Consultants<br>Category: Executive Risk Management, Enterprise Solutions<br>Department: Legal<br>Location: London, UK<br>Amount: 1743.56<br>Card: Leadership Liability Initiative<br>Trip Name: unknown<br></code> | <code>11</code> |
|
534 |
+
| <code><br>Name : Vinobia Lounge<br>Category: Culinary Experiences, Networking Venues<br>Department: Marketing<br>Location: Dallas, TX<br>Amount: 651.58<br>Card: Innovative Marketing Strategies<br>Trip Name: Annual Marketing Event<br></code> | <code>8</code> |
|
535 |
+
| <code><br>Name : Freenet AG<br>Category: Telecommunication Services<br>Department: IT Operations<br>Location: Zurich, Switzerland<br>Amount: 2794.37<br>Card: Infrastructure Support Services<br>Trip Name: unknown<br></code> | <code>25</code> |
|
536 |
* Loss: [<code>BatchSemiHardTripletLoss</code>](https://sbert.net/docs/package_reference/sentence_transformer/losses.html#batchsemihardtripletloss)
|
537 |
|
538 |
### Training Hyperparameters
|
|
|
668 |
</details>
|
669 |
|
670 |
### Training Logs
|
671 |
+
| Epoch | Step | Training Loss | Validation Loss | bge-base-en-train_cosine_accuracy | bge-base-en-eval_cosine_accuracy |
|
672 |
+
|:------:|:----:|:-------------:|:---------------:|:---------------------------------:|:--------------------------------:|
|
673 |
+
| -1 | -1 | - | - | 0.8510 | - |
|
674 |
+
| 3.8462 | 100 | 4.9979 | 5.0174 | 0.4760 | - |
|
675 |
+
| -1 | -1 | - | - | - | 0.0 |
|
676 |
|
677 |
|
678 |
### Framework Versions
|
model.safetensors
CHANGED
@@ -1,3 +1,3 @@
|
|
1 |
version https://git-lfs.github.com/spec/v1
|
2 |
-
oid sha256:
|
3 |
size 437951328
|
|
|
1 |
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:898bb5668ad27dc6ca8570e6e3589dec57af7f79f4e35dbebed0c57142369f52
|
3 |
size 437951328
|