pppereira3 commited on
Commit
d670bb8
·
verified ·
1 Parent(s): 18b2ba0

pushing files to the repo from the example!

Browse files
Files changed (3) hide show
  1. NYC_SQF_ARR_MLP.pkl +2 -2
  2. README.md +98 -98
  3. config.json +19 -19
NYC_SQF_ARR_MLP.pkl CHANGED
@@ -1,3 +1,3 @@
1
  version https://git-lfs.github.com/spec/v1
2
- oid sha256:2883103496d4fce4c4186266e87bda9520207bbf581be775271a7580f9beea81
3
- size 232875
 
1
  version https://git-lfs.github.com/spec/v1
2
+ oid sha256:9a93725bccee5995daf160692f51dc7153f5415704815d9c31282dbf9de4e02b
3
+ size 55005
README.md CHANGED
@@ -14,7 +14,7 @@ widget:
14
  - 1
15
  CONSENT_GIVEN_FLG:
16
  - 1
17
- - 1
18
  - 1
19
  FIREARM_FLAG:
20
  - 0
@@ -22,10 +22,10 @@ widget:
22
  - 0
23
  FRISKED_FLAG:
24
  - 0
25
- - 0
26
  - 1
27
  ISSUING_OFFICER_RANK:
28
- - 11
29
  - 9
30
  - 9
31
  KNIFE_CUTTER_FLAG:
@@ -43,39 +43,39 @@ widget:
43
  SEARCHED_FLAG:
44
  - 0
45
  - 0
46
- - 0
47
  STOP_LOCATION_PRECINCT:
48
- - 115
49
- - 83
50
- - 45
51
  SUPERVISING_OFFICER_RANK:
52
  - 12
53
  - 12
54
  - 12
55
  SUSPECT_BODY_BUILD_TYPE:
56
  - 3
57
- - 3
58
  - 2
59
  SUSPECT_HEIGHT:
60
- - 6.0
61
  - 5.7
62
- - 6.1
 
63
  SUSPECT_RACE_DESCRIPTION:
64
- - 5
65
- - 4
66
  - 7
 
 
67
  SUSPECT_REPORTED_AGE:
68
- - 26.0
69
- - 41.0
70
- - 27.757022471910112
71
  SUSPECT_SEX:
72
  - 2
73
  - 2
74
  - 2
75
  SUSPECT_WEIGHT:
76
- - 150.0
77
- - 150.0
78
- - 200.0
79
  ---
80
 
81
  # Model description
@@ -95,95 +95,95 @@ widget:
95
  <details>
96
  <summary> Click to expand </summary>
97
 
98
- | Hyperparameter | Value |
99
- |--------------------------|------------------------------------------------------------------------------------------------------|
100
- | memory | |
101
- | steps | [('scaler', MinMaxScaler()), ('mlp', MLPClassifier(hidden_layer_sizes=(104, 56, 28), verbose=True))] |
102
- | verbose | False |
103
- | scaler | MinMaxScaler() |
104
- | mlp | MLPClassifier(hidden_layer_sizes=(104, 56, 28), verbose=True) |
105
- | scaler__clip | False |
106
- | scaler__copy | True |
107
- | scaler__feature_range | (0, 1) |
108
- | mlp__activation | relu |
109
- | mlp__alpha | 0.0001 |
110
- | mlp__batch_size | auto |
111
- | mlp__beta_1 | 0.9 |
112
- | mlp__beta_2 | 0.999 |
113
- | mlp__early_stopping | False |
114
- | mlp__epsilon | 1e-08 |
115
- | mlp__hidden_layer_sizes | (104, 56, 28) |
116
- | mlp__learning_rate | constant |
117
- | mlp__learning_rate_init | 0.001 |
118
- | mlp__max_fun | 15000 |
119
- | mlp__max_iter | 200 |
120
- | mlp__momentum | 0.9 |
121
- | mlp__n_iter_no_change | 10 |
122
- | mlp__nesterovs_momentum | True |
123
- | mlp__power_t | 0.5 |
124
- | mlp__random_state | |
125
- | mlp__shuffle | True |
126
- | mlp__solver | adam |
127
- | mlp__tol | 0.0001 |
128
- | mlp__validation_fraction | 0.1 |
129
- | mlp__verbose | True |
130
- | mlp__warm_start | False |
131
 
132
  </details>
133
 
134
  ### Model Plot
135
 
136
- <style>#sk-container-id-4 {/* Definition of color scheme common for light and dark mode */--sklearn-color-text: black;--sklearn-color-line: gray;/* Definition of color scheme for unfitted estimators */--sklearn-color-unfitted-level-0: #fff5e6;--sklearn-color-unfitted-level-1: #f6e4d2;--sklearn-color-unfitted-level-2: #ffe0b3;--sklearn-color-unfitted-level-3: chocolate;/* Definition of color scheme for fitted estimators */--sklearn-color-fitted-level-0: #f0f8ff;--sklearn-color-fitted-level-1: #d4ebff;--sklearn-color-fitted-level-2: #b3dbfd;--sklearn-color-fitted-level-3: cornflowerblue;/* Specific color for light theme */--sklearn-color-text-on-default-background: var(--sg-text-color, var(--theme-code-foreground, var(--jp-content-font-color1, black)));--sklearn-color-background: var(--sg-background-color, var(--theme-background, var(--jp-layout-color0, white)));--sklearn-color-border-box: var(--sg-text-color, var(--theme-code-foreground, var(--jp-content-font-color1, black)));--sklearn-color-icon: #696969;@media (prefers-color-scheme: dark) {/* Redefinition of color scheme for dark theme */--sklearn-color-text-on-default-background: var(--sg-text-color, var(--theme-code-foreground, var(--jp-content-font-color1, white)));--sklearn-color-background: var(--sg-background-color, var(--theme-background, var(--jp-layout-color0, #111)));--sklearn-color-border-box: var(--sg-text-color, var(--theme-code-foreground, var(--jp-content-font-color1, white)));--sklearn-color-icon: #878787;}
137
- }#sk-container-id-4 {color: var(--sklearn-color-text);
138
- }#sk-container-id-4 pre {padding: 0;
139
- }#sk-container-id-4 input.sk-hidden--visually {border: 0;clip: rect(1px 1px 1px 1px);clip: rect(1px, 1px, 1px, 1px);height: 1px;margin: -1px;overflow: hidden;padding: 0;position: absolute;width: 1px;
140
- }#sk-container-id-4 div.sk-dashed-wrapped {border: 1px dashed var(--sklearn-color-line);margin: 0 0.4em 0.5em 0.4em;box-sizing: border-box;padding-bottom: 0.4em;background-color: var(--sklearn-color-background);
141
- }#sk-container-id-4 div.sk-container {/* jupyter's `normalize.less` sets `[hidden] { display: none; }`but bootstrap.min.css set `[hidden] { display: none !important; }`so we also need the `!important` here to be able to override thedefault hidden behavior on the sphinx rendered scikit-learn.org.See: https://github.com/scikit-learn/scikit-learn/issues/21755 */display: inline-block !important;position: relative;
142
- }#sk-container-id-4 div.sk-text-repr-fallback {display: none;
143
  }div.sk-parallel-item,
144
  div.sk-serial,
145
  div.sk-item {/* draw centered vertical line to link estimators */background-image: linear-gradient(var(--sklearn-color-text-on-default-background), var(--sklearn-color-text-on-default-background));background-size: 2px 100%;background-repeat: no-repeat;background-position: center center;
146
- }/* Parallel-specific style estimator block */#sk-container-id-4 div.sk-parallel-item::after {content: "";width: 100%;border-bottom: 2px solid var(--sklearn-color-text-on-default-background);flex-grow: 1;
147
- }#sk-container-id-4 div.sk-parallel {display: flex;align-items: stretch;justify-content: center;background-color: var(--sklearn-color-background);position: relative;
148
- }#sk-container-id-4 div.sk-parallel-item {display: flex;flex-direction: column;
149
- }#sk-container-id-4 div.sk-parallel-item:first-child::after {align-self: flex-end;width: 50%;
150
- }#sk-container-id-4 div.sk-parallel-item:last-child::after {align-self: flex-start;width: 50%;
151
- }#sk-container-id-4 div.sk-parallel-item:only-child::after {width: 0;
152
- }/* Serial-specific style estimator block */#sk-container-id-4 div.sk-serial {display: flex;flex-direction: column;align-items: center;background-color: var(--sklearn-color-background);padding-right: 1em;padding-left: 1em;
153
  }/* Toggleable style: style used for estimator/Pipeline/ColumnTransformer box that is
154
  clickable and can be expanded/collapsed.
155
  - Pipeline and ColumnTransformer use this feature and define the default style
156
  - Estimators will overwrite some part of the style using the `sk-estimator` class
157
- *//* Pipeline and ColumnTransformer style (default) */#sk-container-id-4 div.sk-toggleable {/* Default theme specific background. It is overwritten whether we have aspecific estimator or a Pipeline/ColumnTransformer */background-color: var(--sklearn-color-background);
158
  }/* Toggleable label */
159
- #sk-container-id-4 label.sk-toggleable__label {cursor: pointer;display: block;width: 100%;margin-bottom: 0;padding: 0.5em;box-sizing: border-box;text-align: center;
160
- }#sk-container-id-4 label.sk-toggleable__label-arrow:before {/* Arrow on the left of the label */content: "▸";float: left;margin-right: 0.25em;color: var(--sklearn-color-icon);
161
- }#sk-container-id-4 label.sk-toggleable__label-arrow:hover:before {color: var(--sklearn-color-text);
162
- }/* Toggleable content - dropdown */#sk-container-id-4 div.sk-toggleable__content {max-height: 0;max-width: 0;overflow: hidden;text-align: left;/* unfitted */background-color: var(--sklearn-color-unfitted-level-0);
163
- }#sk-container-id-4 div.sk-toggleable__content.fitted {/* fitted */background-color: var(--sklearn-color-fitted-level-0);
164
- }#sk-container-id-4 div.sk-toggleable__content pre {margin: 0.2em;border-radius: 0.25em;color: var(--sklearn-color-text);/* unfitted */background-color: var(--sklearn-color-unfitted-level-0);
165
- }#sk-container-id-4 div.sk-toggleable__content.fitted pre {/* unfitted */background-color: var(--sklearn-color-fitted-level-0);
166
- }#sk-container-id-4 input.sk-toggleable__control:checked~div.sk-toggleable__content {/* Expand drop-down */max-height: 200px;max-width: 100%;overflow: auto;
167
- }#sk-container-id-4 input.sk-toggleable__control:checked~label.sk-toggleable__label-arrow:before {content: "▾";
168
- }/* Pipeline/ColumnTransformer-specific style */#sk-container-id-4 div.sk-label input.sk-toggleable__control:checked~label.sk-toggleable__label {color: var(--sklearn-color-text);background-color: var(--sklearn-color-unfitted-level-2);
169
- }#sk-container-id-4 div.sk-label.fitted input.sk-toggleable__control:checked~label.sk-toggleable__label {background-color: var(--sklearn-color-fitted-level-2);
170
  }/* Estimator-specific style *//* Colorize estimator box */
171
- #sk-container-id-4 div.sk-estimator input.sk-toggleable__control:checked~label.sk-toggleable__label {/* unfitted */background-color: var(--sklearn-color-unfitted-level-2);
172
- }#sk-container-id-4 div.sk-estimator.fitted input.sk-toggleable__control:checked~label.sk-toggleable__label {/* fitted */background-color: var(--sklearn-color-fitted-level-2);
173
- }#sk-container-id-4 div.sk-label label.sk-toggleable__label,
174
- #sk-container-id-4 div.sk-label label {/* The background is the default theme color */color: var(--sklearn-color-text-on-default-background);
175
  }/* On hover, darken the color of the background */
176
- #sk-container-id-4 div.sk-label:hover label.sk-toggleable__label {color: var(--sklearn-color-text);background-color: var(--sklearn-color-unfitted-level-2);
177
  }/* Label box, darken color on hover, fitted */
178
- #sk-container-id-4 div.sk-label.fitted:hover label.sk-toggleable__label.fitted {color: var(--sklearn-color-text);background-color: var(--sklearn-color-fitted-level-2);
179
- }/* Estimator label */#sk-container-id-4 div.sk-label label {font-family: monospace;font-weight: bold;display: inline-block;line-height: 1.2em;
180
- }#sk-container-id-4 div.sk-label-container {text-align: center;
181
  }/* Estimator-specific */
182
- #sk-container-id-4 div.sk-estimator {font-family: monospace;border: 1px dotted var(--sklearn-color-border-box);border-radius: 0.25em;box-sizing: border-box;margin-bottom: 0.5em;/* unfitted */background-color: var(--sklearn-color-unfitted-level-0);
183
- }#sk-container-id-4 div.sk-estimator.fitted {/* fitted */background-color: var(--sklearn-color-fitted-level-0);
184
  }/* on hover */
185
- #sk-container-id-4 div.sk-estimator:hover {/* unfitted */background-color: var(--sklearn-color-unfitted-level-2);
186
- }#sk-container-id-4 div.sk-estimator.fitted:hover {/* fitted */background-color: var(--sklearn-color-fitted-level-2);
187
  }/* Specification for estimator info (e.g. "i" and "?") *//* Common style for "i" and "?" */.sk-estimator-doc-link,
188
  a:link.sk-estimator-doc-link,
189
  a:visited.sk-estimator-doc-link {float: right;font-size: smaller;line-height: 1em;font-family: monospace;background-color: var(--sklearn-color-background);border-radius: 1em;height: 1em;width: 1em;text-decoration: none !important;margin-left: 1ex;/* unfitted */border: var(--sklearn-color-unfitted-level-1) 1pt solid;color: var(--sklearn-color-unfitted-level-1);
@@ -203,22 +203,22 @@ div.sk-label-container:hover .sk-estimator-doc-link.fitted:hover,
203
  .sk-estimator-doc-link span {display: none;z-index: 9999;position: relative;font-weight: normal;right: .2ex;padding: .5ex;margin: .5ex;width: min-content;min-width: 20ex;max-width: 50ex;color: var(--sklearn-color-text);box-shadow: 2pt 2pt 4pt #999;/* unfitted */background: var(--sklearn-color-unfitted-level-0);border: .5pt solid var(--sklearn-color-unfitted-level-3);
204
  }.sk-estimator-doc-link.fitted span {/* fitted */background: var(--sklearn-color-fitted-level-0);border: var(--sklearn-color-fitted-level-3);
205
  }.sk-estimator-doc-link:hover span {display: block;
206
- }/* "?"-specific style due to the `<a>` HTML tag */#sk-container-id-4 a.estimator_doc_link {float: right;font-size: 1rem;line-height: 1em;font-family: monospace;background-color: var(--sklearn-color-background);border-radius: 1rem;height: 1rem;width: 1rem;text-decoration: none;/* unfitted */color: var(--sklearn-color-unfitted-level-1);border: var(--sklearn-color-unfitted-level-1) 1pt solid;
207
- }#sk-container-id-4 a.estimator_doc_link.fitted {/* fitted */border: var(--sklearn-color-fitted-level-1) 1pt solid;color: var(--sklearn-color-fitted-level-1);
208
  }/* On hover */
209
- #sk-container-id-4 a.estimator_doc_link:hover {/* unfitted */background-color: var(--sklearn-color-unfitted-level-3);color: var(--sklearn-color-background);text-decoration: none;
210
- }#sk-container-id-4 a.estimator_doc_link.fitted:hover {/* fitted */background-color: var(--sklearn-color-fitted-level-3);
211
  }
212
- </style><div id="sk-container-id-4" class="sk-top-container" style="overflow: auto;"><div class="sk-text-repr-fallback"><pre>Pipeline(steps=[(&#x27;scaler&#x27;, MinMaxScaler()),(&#x27;mlp&#x27;,MLPClassifier(hidden_layer_sizes=(104, 56, 28),verbose=True))])</pre><b>In a Jupyter environment, please rerun this cell to show the HTML representation or trust the notebook. <br />On GitHub, the HTML representation is unable to render, please try loading this page with nbviewer.org.</b></div><div class="sk-container" hidden><div class="sk-item sk-dashed-wrapped"><div class="sk-label-container"><div class="sk-label fitted sk-toggleable"><input class="sk-toggleable__control sk-hidden--visually" id="sk-estimator-id-10" type="checkbox" ><label for="sk-estimator-id-10" class="sk-toggleable__label fitted sk-toggleable__label-arrow fitted">&nbsp;&nbsp;Pipeline<a class="sk-estimator-doc-link fitted" rel="noreferrer" target="_blank" href="https://scikit-learn.org/1.5/modules/generated/sklearn.pipeline.Pipeline.html">?<span>Documentation for Pipeline</span></a><span class="sk-estimator-doc-link fitted">i<span>Fitted</span></span></label><div class="sk-toggleable__content fitted"><pre>Pipeline(steps=[(&#x27;scaler&#x27;, MinMaxScaler()),(&#x27;mlp&#x27;,MLPClassifier(hidden_layer_sizes=(104, 56, 28),verbose=True))])</pre></div> </div></div><div class="sk-serial"><div class="sk-item"><div class="sk-estimator fitted sk-toggleable"><input class="sk-toggleable__control sk-hidden--visually" id="sk-estimator-id-11" type="checkbox" ><label for="sk-estimator-id-11" class="sk-toggleable__label fitted sk-toggleable__label-arrow fitted">&nbsp;MinMaxScaler<a class="sk-estimator-doc-link fitted" rel="noreferrer" target="_blank" href="https://scikit-learn.org/1.5/modules/generated/sklearn.preprocessing.MinMaxScaler.html">?<span>Documentation for MinMaxScaler</span></a></label><div class="sk-toggleable__content fitted"><pre>MinMaxScaler()</pre></div> </div></div><div class="sk-item"><div class="sk-estimator fitted sk-toggleable"><input class="sk-toggleable__control sk-hidden--visually" id="sk-estimator-id-12" type="checkbox" ><label for="sk-estimator-id-12" class="sk-toggleable__label fitted sk-toggleable__label-arrow fitted">&nbsp;MLPClassifier<a class="sk-estimator-doc-link fitted" rel="noreferrer" target="_blank" href="https://scikit-learn.org/1.5/modules/generated/sklearn.neural_network.MLPClassifier.html">?<span>Documentation for MLPClassifier</span></a></label><div class="sk-toggleable__content fitted"><pre>MLPClassifier(hidden_layer_sizes=(104, 56, 28), verbose=True)</pre></div> </div></div></div></div></div></div>
213
 
214
  ## Evaluation Results
215
 
216
  | Metric | Value |
217
  |-----------|----------|
218
- | accuracy | 0.86077 |
219
- | f1 score | 0.755169 |
220
- | precision | 0.795957 |
221
- | recall | 0.718358 |
222
 
223
  # How to Get Started with the Model
224
 
 
14
  - 1
15
  CONSENT_GIVEN_FLG:
16
  - 1
17
+ - 0
18
  - 1
19
  FIREARM_FLAG:
20
  - 0
 
22
  - 0
23
  FRISKED_FLAG:
24
  - 0
25
+ - 1
26
  - 1
27
  ISSUING_OFFICER_RANK:
28
+ - 9
29
  - 9
30
  - 9
31
  KNIFE_CUTTER_FLAG:
 
43
  SEARCHED_FLAG:
44
  - 0
45
  - 0
46
+ - 1
47
  STOP_LOCATION_PRECINCT:
48
+ - 20
49
+ - 23
50
+ - 46
51
  SUPERVISING_OFFICER_RANK:
52
  - 12
53
  - 12
54
  - 12
55
  SUSPECT_BODY_BUILD_TYPE:
56
  - 3
57
+ - 2
58
  - 2
59
  SUSPECT_HEIGHT:
 
60
  - 5.7
61
+ - 5.9
62
+ - 5.1
63
  SUSPECT_RACE_DESCRIPTION:
 
 
64
  - 7
65
+ - 7
66
+ - 3
67
  SUSPECT_REPORTED_AGE:
68
+ - 30.0
69
+ - 28.0
70
+ - 24.0
71
  SUSPECT_SEX:
72
  - 2
73
  - 2
74
  - 2
75
  SUSPECT_WEIGHT:
76
+ - 160.0
77
+ - 175.0
78
+ - 210.0
79
  ---
80
 
81
  # Model description
 
95
  <details>
96
  <summary> Click to expand </summary>
97
 
98
+ | Hyperparameter | Value |
99
+ |--------------------------|--------------------------------------------------------------------|
100
+ | memory | |
101
+ | steps | [('scaler', MinMaxScaler()), ('mlp', MLPClassifier(verbose=True))] |
102
+ | verbose | False |
103
+ | scaler | MinMaxScaler() |
104
+ | mlp | MLPClassifier(verbose=True) |
105
+ | scaler__clip | False |
106
+ | scaler__copy | True |
107
+ | scaler__feature_range | (0, 1) |
108
+ | mlp__activation | relu |
109
+ | mlp__alpha | 0.0001 |
110
+ | mlp__batch_size | auto |
111
+ | mlp__beta_1 | 0.9 |
112
+ | mlp__beta_2 | 0.999 |
113
+ | mlp__early_stopping | False |
114
+ | mlp__epsilon | 1e-08 |
115
+ | mlp__hidden_layer_sizes | (100,) |
116
+ | mlp__learning_rate | constant |
117
+ | mlp__learning_rate_init | 0.001 |
118
+ | mlp__max_fun | 15000 |
119
+ | mlp__max_iter | 200 |
120
+ | mlp__momentum | 0.9 |
121
+ | mlp__n_iter_no_change | 10 |
122
+ | mlp__nesterovs_momentum | True |
123
+ | mlp__power_t | 0.5 |
124
+ | mlp__random_state | |
125
+ | mlp__shuffle | True |
126
+ | mlp__solver | adam |
127
+ | mlp__tol | 0.0001 |
128
+ | mlp__validation_fraction | 0.1 |
129
+ | mlp__verbose | True |
130
+ | mlp__warm_start | False |
131
 
132
  </details>
133
 
134
  ### Model Plot
135
 
136
+ <style>#sk-container-id-1 {/* Definition of color scheme common for light and dark mode */--sklearn-color-text: black;--sklearn-color-line: gray;/* Definition of color scheme for unfitted estimators */--sklearn-color-unfitted-level-0: #fff5e6;--sklearn-color-unfitted-level-1: #f6e4d2;--sklearn-color-unfitted-level-2: #ffe0b3;--sklearn-color-unfitted-level-3: chocolate;/* Definition of color scheme for fitted estimators */--sklearn-color-fitted-level-0: #f0f8ff;--sklearn-color-fitted-level-1: #d4ebff;--sklearn-color-fitted-level-2: #b3dbfd;--sklearn-color-fitted-level-3: cornflowerblue;/* Specific color for light theme */--sklearn-color-text-on-default-background: var(--sg-text-color, var(--theme-code-foreground, var(--jp-content-font-color1, black)));--sklearn-color-background: var(--sg-background-color, var(--theme-background, var(--jp-layout-color0, white)));--sklearn-color-border-box: var(--sg-text-color, var(--theme-code-foreground, var(--jp-content-font-color1, black)));--sklearn-color-icon: #696969;@media (prefers-color-scheme: dark) {/* Redefinition of color scheme for dark theme */--sklearn-color-text-on-default-background: var(--sg-text-color, var(--theme-code-foreground, var(--jp-content-font-color1, white)));--sklearn-color-background: var(--sg-background-color, var(--theme-background, var(--jp-layout-color0, #111)));--sklearn-color-border-box: var(--sg-text-color, var(--theme-code-foreground, var(--jp-content-font-color1, white)));--sklearn-color-icon: #878787;}
137
+ }#sk-container-id-1 {color: var(--sklearn-color-text);
138
+ }#sk-container-id-1 pre {padding: 0;
139
+ }#sk-container-id-1 input.sk-hidden--visually {border: 0;clip: rect(1px 1px 1px 1px);clip: rect(1px, 1px, 1px, 1px);height: 1px;margin: -1px;overflow: hidden;padding: 0;position: absolute;width: 1px;
140
+ }#sk-container-id-1 div.sk-dashed-wrapped {border: 1px dashed var(--sklearn-color-line);margin: 0 0.4em 0.5em 0.4em;box-sizing: border-box;padding-bottom: 0.4em;background-color: var(--sklearn-color-background);
141
+ }#sk-container-id-1 div.sk-container {/* jupyter's `normalize.less` sets `[hidden] { display: none; }`but bootstrap.min.css set `[hidden] { display: none !important; }`so we also need the `!important` here to be able to override thedefault hidden behavior on the sphinx rendered scikit-learn.org.See: https://github.com/scikit-learn/scikit-learn/issues/21755 */display: inline-block !important;position: relative;
142
+ }#sk-container-id-1 div.sk-text-repr-fallback {display: none;
143
  }div.sk-parallel-item,
144
  div.sk-serial,
145
  div.sk-item {/* draw centered vertical line to link estimators */background-image: linear-gradient(var(--sklearn-color-text-on-default-background), var(--sklearn-color-text-on-default-background));background-size: 2px 100%;background-repeat: no-repeat;background-position: center center;
146
+ }/* Parallel-specific style estimator block */#sk-container-id-1 div.sk-parallel-item::after {content: "";width: 100%;border-bottom: 2px solid var(--sklearn-color-text-on-default-background);flex-grow: 1;
147
+ }#sk-container-id-1 div.sk-parallel {display: flex;align-items: stretch;justify-content: center;background-color: var(--sklearn-color-background);position: relative;
148
+ }#sk-container-id-1 div.sk-parallel-item {display: flex;flex-direction: column;
149
+ }#sk-container-id-1 div.sk-parallel-item:first-child::after {align-self: flex-end;width: 50%;
150
+ }#sk-container-id-1 div.sk-parallel-item:last-child::after {align-self: flex-start;width: 50%;
151
+ }#sk-container-id-1 div.sk-parallel-item:only-child::after {width: 0;
152
+ }/* Serial-specific style estimator block */#sk-container-id-1 div.sk-serial {display: flex;flex-direction: column;align-items: center;background-color: var(--sklearn-color-background);padding-right: 1em;padding-left: 1em;
153
  }/* Toggleable style: style used for estimator/Pipeline/ColumnTransformer box that is
154
  clickable and can be expanded/collapsed.
155
  - Pipeline and ColumnTransformer use this feature and define the default style
156
  - Estimators will overwrite some part of the style using the `sk-estimator` class
157
+ *//* Pipeline and ColumnTransformer style (default) */#sk-container-id-1 div.sk-toggleable {/* Default theme specific background. It is overwritten whether we have aspecific estimator or a Pipeline/ColumnTransformer */background-color: var(--sklearn-color-background);
158
  }/* Toggleable label */
159
+ #sk-container-id-1 label.sk-toggleable__label {cursor: pointer;display: block;width: 100%;margin-bottom: 0;padding: 0.5em;box-sizing: border-box;text-align: center;
160
+ }#sk-container-id-1 label.sk-toggleable__label-arrow:before {/* Arrow on the left of the label */content: "▸";float: left;margin-right: 0.25em;color: var(--sklearn-color-icon);
161
+ }#sk-container-id-1 label.sk-toggleable__label-arrow:hover:before {color: var(--sklearn-color-text);
162
+ }/* Toggleable content - dropdown */#sk-container-id-1 div.sk-toggleable__content {max-height: 0;max-width: 0;overflow: hidden;text-align: left;/* unfitted */background-color: var(--sklearn-color-unfitted-level-0);
163
+ }#sk-container-id-1 div.sk-toggleable__content.fitted {/* fitted */background-color: var(--sklearn-color-fitted-level-0);
164
+ }#sk-container-id-1 div.sk-toggleable__content pre {margin: 0.2em;border-radius: 0.25em;color: var(--sklearn-color-text);/* unfitted */background-color: var(--sklearn-color-unfitted-level-0);
165
+ }#sk-container-id-1 div.sk-toggleable__content.fitted pre {/* unfitted */background-color: var(--sklearn-color-fitted-level-0);
166
+ }#sk-container-id-1 input.sk-toggleable__control:checked~div.sk-toggleable__content {/* Expand drop-down */max-height: 200px;max-width: 100%;overflow: auto;
167
+ }#sk-container-id-1 input.sk-toggleable__control:checked~label.sk-toggleable__label-arrow:before {content: "▾";
168
+ }/* Pipeline/ColumnTransformer-specific style */#sk-container-id-1 div.sk-label input.sk-toggleable__control:checked~label.sk-toggleable__label {color: var(--sklearn-color-text);background-color: var(--sklearn-color-unfitted-level-2);
169
+ }#sk-container-id-1 div.sk-label.fitted input.sk-toggleable__control:checked~label.sk-toggleable__label {background-color: var(--sklearn-color-fitted-level-2);
170
  }/* Estimator-specific style *//* Colorize estimator box */
171
+ #sk-container-id-1 div.sk-estimator input.sk-toggleable__control:checked~label.sk-toggleable__label {/* unfitted */background-color: var(--sklearn-color-unfitted-level-2);
172
+ }#sk-container-id-1 div.sk-estimator.fitted input.sk-toggleable__control:checked~label.sk-toggleable__label {/* fitted */background-color: var(--sklearn-color-fitted-level-2);
173
+ }#sk-container-id-1 div.sk-label label.sk-toggleable__label,
174
+ #sk-container-id-1 div.sk-label label {/* The background is the default theme color */color: var(--sklearn-color-text-on-default-background);
175
  }/* On hover, darken the color of the background */
176
+ #sk-container-id-1 div.sk-label:hover label.sk-toggleable__label {color: var(--sklearn-color-text);background-color: var(--sklearn-color-unfitted-level-2);
177
  }/* Label box, darken color on hover, fitted */
178
+ #sk-container-id-1 div.sk-label.fitted:hover label.sk-toggleable__label.fitted {color: var(--sklearn-color-text);background-color: var(--sklearn-color-fitted-level-2);
179
+ }/* Estimator label */#sk-container-id-1 div.sk-label label {font-family: monospace;font-weight: bold;display: inline-block;line-height: 1.2em;
180
+ }#sk-container-id-1 div.sk-label-container {text-align: center;
181
  }/* Estimator-specific */
182
+ #sk-container-id-1 div.sk-estimator {font-family: monospace;border: 1px dotted var(--sklearn-color-border-box);border-radius: 0.25em;box-sizing: border-box;margin-bottom: 0.5em;/* unfitted */background-color: var(--sklearn-color-unfitted-level-0);
183
+ }#sk-container-id-1 div.sk-estimator.fitted {/* fitted */background-color: var(--sklearn-color-fitted-level-0);
184
  }/* on hover */
185
+ #sk-container-id-1 div.sk-estimator:hover {/* unfitted */background-color: var(--sklearn-color-unfitted-level-2);
186
+ }#sk-container-id-1 div.sk-estimator.fitted:hover {/* fitted */background-color: var(--sklearn-color-fitted-level-2);
187
  }/* Specification for estimator info (e.g. "i" and "?") *//* Common style for "i" and "?" */.sk-estimator-doc-link,
188
  a:link.sk-estimator-doc-link,
189
  a:visited.sk-estimator-doc-link {float: right;font-size: smaller;line-height: 1em;font-family: monospace;background-color: var(--sklearn-color-background);border-radius: 1em;height: 1em;width: 1em;text-decoration: none !important;margin-left: 1ex;/* unfitted */border: var(--sklearn-color-unfitted-level-1) 1pt solid;color: var(--sklearn-color-unfitted-level-1);
 
203
  .sk-estimator-doc-link span {display: none;z-index: 9999;position: relative;font-weight: normal;right: .2ex;padding: .5ex;margin: .5ex;width: min-content;min-width: 20ex;max-width: 50ex;color: var(--sklearn-color-text);box-shadow: 2pt 2pt 4pt #999;/* unfitted */background: var(--sklearn-color-unfitted-level-0);border: .5pt solid var(--sklearn-color-unfitted-level-3);
204
  }.sk-estimator-doc-link.fitted span {/* fitted */background: var(--sklearn-color-fitted-level-0);border: var(--sklearn-color-fitted-level-3);
205
  }.sk-estimator-doc-link:hover span {display: block;
206
+ }/* "?"-specific style due to the `<a>` HTML tag */#sk-container-id-1 a.estimator_doc_link {float: right;font-size: 1rem;line-height: 1em;font-family: monospace;background-color: var(--sklearn-color-background);border-radius: 1rem;height: 1rem;width: 1rem;text-decoration: none;/* unfitted */color: var(--sklearn-color-unfitted-level-1);border: var(--sklearn-color-unfitted-level-1) 1pt solid;
207
+ }#sk-container-id-1 a.estimator_doc_link.fitted {/* fitted */border: var(--sklearn-color-fitted-level-1) 1pt solid;color: var(--sklearn-color-fitted-level-1);
208
  }/* On hover */
209
+ #sk-container-id-1 a.estimator_doc_link:hover {/* unfitted */background-color: var(--sklearn-color-unfitted-level-3);color: var(--sklearn-color-background);text-decoration: none;
210
+ }#sk-container-id-1 a.estimator_doc_link.fitted:hover {/* fitted */background-color: var(--sklearn-color-fitted-level-3);
211
  }
212
+ </style><div id="sk-container-id-1" class="sk-top-container" style="overflow: auto;"><div class="sk-text-repr-fallback"><pre>Pipeline(steps=[(&#x27;scaler&#x27;, MinMaxScaler()),(&#x27;mlp&#x27;, MLPClassifier(verbose=True))])</pre><b>In a Jupyter environment, please rerun this cell to show the HTML representation or trust the notebook. <br />On GitHub, the HTML representation is unable to render, please try loading this page with nbviewer.org.</b></div><div class="sk-container" hidden><div class="sk-item sk-dashed-wrapped"><div class="sk-label-container"><div class="sk-label fitted sk-toggleable"><input class="sk-toggleable__control sk-hidden--visually" id="sk-estimator-id-1" type="checkbox" ><label for="sk-estimator-id-1" class="sk-toggleable__label fitted sk-toggleable__label-arrow fitted">&nbsp;&nbsp;Pipeline<a class="sk-estimator-doc-link fitted" rel="noreferrer" target="_blank" href="https://scikit-learn.org/1.5/modules/generated/sklearn.pipeline.Pipeline.html">?<span>Documentation for Pipeline</span></a><span class="sk-estimator-doc-link fitted">i<span>Fitted</span></span></label><div class="sk-toggleable__content fitted"><pre>Pipeline(steps=[(&#x27;scaler&#x27;, MinMaxScaler()),(&#x27;mlp&#x27;, MLPClassifier(verbose=True))])</pre></div> </div></div><div class="sk-serial"><div class="sk-item"><div class="sk-estimator fitted sk-toggleable"><input class="sk-toggleable__control sk-hidden--visually" id="sk-estimator-id-2" type="checkbox" ><label for="sk-estimator-id-2" class="sk-toggleable__label fitted sk-toggleable__label-arrow fitted">&nbsp;MinMaxScaler<a class="sk-estimator-doc-link fitted" rel="noreferrer" target="_blank" href="https://scikit-learn.org/1.5/modules/generated/sklearn.preprocessing.MinMaxScaler.html">?<span>Documentation for MinMaxScaler</span></a></label><div class="sk-toggleable__content fitted"><pre>MinMaxScaler()</pre></div> </div></div><div class="sk-item"><div class="sk-estimator fitted sk-toggleable"><input class="sk-toggleable__control sk-hidden--visually" id="sk-estimator-id-3" type="checkbox" ><label for="sk-estimator-id-3" class="sk-toggleable__label fitted sk-toggleable__label-arrow fitted">&nbsp;MLPClassifier<a class="sk-estimator-doc-link fitted" rel="noreferrer" target="_blank" href="https://scikit-learn.org/1.5/modules/generated/sklearn.neural_network.MLPClassifier.html">?<span>Documentation for MLPClassifier</span></a></label><div class="sk-toggleable__content fitted"><pre>MLPClassifier(verbose=True)</pre></div> </div></div></div></div></div></div>
213
 
214
  ## Evaluation Results
215
 
216
  | Metric | Value |
217
  |-----------|----------|
218
+ | accuracy | 0.863536 |
219
+ | f1 score | 0.77677 |
220
+ | precision | 0.818878 |
221
+ | recall | 0.73878 |
222
 
223
  # How to Get Started with the Model
224
 
config.json CHANGED
@@ -30,7 +30,7 @@
30
  ],
31
  "CONSENT_GIVEN_FLG": [
32
  1,
33
- 1,
34
  1
35
  ],
36
  "FIREARM_FLAG": [
@@ -40,11 +40,11 @@
40
  ],
41
  "FRISKED_FLAG": [
42
  0,
43
- 0,
44
  1
45
  ],
46
  "ISSUING_OFFICER_RANK": [
47
- 11,
48
  9,
49
  9
50
  ],
@@ -66,12 +66,12 @@
66
  "SEARCHED_FLAG": [
67
  0,
68
  0,
69
- 0
70
  ],
71
  "STOP_LOCATION_PRECINCT": [
72
- 115,
73
- 83,
74
- 45
75
  ],
76
  "SUPERVISING_OFFICER_RANK": [
77
  12,
@@ -80,23 +80,23 @@
80
  ],
81
  "SUSPECT_BODY_BUILD_TYPE": [
82
  3,
83
- 3,
84
  2
85
  ],
86
  "SUSPECT_HEIGHT": [
87
- 6.0,
88
  5.7,
89
- 6.1
 
90
  ],
91
  "SUSPECT_RACE_DESCRIPTION": [
92
- 5,
93
- 4,
94
- 7
95
  ],
96
  "SUSPECT_REPORTED_AGE": [
97
- 26.0,
98
- 41.0,
99
- 27.757022471910112
100
  ],
101
  "SUSPECT_SEX": [
102
  2,
@@ -104,9 +104,9 @@
104
  2
105
  ],
106
  "SUSPECT_WEIGHT": [
107
- 150.0,
108
- 150.0,
109
- 200.0
110
  ]
111
  },
112
  "model": {
 
30
  ],
31
  "CONSENT_GIVEN_FLG": [
32
  1,
33
+ 0,
34
  1
35
  ],
36
  "FIREARM_FLAG": [
 
40
  ],
41
  "FRISKED_FLAG": [
42
  0,
43
+ 1,
44
  1
45
  ],
46
  "ISSUING_OFFICER_RANK": [
47
+ 9,
48
  9,
49
  9
50
  ],
 
66
  "SEARCHED_FLAG": [
67
  0,
68
  0,
69
+ 1
70
  ],
71
  "STOP_LOCATION_PRECINCT": [
72
+ 20,
73
+ 23,
74
+ 46
75
  ],
76
  "SUPERVISING_OFFICER_RANK": [
77
  12,
 
80
  ],
81
  "SUSPECT_BODY_BUILD_TYPE": [
82
  3,
83
+ 2,
84
  2
85
  ],
86
  "SUSPECT_HEIGHT": [
 
87
  5.7,
88
+ 5.9,
89
+ 5.1
90
  ],
91
  "SUSPECT_RACE_DESCRIPTION": [
92
+ 7,
93
+ 7,
94
+ 3
95
  ],
96
  "SUSPECT_REPORTED_AGE": [
97
+ 30.0,
98
+ 28.0,
99
+ 24.0
100
  ],
101
  "SUSPECT_SEX": [
102
  2,
 
104
  2
105
  ],
106
  "SUSPECT_WEIGHT": [
107
+ 160.0,
108
+ 175.0,
109
+ 210.0
110
  ]
111
  },
112
  "model": {