PPO-LunarLander-v2 / config.json
poiug07's picture
upload model to hub
8758785
raw
history blame
14.5 kB
{"policy_class": {":type:": "<class 'abc.ABCMeta'>", ":serialized:": "gASVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==", "__module__": "stable_baselines3.common.policies", "__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param sde_net_arch: Network architecture for extracting features\n when using gSDE. If None, the latent features from the policy will be used.\n Pass an empty list to use the states as features.\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ", "__init__": "<function ActorCriticPolicy.__init__ at 0x7fb551f6d3b0>", "_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x7fb551f6d440>", "reset_noise": "<function ActorCriticPolicy.reset_noise at 0x7fb551f6d4d0>", "_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x7fb551f6d560>", "_build": "<function ActorCriticPolicy._build at 0x7fb551f6d5f0>", "forward": "<function ActorCriticPolicy.forward at 0x7fb551f6d680>", "_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x7fb551f6d710>", "_predict": "<function ActorCriticPolicy._predict at 0x7fb551f6d7a0>", "evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x7fb551f6d830>", "get_distribution": "<function ActorCriticPolicy.get_distribution at 0x7fb551f6d8c0>", "predict_values": "<function ActorCriticPolicy.predict_values at 0x7fb551f6d950>", "__abstractmethods__": "frozenset()", "_abc_impl": "<_abc_data object at 0x7fb551fb7ab0>"}, "verbose": 1, "policy_kwargs": {}, "observation_space": {":type:": "<class 'gym.spaces.box.Box'>", ":serialized:": "gASVwwEAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLCIWUjANsb3eUjBVudW1weS5jb3JlLm11bHRpYXJyYXmUjAxfcmVjb25zdHJ1Y3SUk5RoBowHbmRhcnJheZSTlEsAhZRDAWKUh5RSlChLAUsIhZRoColDIAAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/lHSUYowEaGlnaJRoEmgUSwCFlGgWh5RSlChLAUsIhZRoColDIAAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/lHSUYowNYm91bmRlZF9iZWxvd5RoEmgUSwCFlGgWh5RSlChLAUsIhZRoB4wCYjGUiYiHlFKUKEsDjAF8lE5OTkr/////Sv////9LAHSUYolDCAAAAAAAAAAAlHSUYowNYm91bmRlZF9hYm92ZZRoEmgUSwCFlGgWh5RSlChLAUsIhZRoKolDCAAAAAAAAAAAlHSUYowKX25wX3JhbmRvbZROdWIu", "dtype": "float32", "_shape": [8], "low": "[-inf -inf -inf -inf -inf -inf -inf -inf]", "high": "[inf inf inf inf inf inf inf inf]", "bounded_below": "[False False False False False False False False]", "bounded_above": "[False False False False False False False False]", "_np_random": null}, "action_space": {":type:": "<class 'gym.spaces.discrete.Discrete'>", ":serialized:": "gASVggAAAAAAAACME2d5bS5zcGFjZXMuZGlzY3JldGWUjAhEaXNjcmV0ZZSTlCmBlH2UKIwBbpRLBIwGX3NoYXBllCmMBWR0eXBllIwFbnVtcHmUaAeTlIwCaTiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYowKX25wX3JhbmRvbZROdWIu", "n": 4, "_shape": [], "dtype": "int64", "_np_random": null}, "n_envs": 16, "num_timesteps": 507904, "_total_timesteps": 500000, "_num_timesteps_at_start": 0, "seed": null, "action_noise": null, "start_time": 1653785013.2892346, "learning_rate": 0.0003, "tensorboard_log": null, "lr_schedule": {":type:": "<class 'function'>", ":serialized:": "gASVvwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwNX2J1aWx0aW5fdHlwZZSTlIwKTGFtYmRhVHlwZZSFlFKUKGgCjAhDb2RlVHlwZZSFlFKUKEsBSwBLAUsBSxNDBIgAUwCUToWUKYwBX5SFlIxIL3Vzci9sb2NhbC9saWIvcHl0aG9uMy43L2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lIwEZnVuY5RLgEMCAAGUjAN2YWyUhZQpdJRSlH2UKIwLX19wYWNrYWdlX1+UjBhzdGFibGVfYmFzZWxpbmVzMy5jb21tb26UjAhfX25hbWVfX5SMHnN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi51dGlsc5SMCF9fZmlsZV9flIxIL3Vzci9sb2NhbC9saWIvcHl0aG9uMy43L2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaCB9lH2UKGgXaA6MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgYjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz8zqSowVTJhhZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"}, "_last_obs": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gASVjQIAAAAAAACMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMDF9yZWNvbnN0cnVjdJSTlIwFbnVtcHmUjAduZGFycmF5lJOUSwCFlEMBYpSHlFKUKEsBSxBLCIaUaAOMBWR0eXBllJOUjAJmNJSJiIeUUpQoSwOMATyUTk5OSv////9K/////0sAdJRiiUIAAgAA3TuDvuNiDD2qoKA8Fn8Hvafqnr6W6sS9AAAAAAAAgD9NKFe9bJ21P5qXAr/kvKy9jLM/vBnOor0AAAAAAAAAAPokTD52+gq8oeWrOkOYPbiOSmy9hoDIuQAAgD8AAIA/gNOVvf6Lqj8GPye/drC0vuVo/zul/v+9AAAAAAAAAACWUd6+A81AvC69OLoJAZE4VUoKvltAgTkAAIA/AACAP2b0E7zsge+5dzexOJMhxrPT1Gs7PafQtwAAgD8AAIA/QGjXPR8d/rkCt3Y60SzGNK1UYrvAgZG5AACAPwAAgD8gpp4+j14tvH0AfDpgCBm4BCpxvR01j7kAAIA/AACAP0I84b5vuak+3pdNPbQwi77N2uA88acgvQAAAAAAAAAAzXMZvlc+RzzxRcS6++y8OLSX4L3eoxQ6AACAPwAAgD+gUpk+jwd3P0iWAD/bXKa+mzlOPmAsSz0AAAAAAAAAANr/3L1c60G6lB+cOibtGjZQDIo6z0m1uQAAgD8AAIA/q9GGvp1FM70jd9o6WdKkOSRKmz4x6RS6AACAPwAAgD/a1dg9jy5muu+9u7pWR1i2R+mUO3ZW1zkAAAAAAACAP2Yrjr2x7LE/xfHdvj+3T75mPNy8/rbYvQAAAAAAAAAAgKgEvcP9KLpLxnk7paGgOBjXCjuVohO6AACAPwAAgD+UdJRiLg=="}, "_last_episode_starts": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gASVmAAAAAAAAACMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMDF9yZWNvbnN0cnVjdJSTlIwFbnVtcHmUjAduZGFycmF5lJOUSwCFlEMBYpSHlFKUKEsBSxCFlGgDjAVkdHlwZZSTlIwCYjGUiYiHlFKUKEsDjAF8lE5OTkr/////Sv////9LAHSUYolDEAAAAAAAAAAAAAAAAAAAAACUdJRiLg=="}, "_last_original_obs": null, "_episode_num": 0, "use_sde": false, "sde_sample_freq": -1, "_current_progress_remaining": -0.015808000000000044, "ep_info_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gASVcRAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMInUfF/x2BIcCUhpRSlIwBbJRL94wBdJRHQHkAuMIeHSF1fZQoaAZoCWgPQwjjqNxELfBSQJSGlFKUaBVN6ANoFkdAeQDJQ+EAYHV9lChoBmgJaA9DCFneVQ+Y+zZAlIaUUpRoFUv9aBZHQHkNlCkXUH91fZQoaAZoCWgPQwhgArfuZi5lQJSGlFKUaBVN6ANoFkdAeR3zAN5MUXV9lChoBmgJaA9DCJ5haksd9GFAlIaUUpRoFU3oA2gWR0B5IkPUaybAdX2UKGgGaAloD0MIjspN1NLXW0CUhpRSlGgVTegDaBZHQHk4tBv73wl1fZQoaAZoCWgPQwjWNzC5Ub1XQJSGlFKUaBVN6ANoFkdAeTntkWhysHV9lChoBmgJaA9DCDnVWpiFxixAlIaUUpRoFUvSaBZHQHlQVCkXUH91fZQoaAZoCWgPQwhDIJc48ppgQJSGlFKUaBVN6ANoFkdAeVSevpyIYXV9lChoBmgJaA9DCMzSTs3lHEJAlIaUUpRoFUv6aBZHQHlfBjvuw5h1fZQoaAZoCWgPQwhSDfs9sXdfQJSGlFKUaBVN6ANoFkdAeWCaY/mknHV9lChoBmgJaA9DCAsMWd3qAllAlIaUUpRoFU3oA2gWR0B5YrMt9QXRdX2UKGgGaAloD0MIio9PyM77GECUhpRSlGgVS+NoFkdAeZuw1ivxIHV9lChoBmgJaA9DCH3LnC6LSf0/lIaUUpRoFUv/aBZHQHmfXHJcPe51fZQoaAZoCWgPQwgQQdXoVbphQJSGlFKUaBVN6ANoFkdAeaHAR02ca3V9lChoBmgJaA9DCHJsPUO41mFAlIaUUpRoFU3oA2gWR0B6INi+cpb2dX2UKGgGaAloD0MIsTIa+byGXECUhpRSlGgVTegDaBZHQHokDJhfBvd1fZQoaAZoCWgPQwgNUBpqFKFbQJSGlFKUaBVN6ANoFkdAeifVRDTjN3V9lChoBmgJaA9DCOV/8nfvvDzAlIaUUpRoFUvmaBZHQHotjpxFRYR1fZQoaAZoCWgPQwi4eHjPgaVZQJSGlFKUaBVN6ANoFkdAejatOEdvKnV9lChoBmgJaA9DCNqNPuYDuihAlIaUUpRoFU09AWgWR0B6RuxD9fkWdX2UKGgGaAloD0MIon2s4LemXUCUhpRSlGgVTegDaBZHQHpKIwmE5AB1fZQoaAZoCWgPQwjOiNLeYAlhQJSGlFKUaBVN6ANoFkdAekpxtpEhJXV9lChoBmgJaA9DCGA6rdugWVxAlIaUUpRoFU3oA2gWR0B6SoJE6T4ddX2UKGgGaAloD0MI0Vj7O9uLXECUhpRSlGgVTegDaBZHQHpW8RUWEbp1fZQoaAZoCWgPQwhf1O5XAYo3QJSGlFKUaBVLxmgWR0B6Y7tv4ubrdX2UKGgGaAloD0MIDFacai1QNMCUhpRSlGgVS8RoFkdAenRg4ffXPXV9lChoBmgJaA9DCCoDB7T05GJAlIaUUpRoFU3oA2gWR0B6grIhhYvGdX2UKGgGaAloD0MIpaFGIcmYXECUhpRSlGgVTegDaBZHQHqECngpBop1fZQoaAZoCWgPQwjjNa/qrGNbQJSGlFKUaBVN6ANoFkdAeprJnxri2nV9lChoBmgJaA9DCBKfO8H+aFRAlIaUUpRoFU3oA2gWR0B6nwhcJMQFdX2UKGgGaAloD0MINbdCWI2VQsCUhpRSlGgVTQIBaBZHQHqjXVbzK9x1fZQoaAZoCWgPQwjCNAwfEQcyQJSGlFKUaBVN6ANoFkdAeqr1fmcOLHV9lChoBmgJaA9DCMTNqWQAiDBAlIaUUpRoFUv2aBZHQHqxp2dNFjN1fZQoaAZoCWgPQwhGDDuMyZxlQJSGlFKUaBVNTgNoFkdAer45NXYDknV9lChoBmgJaA9DCAaDa+7oYURAlIaUUpRoFUv2aBZHQHrfKmsNlRR1fZQoaAZoCWgPQwidn+I48LIgwJSGlFKUaBVNFgFoFkdAeuLUD+zdDnV9lChoBmgJaA9DCLJl+boM7zhAlIaUUpRoFUvLaBZHQHtjuotL+P11fZQoaAZoCWgPQwgJNNjUeS1eQJSGlFKUaBVN6ANoFkdAe2koUzsQd3V9lChoBmgJaA9DCKqezD/6mE9AlIaUUpRoFU3oA2gWR0B7a/lmvnr6dX2UKGgGaAloD0MIVRUaiGXnWUCUhpRSlGgVTegDaBZHQHtvH5nDiwV1fZQoaAZoCWgPQwjbF9ALd7VfQJSGlFKUaBVN6ANoFkdAe3RSE12q1nV9lChoBmgJaA9DCAaDa+7oZ11AlIaUUpRoFU3oA2gWR0B7itxzaK1pdX2UKGgGaAloD0MIHSCYo0fvYECUhpRSlGgVTeIDaBZHQHuMQ9zOopB1fZQoaAZoCWgPQwjO/6uOHKNOQJSGlFKUaBVN6ANoFkdAe42/MW43FXV9lChoBmgJaA9DCDPiAtAoHFtAlIaUUpRoFU3oA2gWR0B7mwny/bj+dX2UKGgGaAloD0MIN1MhHolVXUCUhpRSlGgVTegDaBZHQHvKpdKNAC51fZQoaAZoCWgPQwhk6q7sglZZQJSGlFKUaBVN6ANoFkdAe8wHsTnJT3V9lChoBmgJaA9DCOAvZktW9SXAlIaUUpRoFU0LAWgWR0B7zqO6unuRdX2UKGgGaAloD0MIJm2q7pEMYECUhpRSlGgVTegDaBZHQHvkqTfR/mV1fZQoaAZoCWgPQwjDu1zEd/toQJSGlFKUaBVNDgJoFkdAe+6NsFdLQHV9lChoBmgJaA9DCA/Tvrm/pE5AlIaUUpRoFU3oA2gWR0B79fS2H+IedX2UKGgGaAloD0MIYwgAjj3rVECUhpRSlGgVTegDaBZHQHv9hdpqREF1fZQoaAZoCWgPQwgCnN7F+0lQwJSGlFKUaBVN7QFoFkdAfAj0KJEYwnV9lChoBmgJaA9DCORNfotOml9AlIaUUpRoFU3oA2gWR0B8C3TtsvZidX2UKGgGaAloD0MIKVlOQuk9YkCUhpRSlGgVTegDaBZHQHwxe2d/axp1fZQoaAZoCWgPQwjajT7mg3dpQJSGlFKUaBVNuAFoFkdAfEEWf9P1tnV9lChoBmgJaA9DCFA1ejVAI1tAlIaUUpRoFU3oA2gWR0B8bFZRsMy8dX2UKGgGaAloD0MIyD8ziA8CXECUhpRSlGgVTegDaBZHQHxyVYdQwbl1fZQoaAZoCWgPQwh48umxLVxkQJSGlFKUaBVN6ANoFkdAfMNRigCfYnV9lChoBmgJaA9DCEdYVMTp0lpAlIaUUpRoFU3oA2gWR0B8yeCUX531dX2UKGgGaAloD0MIg1Dex9G9XECUhpRSlGgVTegDaBZHQHzkxJmNBGB1fZQoaAZoCWgPQwilS/+S1JppQJSGlFKUaBVN+wFoFkdAfOZq2BreqXV9lChoBmgJaA9DCEOs/gjDVFlAlIaUUpRoFU3oA2gWR0B8+SmHgxagdX2UKGgGaAloD0MIL6LtmLr7WECUhpRSlGgVTegDaBZHQH0x03n6l+F1fZQoaAZoCWgPQwjmBkMdVuZdQJSGlFKUaBVN6ANoFkdAfTaS2phnanV9lChoBmgJaA9DCFFOtKuQ/jbAlIaUUpRoFU1OAWgWR0B9SJk8RtgsdX2UKGgGaAloD0MIaqD5nLsNYECUhpRSlGgVTegDaBZHQH1PIsNDtw91fZQoaAZoCWgPQwgBT1q4rHpJwJSGlFKUaBVNPAFoFkdAfVfi6xxDLXV9lChoBmgJaA9DCK4RwTi4HldAlIaUUpRoFU3oA2gWR0B9WfJkoWpIdX2UKGgGaAloD0MIWKzhIvdaW0CUhpRSlGgVTegDaBZHQH1hc6ij+Jh1fZQoaAZoCWgPQwhwPnWsUvlXQJSGlFKUaBVN6ANoFkdAfWjUXpGFz3V9lChoBmgJaA9DCNMyUu+pvClAlIaUUpRoFUu5aBZHQH1rOfmLcbl1fZQoaAZoCWgPQwgrw7gbROZcQJSGlFKUaBVN6ANoFkdAfXWOKfnOjnV9lChoBmgJaA9DCHfzVIdcs2BAlIaUUpRoFU3oA2gWR0B9mRfCyhSMdX2UKGgGaAloD0MIgjl6/N4mH0CUhpRSlGgVTSQBaBZHQH2ii8rZrYZ1fZQoaAZoCWgPQwjcniCx3WVZQJSGlFKUaBVN6ANoFkdAfagKHfuTinV9lChoBmgJaA9DCDbqIRpdS2FAlIaUUpRoFU3oA2gWR0B9zZK6FuejdX2UKGgGaAloD0MIxJlfzQGgXUCUhpRSlGgVTegDaBZHQH3SumFajet1fZQoaAZoCWgPQwgQyvs4mkdfQJSGlFKUaBVN6ANoFkdAfdiyEL6UJXV9lChoBmgJaA9DCPci2o6poyPAlIaUUpRoFUv1aBZHQH4nM5S3sol1fZQoaAZoCWgPQwjDnnb46zFgQJSGlFKUaBVN6ANoFkdAfihjurp7kXV9lChoBmgJaA9DCG77HvXXvlhAlIaUUpRoFU3oA2gWR0B+PdcUuctodX2UKGgGaAloD0MILqpFRDGDakCUhpRSlGgVTWABaBZHQH5G7ihnJ1d1fZQoaAZoCWgPQwhqbRrba+EbwJSGlFKUaBVL22gWR0B+SzTw2ETQdX2UKGgGaAloD0MI4ZUkz/WEWECUhpRSlGgVTegDaBZHQH56elj3Eht1fZQoaAZoCWgPQwg42nHD75VdQJSGlFKUaBVN6ANoFkdAfo3hqCYkV3V9lChoBmgJaA9DCE3aVN0j7F9AlIaUUpRoFU3oA2gWR0B+k0T9KmKqdX2UKGgGaAloD0MIp1t2iH+mYkCUhpRSlGgVTegDaBZHQH6ah2W6bvx1fZQoaAZoCWgPQwj/klSmmDMUQJSGlFKUaBVNegFoFkdAfqFvJiiItXV9lChoBmgJaA9DCMJLcOoDhV1AlIaUUpRoFU3oA2gWR0B+osTK1XvIdX2UKGgGaAloD0MINpTai2goU0CUhpRSlGgVTegDaBZHQH6p8QiA2AJ1fZQoaAZoCWgPQwgGED6UaINcQJSGlFKUaBVN6ANoFkdAfqzl3Qla83V9lChoBmgJaA9DCBqLprOTdFhAlIaUUpRoFU3oA2gWR0B+tpda+vhZdX2UKGgGaAloD0MIiBOYTuvKXUCUhpRSlGgVTegDaBZHQH7hvGyX2M91fZQoaAZoCWgPQwj+RdCYyZZoQJSGlFKUaBVNQwNoFkdAfuPz41xbS3V9lChoBmgJaA9DCJEpH4IqPmFAlIaUUpRoFU3oA2gWR0B/CaEug6EKdX2UKGgGaAloD0MI36mAe56MX0CUhpRSlGgVTegDaBZHQH8UQQDmr811fZQoaAZoCWgPQwhGmngHeHINQJSGlFKUaBVLwmgWR0B/FT8R+SbIdX2UKGgGaAloD0MIstgmFY1kV0CUhpRSlGgVTegDaBZHQH8VghW5pal1ZS4="}, "ep_success_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gASVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="}, "_n_updates": 124, "n_steps": 1024, "gamma": 0.999, "gae_lambda": 0.98, "ent_coef": 0.01, "vf_coef": 0.5, "max_grad_norm": 0.5, "batch_size": 64, "n_epochs": 4, "clip_range": {":type:": "<class 'function'>", ":serialized:": "gASVvwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwNX2J1aWx0aW5fdHlwZZSTlIwKTGFtYmRhVHlwZZSFlFKUKGgCjAhDb2RlVHlwZZSFlFKUKEsBSwBLAUsBSxNDBIgAUwCUToWUKYwBX5SFlIxIL3Vzci9sb2NhbC9saWIvcHl0aG9uMy43L2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lIwEZnVuY5RLgEMCAAGUjAN2YWyUhZQpdJRSlH2UKIwLX19wYWNrYWdlX1+UjBhzdGFibGVfYmFzZWxpbmVzMy5jb21tb26UjAhfX25hbWVfX5SMHnN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi51dGlsc5SMCF9fZmlsZV9flIxIL3Vzci9sb2NhbC9saWIvcHl0aG9uMy43L2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaCB9lH2UKGgXaA6MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgYjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz/JmZmZmZmahZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"}, "clip_range_vf": null, "normalize_advantage": true, "target_kl": null, "system_info": {"OS": "Linux-5.4.188+-x86_64-with-Ubuntu-18.04-bionic #1 SMP Sun Apr 24 10:03:06 PDT 2022", "Python": "3.7.13", "Stable-Baselines3": "1.5.0", "PyTorch": "1.11.0+cu113", "GPU Enabled": "True", "Numpy": "1.21.6", "Gym": "0.21.0"}}