upload model to hub
Browse files- .gitattributes +1 -0
- README.md +36 -0
- config.json +1 -0
- dqn-LunarLander-v2.zip +3 -0
- dqn-LunarLander-v2/_stable_baselines3_version +1 -0
- dqn-LunarLander-v2/data +115 -0
- dqn-LunarLander-v2/policy.optimizer.pth +3 -0
- dqn-LunarLander-v2/policy.pth +3 -0
- dqn-LunarLander-v2/pytorch_variables.pth +3 -0
- dqn-LunarLander-v2/system_info.txt +7 -0
- replay.mp4 +3 -0
- results.json +1 -0
.gitattributes
CHANGED
@@ -25,3 +25,4 @@ saved_model/**/* filter=lfs diff=lfs merge=lfs -text
|
|
25 |
*.zip filter=lfs diff=lfs merge=lfs -text
|
26 |
*.zstandard filter=lfs diff=lfs merge=lfs -text
|
27 |
*tfevents* filter=lfs diff=lfs merge=lfs -text
|
|
|
|
25 |
*.zip filter=lfs diff=lfs merge=lfs -text
|
26 |
*.zstandard filter=lfs diff=lfs merge=lfs -text
|
27 |
*tfevents* filter=lfs diff=lfs merge=lfs -text
|
28 |
+
*.mp4 filter=lfs diff=lfs merge=lfs -text
|
README.md
ADDED
@@ -0,0 +1,36 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
---
|
2 |
+
library_name: stable-baselines3
|
3 |
+
tags:
|
4 |
+
- LunarLander-v2
|
5 |
+
- deep-reinforcement-learning
|
6 |
+
- reinforcement-learning
|
7 |
+
- stable-baselines3
|
8 |
+
model-index:
|
9 |
+
- name: DQN
|
10 |
+
results:
|
11 |
+
- metrics:
|
12 |
+
- type: mean_reward
|
13 |
+
value: -53.92 +/- 90.80
|
14 |
+
name: mean_reward
|
15 |
+
task:
|
16 |
+
type: reinforcement-learning
|
17 |
+
name: reinforcement-learning
|
18 |
+
dataset:
|
19 |
+
name: LunarLander-v2
|
20 |
+
type: LunarLander-v2
|
21 |
+
---
|
22 |
+
|
23 |
+
# **DQN** Agent playing **LunarLander-v2**
|
24 |
+
This is a trained model of a **DQN** agent playing **LunarLander-v2**
|
25 |
+
using the [stable-baselines3 library](https://github.com/DLR-RM/stable-baselines3).
|
26 |
+
|
27 |
+
## Usage (with Stable-baselines3)
|
28 |
+
TODO: Add your code
|
29 |
+
|
30 |
+
|
31 |
+
```python
|
32 |
+
from stable_baselines3 import ...
|
33 |
+
from huggingface_sb3 import load_from_hub
|
34 |
+
|
35 |
+
...
|
36 |
+
```
|
config.json
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
{"policy_class": {":type:": "<class 'abc.ABCMeta'>", ":serialized:": "gASVMAAAAAAAAACMHnN0YWJsZV9iYXNlbGluZXMzLmRxbi5wb2xpY2llc5SMCURRTlBvbGljeZSTlC4=", "__module__": "stable_baselines3.dqn.policies", "__doc__": "\n Policy class with Q-Value Net and target net for DQN\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ", "__init__": "<function DQNPolicy.__init__ at 0x7fb551f31560>", "_build": "<function DQNPolicy._build at 0x7fb551f315f0>", "make_q_net": "<function DQNPolicy.make_q_net at 0x7fb551f31680>", "forward": "<function DQNPolicy.forward at 0x7fb551f31710>", "_predict": "<function DQNPolicy._predict at 0x7fb551f317a0>", "_get_constructor_parameters": "<function DQNPolicy._get_constructor_parameters at 0x7fb551f31830>", "set_training_mode": "<function DQNPolicy.set_training_mode at 0x7fb551f318c0>", "__abstractmethods__": "frozenset()", "_abc_impl": "<_abc_data object at 0x7fb551f1b960>"}, "verbose": 0, "policy_kwargs": {}, "observation_space": {":type:": "<class 'gym.spaces.box.Box'>", ":serialized:": "gASVwwEAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLCIWUjANsb3eUjBVudW1weS5jb3JlLm11bHRpYXJyYXmUjAxfcmVjb25zdHJ1Y3SUk5RoBowHbmRhcnJheZSTlEsAhZRDAWKUh5RSlChLAUsIhZRoColDIAAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/lHSUYowEaGlnaJRoEmgUSwCFlGgWh5RSlChLAUsIhZRoColDIAAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/lHSUYowNYm91bmRlZF9iZWxvd5RoEmgUSwCFlGgWh5RSlChLAUsIhZRoB4wCYjGUiYiHlFKUKEsDjAF8lE5OTkr/////Sv////9LAHSUYolDCAAAAAAAAAAAlHSUYowNYm91bmRlZF9hYm92ZZRoEmgUSwCFlGgWh5RSlChLAUsIhZRoKolDCAAAAAAAAAAAlHSUYowKX25wX3JhbmRvbZROdWIu", "dtype": "float32", "_shape": [8], "low": "[-inf -inf -inf -inf -inf -inf -inf -inf]", "high": "[inf inf inf inf inf inf inf inf]", "bounded_below": "[False False False False False False False False]", "bounded_above": "[False False False False False False False False]", "_np_random": null}, "action_space": {":type:": "<class 'gym.spaces.discrete.Discrete'>", ":serialized:": "gASVRgsAAAAAAACME2d5bS5zcGFjZXMuZGlzY3JldGWUjAhEaXNjcmV0ZZSTlCmBlH2UKIwBbpRLBIwGX3NoYXBllCmMBWR0eXBllIwFbnVtcHmUaAeTlIwCaTiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYowKX25wX3JhbmRvbZSMFG51bXB5LnJhbmRvbS5fcGlja2xllIwSX19yYW5kb21zdGF0ZV9jdG9ylJOUjAdNVDE5OTM3lIWUUpR9lCiMDWJpdF9nZW5lcmF0b3KUaBOMBXN0YXRllH2UKIwDa2V5lIwVbnVtcHkuY29yZS5tdWx0aWFycmF5lIwMX3JlY29uc3RydWN0lJOUaAiMB25kYXJyYXmUk5RLAIWUQwFilIeUUpQoSwFNcAKFlGgJjAJ1NJSJiIeUUpQoSwNoDU5OTkr/////Sv////9LAHSUYolCwAkAAJRdL1UktX9HkrwPeZ20ZqyJAdDxHU6iBSUZkBqXxeUYlCljuMrWrUXeB0SecKRb8Da0RLkXrDVamhZSX3kw6JmzEd8oPlSlXQvkY7SaZ/csfzt8oiUEyKwyNSrbKso82R1+QHXvCszqQZQKeuvkSun8iKyCMZ7wd3S0I40rDDE0cga8r4EyJfyS8czkof03ArlRrl0Bq4X8rd10Ejcp7G1h6EDRDu2yDNG/IiZA/U1pHl6wdWpdB7maCSUpSKTFzoA8O/Qw+K2j4t090edELbWRZm1rndi5ulUu/s2X2BRqoLOoqWI3jO8TEroOXOzqteBdTT9N8HstyUFOTdwLGRV4RE9DBcFTGyrFCPgqid2Z0/0Kn4E0r3nCpP+I0qjwZeBaRXhdJnPkFU1eHCXv+3WYt1+vEp/+Kwby1h6Zes5JWTNVxY1b+j+hjkJCsgyibh77959m58YcGFIPMXK0JXOac/wtjnfGjYYNddqaM2Fx8SnUNMt2lhtif+ltt4ZMPeXtJurZJ7j4onS70jIw5VJJuhL0cYtPAJc4rOEYM+MbZCrHN26ZTLtBbvGxnRPlnnsZOgL+X4eH8X0YakoNt+SW9RbiIycoS+qDP5S0IOJnikBLCx73BNu/w/x1lk4AGICoSltHQie3F9osDMIXjUaWPLlV0ciuoRLFklpVEyHluP+JMSpaMK/ylzS0jYZGePuGopbSP2TdcLXJydOisEXjFTZpNeA3VSebWLxCaLT1IOt0FaPY+FxSNdO0FGSRJIxEXl6b5RWuPp+sXEw1GPIuNaRV2oj9KbgOHWJhJeDEAinpNvCFTA3XkK24ZUSgONnh+jWxL5dqu3tH7mQBk2J/OHPjXRCBhxFqxOBG/7vH17AWB6IqMGOBjUkrQDeXllZXj9qv3q+J6aCWXjaNgBRY6Tc4Zr6Bhgi2pEXvhMf5W1y68/en2S/aUaxe4vVYQ4Yzg1T+OArZsF8S+yPDb95t3bcI1vqfJ66HuYKXmvdDEYOwLZ+bR+CmhD9JtVSTfehT6PgUBhIxIHglvUohi3vyj166GmD0k+ZBkyAWP1XEeLvemC7OK/rAZeAeY87dWCFFIm6TOJxvscTRJrllEUtLcDA9gJlgCOAnrFCfa7R/xMTuo6CNukhM1CK3RvZbF88xYfzHx+X1tUpfCUKPM32MR01haSUcCF+bofoOSwt/GllYVgoIs9W6NxE+EWcfRwhBHAzbuQziugm9o+vbtxgXlhx/nb72Rv3xKJ4kS3OimVZldQwFAuCHvbjVO1EM8Gu4nk1RqaxWEwueNZ53QcJ5aAmhN3AF162oLj+3nb5g0/DXdwBjGC6BNbTX+Urgvu/X0jWWTugWBBzJJMvEAS2Dtc2RFyrHu2UFkdrobbUaRyHAmsp4vLggcLH50JckDI8QYCDZG6aOxhf3c8oXzguBvL560yMWDCgAx5RcNDyyyuJBMrZlGEQDuU0Xk4tdaISNhMw0zOcB/SYsWNKmNpdsbfKZnV11/jSwQiyTTebIh3/Pp2mAveet3DxqjxmZ4D6B7XFnO9pFdm8tGpB70Xy5NmWG/qM28OiAj7Bcr4+ltoxIdy41BBetxrdsigORHRSkrc0Ia1GvxFvcQUQFnMpNuAg3VhfLVVk90Egxz8U1+IMvvStVe97t5mTCIYB7kALK5/4vxnDXBfc66qZjvmDo1KC1K2NJtPmhwT9A0qTGnEqg4lNDVrWUtL67BtnnCjDrlsYPqM0OzIVdInWyoVD9lnyML6SpGwM0VB8Fz+duTgYFImqMJ9YadRojnHm9SPYm3fthbcY8RlNeTBznfrYPhkgDuAkycOA/HhD0UZh/rmofnD6mk0N5mhI59uNyoDd6KrNXWWHRpO3VyL8kZiKlfh4m6tjI8/QZlVFlaa3I4meX8BN2ZaywcuUPOSPwpNmfaQ6m7e0yQJpL0zHFmOaivQUTz7b+atB2VCLEX1HFJ4ij5GZYpRAOQvJztTripigwG8nrAqIaaw8QzEsLHq4Qj2UNFi9xdxbfzB8p9OKhbN7+uw5OH6R0Ctn/OlcioFC4ba+a5rqzG6NiZH1UUN99r1dVnylkX5Jm7r2MuelEYoUALWUyFhQ95GnTRESv4ggp5zLSstfpbftSBqRLmVpD8ZOJYsuqnG+zdz5JvY06azJcXrg8YWdyVKPw3iQ9piz3HkUHH0a6IULKpsCqigmc9IfJHo1qX6hfo1Okc1XfS4Dmet59dj3Lafcf8pTwrpeu+AiIqht2P7q86rnF8/Fbp5xtI9U6LpuYWTGialBZXX6vHCAPO/vejuDyxG73TAHSN3/JupF8mo1bpCSvOtHl+VIyvcs+gORsbmVQv5zccIA7r5cOAyUjuKbz9UenpoXHab/cc/CCa7Vgu6pFCUECUmczxm2jfwDdjdVyQ/XSpWkAqHCxvA9szf1LCnVUvuBBuaxGfzj4zidx48+UR4ARzs04+j4+rAy9VGSGQAO3MaK3hLQs4zAGLkJ+R4dWvY6zgpu1qXrnJ0qM9iT0P5GL7svt9ePss5QgNwq3/0DNZk/5ExKNWnpHTD9AhNAGPLtSxF3rjxbMAV8OjB48cpC52vzZtqds6l59ysi0fan5fAE+pNY08Un+E8s3qrhIdFeb2C8cU3lXxJ1v6Qbpw+gljFRplPlcDV80wxFkeTA+8DJWXPKUq7okuk9YEiJOC9LibvwifgJFzllFIL+xM8drUOAWK+HTh2H9tu4v7gM5peJATdB21bwuu7xO8UxxCrcQgm7LHmumur5N63kvTRXs42kGWUKK6VQGjjXTNH6xY6TU3TXtX/SScf7wt0tEgntITCfscUxFR5J43aowocvdw+UGcQsLsonaen+VHa9a2MZmvDVilMSAph/EqJpCFzoD8yu7n1B0FKvp2mXtEo0nJXKcudIKelcncKfieGS51dH+oFzj82p5DItiWvDD/ZO9jxdn9mxJc5bBvXc1w5LmmhGJGQ+9RcANgQ/z4uyUdthEO8gmGSNPIJmvCZkLhvz0K++9wXeHVfkN4Ohvy7BxIjNGfusn1DnLwSc7vQtbi6s+IC5yuthgLHTdgJE7Q3W8Da5NWZgpaju4F2G0LOv4xqSv1oijqXI3pByosqM7CCZyBg9awMdCNgT35fed7CEvX4mnh0ED+pn4MlenRxXw/B9yl0hco6AakH4aPT1MtYmR02053Xt+KOeSb3yE77pO9Sk+kfjGAZat1uKaH7VDtaUto73moJi78M+1LEWf79GATdaAv1BN0DW0lfVhaRsv0NsuRJ6PHGeig68J9tJFYYp6G0AwVdvF0vMRmVFRjnV1obthxxogd2euwodwWJR0lGKMA3Bvc5RLwHWMCWhhc19nYXVzc5RLAIwFZ2F1c3OURwAAAAAAAAAAdWJ1Yi4=", "n": 4, "_shape": [], "dtype": "int64", "_np_random": "RandomState(MT19937)"}, "n_envs": 16, "num_timesteps": 1000000, "_total_timesteps": 1000000, "_num_timesteps_at_start": 0, "seed": null, "action_noise": null, "start_time": 1653786251.014536, "learning_rate": 0.0001, "tensorboard_log": null, "lr_schedule": {":type:": "<class 'function'>", ":serialized:": "gASVvwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwNX2J1aWx0aW5fdHlwZZSTlIwKTGFtYmRhVHlwZZSFlFKUKGgCjAhDb2RlVHlwZZSFlFKUKEsBSwBLAUsBSxNDBIgAUwCUToWUKYwBX5SFlIxIL3Vzci9sb2NhbC9saWIvcHl0aG9uMy43L2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lIwEZnVuY5RLgEMCAAGUjAN2YWyUhZQpdJRSlH2UKIwLX19wYWNrYWdlX1+UjBhzdGFibGVfYmFzZWxpbmVzMy5jb21tb26UjAhfX25hbWVfX5SMHnN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi51dGlsc5SMCF9fZmlsZV9flIxIL3Vzci9sb2NhbC9saWIvcHl0aG9uMy43L2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaCB9lH2UKGgXaA6MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgYjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz8aNuLrHEMthZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"}, "_last_obs": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gASVjQIAAAAAAACMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMDF9yZWNvbnN0cnVjdJSTlIwFbnVtcHmUjAduZGFycmF5lJOUSwCFlEMBYpSHlFKUKEsBSxBLCIaUaAOMBWR0eXBllJOUjAJmNJSJiIeUUpQoSwOMATyUTk5OSv////9K/////0sAdJRiiUIAAgAAvdC9PmKC6z6T41U9ih7UvTSAzbuwJBI8AAAAAAAAAACayzs80UiEP2I5ar3DYBa+ydUCvM6o+jsAAAAAAAAAAMCHEj6qmDo+EAs3vFH/m7222bM8eckDPQAAAAAAAAAAQBavvexR+7f9kCI9RlkrM1oMMTvmQmQzAAAAAAAAgD829+Y+Sl8fPD/wpLpBQJE4GN6qvZ4yzTkAAIA/AACAP7/iCb8sRbc+TFaYvgU8Dr7wbZA8FmQ/vAAAAAAAAAAA0vpHv5Wfqz4FsG2+/p0+vpVijT0mrrw8AAAAAAAAAACzb2Y9BEVRPzNy/j2zaga+J42BPa67JD0AAAAAAAAAABKL1b7YtJM/oDF/vmwDAL7+IBK+eEotPQAAAAAAAAAAYIsEPvV/FD/pE749tIt3vXKtRj0hocE8AAAAAAAAAADTljk+z5JPvPrsprqpub84EIC2vRrzsDkAAIA/AACAPwD1q77bh6s+yb0RvvF4+L1mF+s8EHzaugAAAAAAAAAAs6g8PsP1UzvscAO+0aNfuyN7+Dyixky8AACAPwAAgD8wCdQ+V1b2va9jJ7oJIyU5XCeyvkgYUTkAAAAAAACAP441ir4oYsA+qJZOvVZKu70nuio9XsLDOwAAAAAAAAAA1ltbvgCkoz+G6na+wM4IvvHe7r37KDk9AAAAAAAAAACUdJRiLg=="}, "_last_episode_starts": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gASVmAAAAAAAAACMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMDF9yZWNvbnN0cnVjdJSTlIwFbnVtcHmUjAduZGFycmF5lJOUSwCFlEMBYpSHlFKUKEsBSxCFlGgDjAVkdHlwZZSTlIwCYjGUiYiHlFKUKEsDjAF8lE5OTkr/////Sv////9LAHSUYolDEAEBAQEBAQEBAQEBAQEBAQGUdJRiLg=="}, "_last_original_obs": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gASVjQIAAAAAAACMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMDF9yZWNvbnN0cnVjdJSTlIwFbnVtcHmUjAduZGFycmF5lJOUSwCFlEMBYpSHlFKUKEsBSxBLCIaUaAOMBWR0eXBllJOUjAJmNJSJiIeUUpQoSwOMATyUTk5OSv////9K/////0sAdJRiiUIAAgAAsIu9Ptez7D6melc9tsYNvm8d3LvG6CE8AAAAAAAAAACaGUU8FrWEP2I5ar2CJPa9BhoJvLWo+jsAAAAAAAAAAMCgEj7JWTw+K7moupHnSL36q6Y8LRP1uwAAAAAAAAAAWuavvexR+7chfA094PKZtpEMMTshO5e1AAAAAAAAgD/T+OY+11gfPOM3BzvQYeG4n+iqvf6BKLoAAIA/AACAP14fCb/U3rg+ksqWvmWHNr7VNpU8MuorvAAAAAAAAAAAd2NHv2jErT4GsG2+dk8jvs4Giz0xrrw8AAAAAAAAAACaQ2E9cwZSP+L4/j1Lrwq+vN16PbB+Gj0AAAAAAAAAADJH1L4qEZQ/mjF/vqJpyb2GSxS+dkotPQAAAAAAAAAA7ZQDPgXZFD82prM9ccTDvTjWQT3Timw8AAAAAAAAAAAmmjk+g5tPvNIbZrsubpY56oi2vaKVczoAAIA/AACAP1Y6q76n7aw+qrQIvkeXwr0uxus8NjUXvQAAAAAAAAAA5vo9PvYAWTvOGA++by2IOuSb/TzuKcg7AACAPwAAgD8DCtQ+JFj2vabaqjoQeaO5tSiyvuP0IzkAAAAAAACAP9jzib7Ub8E++opGvYDQvr3wgCk9FCrKOwAAAAAAAAAAs+lYvqQGpD+D6na+RADbvfh/870AKTk9AAAAAAAAAACUdJRiLg=="}, "_episode_num": 2316, "use_sde": false, "sde_sample_freq": -1, "_current_progress_remaining": 0.0, "ep_info_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gASVfxAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMIknTN5JslYsCUhpRSlIwBbJRNfAKMAXSUR0Civ5kNnXd1dX2UKGgGaAloD0MIti+gF+6tV0CUhpRSlGgVTcICaBZHQKK/5AEdNnJ1fZQoaAZoCWgPQwhUrYVZaCNHwJSGlFKUaBVNWQFoFkdAosAkWfseGXV9lChoBmgJaA9DCPlp3Jvf4mDAlIaUUpRoFU0sAmgWR0CiwRNpmEoOdX2UKGgGaAloD0MIKeeLvRcQW8CUhpRSlGgVTbEBaBZHQKLBLS1maph1fZQoaAZoCWgPQwgPtW0YBddBwJSGlFKUaBVNhAFoFkdAosOFBSk0rXV9lChoBmgJaA9DCGr3qwDflVbAlIaUUpRoFU1SAWgWR0CixciCz1K5dX2UKGgGaAloD0MIMnTsoBKlXcCUhpRSlGgVTSsCaBZHQKLGjAC4jKR1fZQoaAZoCWgPQwiKdhVSfiRSQJSGlFKUaBVNKwNoFkdAoscBFd9lVnV9lChoBmgJaA9DCIXOa+wST0vAlIaUUpRoFU0kAWgWR0CiyLYlyBCldX2UKGgGaAloD0MIRBfUt8z3SkCUhpRSlGgVTegDaBZHQKLJOzNUwSJ1fZQoaAZoCWgPQwjRzmkWaNRSwJSGlFKUaBVNDAFoFkdAoslv6VMVUXV9lChoBmgJaA9DCIszhjlBNzxAlIaUUpRoFU3oA2gWR0CiyoDr7fpEdX2UKGgGaAloD0MIesN95Nb4WkCUhpRSlGgVTcQCaBZHQKLLcAtFrmB1fZQoaAZoCWgPQwgCnUmbqihawJSGlFKUaBVNigFoFkdAosv/SMLncXV9lChoBmgJaA9DCKtdE9IaeybAlIaUUpRoFU0ZAWgWR0CizcrSVnmJdX2UKGgGaAloD0MIxk/j3vzfYMCUhpRSlGgVTRUCaBZHQKLNy2KEWZZ1fZQoaAZoCWgPQwgAUps4uRdhwJSGlFKUaBVN2gFoFkdAos3NTJhfB3V9lChoBmgJaA9DCMgoz7wcPV3AlIaUUpRoFU0OAmgWR0Cizj59d/rjdX2UKGgGaAloD0MImtL6WwJYM8CUhpRSlGgVS9loFkdAotE8UEgW8HV9lChoBmgJaA9DCFKZYg6CelvAlIaUUpRoFU09AmgWR0Ci0cfWlMyrdX2UKGgGaAloD0MICwvuBzyUTECUhpRSlGgVTegDaBZHQKLR7THbRF91fZQoaAZoCWgPQwiyEYjX9X9EwJSGlFKUaBVNXQFoFkdAotKa42CNCXV9lChoBmgJaA9DCEseT8sP0lTAlIaUUpRoFU01AmgWR0Ci03wwCbMHdX2UKGgGaAloD0MIZ7Yr9MFnXsCUhpRSlGgVTZUBaBZHQKLU6Ygq3E11fZQoaAZoCWgPQwi5p6s7FgNSwJSGlFKUaBVNBQJoFkdAotcozFdcB3V9lChoBmgJaA9DCBLYnINndErAlIaUUpRoFU2RAWgWR0Ci2OeA3DNydX2UKGgGaAloD0MImzkktVDvYMCUhpRSlGgVTXYCaBZHQKLaRgYP5Hp1fZQoaAZoCWgPQwg7+8qD9BJVQJSGlFKUaBVNxgJoFkdAotqj+irT6XV9lChoBmgJaA9DCAYOaOkKAktAlIaUUpRoFU3oA2gWR0Ci3AEJjUd8dX2UKGgGaAloD0MIC7jn+dPeVsCUhpRSlGgVTXECaBZHQKLd5/Nqxkd1fZQoaAZoCWgPQwhNLzGW6YFlwJSGlFKUaBVNKwJoFkdAot58XcgyM3V9lChoBmgJaA9DCLt7gO7L5WDAlIaUUpRoFU3sAWgWR0Ci4LFtTDO1dX2UKGgGaAloD0MIWRgipy+lYcCUhpRSlGgVTfsBaBZHQKLiPD8+A3F1fZQoaAZoCWgPQwgpzHucaa5WQJSGlFKUaBVNzgJoFkdAouNr3RG+bnV9lChoBmgJaA9DCE3bv7LSB1TAlIaUUpRoFU1+AWgWR0Ci4+aiKziTdX2UKGgGaAloD0MI3dJqSFxqZECUhpRSlGgVTWICaBZHQKLj6X668QJ1fZQoaAZoCWgPQwj9wcBz730ywJSGlFKUaBVN6ANoFkdAouSM9SuQqHV9lChoBmgJaA9DCLqCbcSTa0XAlIaUUpRoFUvuaBZHQKLlbYMfA9F1fZQoaAZoCWgPQwjZQ/tYwXVJwJSGlFKUaBVNlAFoFkdAouXMBdUsF3V9lChoBmgJaA9DCA5qv7UTumNAlIaUUpRoFU1rAmgWR0Ci5nlHjIaMdX2UKGgGaAloD0MI4e1BCEihZ8CUhpRSlGgVTZECaBZHQKLo69bHIZJ1fZQoaAZoCWgPQwjc1hael0tVwJSGlFKUaBVNSQFoFkdAoun01Q66rnV9lChoBmgJaA9DCILHt3cNSV3AlIaUUpRoFU2eAWgWR0Ci6mS3LFGYdX2UKGgGaAloD0MIWcLaGDsVT8CUhpRSlGgVTTcBaBZHQKLqpF3IMjN1fZQoaAZoCWgPQwiGr691qVdPQJSGlFKUaBVN6ANoFkdAourLgflp5HV9lChoBmgJaA9DCBu5bkp5blTAlIaUUpRoFU0eAWgWR0Ci6uHnuAqedX2UKGgGaAloD0MIFeKReHnBYMCUhpRSlGgVTf4BaBZHQKLq5sVLzwt1fZQoaAZoCWgPQwg+JHzvb1wwwJSGlFKUaBVNJgFoFkdAouvOYhMaj3V9lChoBmgJaA9DCGvwvioXAmfAlIaUUpRoFU1xAmgWR0Ci7GRbr1M/dX2UKGgGaAloD0MIlkOLbGeca8CUhpRSlGgVTYACaBZHQKLse0hNdqt1fZQoaAZoCWgPQwiu8C4X8QVTwJSGlFKUaBVNjQFoFkdAou1ZFiKBNHV9lChoBmgJaA9DCMiXUMHhBlJAlIaUUpRoFU3oA2gWR0Ci7ZERSP2gdX2UKGgGaAloD0MI5X/yd++mVcCUhpRSlGgVTeYBaBZHQKLvB5ftx+91fZQoaAZoCWgPQwjAlleuN4RiwJSGlFKUaBVNDAJoFkdAovGVA7gbZXV9lChoBmgJaA9DCJYmpaDbTVfAlIaUUpRoFU14AWgWR0Ci8nUcn3L3dX2UKGgGaAloD0MIJET5ghZQUMCUhpRSlGgVTVEBaBZHQKL0HO+qR2d1fZQoaAZoCWgPQwjaO6OtSo5WwJSGlFKUaBVNOwFoFkdAovVaWqtHQXV9lChoBmgJaA9DCLZmKy/5jWLAlIaUUpRoFU3UAWgWR0Ci9d4KYzBRdX2UKGgGaAloD0MIrOY5It8ZX8CUhpRSlGgVTa0BaBZHQKL29NKRMex1fZQoaAZoCWgPQwh7o1aYPiBgwJSGlFKUaBVNBQJoFkdAoveA80UGmnV9lChoBmgJaA9DCCy5isXv/2DAlIaUUpRoFU0ZAmgWR0Ci98j2JzkqdX2UKGgGaAloD0MIMuiE0EGFU8CUhpRSlGgVTTUCaBZHQKL32wbEP2B1fZQoaAZoCWgPQwhRZoNMsgJqQJSGlFKUaBVNKQJoFkdAovhnJmuklHV9lChoBmgJaA9DCMLfL2ZLvVbAlIaUUpRoFU38AWgWR0Ci+IWV3Ux3dX2UKGgGaAloD0MI8+ZwrfYdaECUhpRSlGgVTRYCaBZHQKL7GAEt/Wl1fZQoaAZoCWgPQwhqpRDIJaBSQJSGlFKUaBVN6ANoFkdAov7f7FbV0HV9lChoBmgJaA9DCCQMA5bcOWNAlIaUUpRoFU2BAWgWR0Ci/ztWdVebdX2UKGgGaAloD0MI9buwNducYcCUhpRSlGgVTeMBaBZHQKL/jXuE25x1fZQoaAZoCWgPQwiOOjquRvBGQJSGlFKUaBVN6ANoFkdAowAmQMhHLHV9lChoBmgJaA9DCHQLXYlACGdAlIaUUpRoFU3eAWgWR0CjAFOc2BJ7dX2UKGgGaAloD0MIRN0HILUTScCUhpRSlGgVTUMBaBZHQKMAhVcUuct1fZQoaAZoCWgPQwiqCg3EMghoQJSGlFKUaBVNqwFoFkdAowIDpiZv1nV9lChoBmgJaA9DCNBefTz0wUxAlIaUUpRoFU3oA2gWR0CjAt8lHBk7dX2UKGgGaAloD0MIyNCxg0ryZECUhpRSlGgVTfYBaBZHQKMGHC79Q411fZQoaAZoCWgPQwjw+zcvzkViQJSGlFKUaBVNMgNoFkdAowYlFtsN2HV9lChoBmgJaA9DCFOynITSK1HAlIaUUpRoFU0qAWgWR0CjB60t7KJVdX2UKGgGaAloD0MI3pOHhdp2Z0CUhpRSlGgVTbIBaBZHQKMH6RqXWvt1fZQoaAZoCWgPQwjt1FxusMljQJSGlFKUaBVNVAJoFkdAowgFTgl4T3V9lChoBmgJaA9DCMalKm1xqFbAlIaUUpRoFU0nAmgWR0CjCBqQRwqBdX2UKGgGaAloD0MIgxYSMLrfV8CUhpRSlGgVTX4BaBZHQKMKdPjXFtN1fZQoaAZoCWgPQwhZT62+us5DwJSGlFKUaBVNJAFoFkdAows7myPdVXV9lChoBmgJaA9DCPCGNCpw/GZAlIaUUpRoFU3eAWgWR0CjDStGus90dX2UKGgGaAloD0MIGmzqPCoIY0CUhpRSlGgVTfACaBZHQKMNR2IwdsB1fZQoaAZoCWgPQwjOxd/2hPhgQJSGlFKUaBVNVQJoFkdAoxKdcpsoD3V9lChoBmgJaA9DCG399J+1hmBAlIaUUpRoFU1SAmgWR0CjEsHNxEORdX2UKGgGaAloD0MIgLbVrDM2RcCUhpRSlGgVTegDaBZHQKMTV09yLht1fZQoaAZoCWgPQwhlw5rKoklnwJSGlFKUaBVNeAJoFkdAoxOUlXzUZ3V9lChoBmgJaA9DCKmI00m2HkNAlIaUUpRoFU3oA2gWR0CjFuA31jAjdX2UKGgGaAloD0MI4uR+h6KwXsCUhpRSlGgVTdABaBZHQKMXB3zMA3l1fZQoaAZoCWgPQwiGrdnKSzZYQJSGlFKUaBVNFQJoFkdAoxdJScbzb3V9lChoBmgJaA9DCCb/k7/7YGDAlIaUUpRoFU2tAWgWR0CjGOQ3gk1NdX2UKGgGaAloD0MIG0zD8BHwY0CUhpRSlGgVTVcCaBZHQKMZRAJLM9t1fZQoaAZoCWgPQwgXg4dp30ZRwJSGlFKUaBVN1QFoFkdAoxryR2bG3nV9lChoBmgJaA9DCBqk4CnkoFxAlIaUUpRoFU2DAmgWR0CjHKAfEGaAdX2UKGgGaAloD0MINZnxttIrT8CUhpRSlGgVTTEBaBZHQKMdZPC2tuF1fZQoaAZoCWgPQwgvaYzWUTJSwJSGlFKUaBVNhQFoFkdAox9seXAuZnV9lChoBmgJaA9DCBJr8SkAxjtAlIaUUpRoFU3oA2gWR0CjIgaews5GdX2UKGgGaAloD0MIPFCnPLq9OMCUhpRSlGgVTSABaBZHQKMicl0HQhR1fZQoaAZoCWgPQwirXRPSGqFkQJSGlFKUaBVN4wFoFkdAoyNwzrNW2nVlLg=="}, "ep_success_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gASVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="}, "_n_updates": 14844, "buffer_size": 1000000, "batch_size": 64, "learning_starts": 50000, "tau": 1.0, "gamma": 0.995, "gradient_steps": 1, "optimize_memory_usage": false, "replay_buffer_class": {":type:": "<class 'abc.ABCMeta'>", ":serialized:": "gASVNQAAAAAAAACMIHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5idWZmZXJzlIwMUmVwbGF5QnVmZmVylJOULg==", "__module__": "stable_baselines3.common.buffers", "__doc__": "\n Replay buffer used in off-policy algorithms like SAC/TD3.\n\n :param buffer_size: Max number of element in the buffer\n :param observation_space: Observation space\n :param action_space: Action space\n :param device:\n :param n_envs: Number of parallel environments\n :param optimize_memory_usage: Enable a memory efficient variant\n of the replay buffer which reduces by almost a factor two the memory used,\n at a cost of more complexity.\n See https://github.com/DLR-RM/stable-baselines3/issues/37#issuecomment-637501195\n and https://github.com/DLR-RM/stable-baselines3/pull/28#issuecomment-637559274\n :param handle_timeout_termination: Handle timeout termination (due to timelimit)\n separately and treat the task as infinite horizon task.\n https://github.com/DLR-RM/stable-baselines3/issues/284\n ", "__init__": "<function ReplayBuffer.__init__ at 0x7fb551f84dd0>", "add": "<function ReplayBuffer.add at 0x7fb551f84e60>", "sample": "<function ReplayBuffer.sample at 0x7fb551f84ef0>", "_get_samples": "<function ReplayBuffer._get_samples at 0x7fb551f84f80>", "__abstractmethods__": "frozenset()", "_abc_impl": "<_abc_data object at 0x7fb551f5a810>"}, "replay_buffer_kwargs": {}, "train_freq": {":type:": "<class 'stable_baselines3.common.type_aliases.TrainFreq'>", ":serialized:": "gASVYQAAAAAAAACMJXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi50eXBlX2FsaWFzZXOUjAlUcmFpbkZyZXGUk5RLBGgAjBJUcmFpbkZyZXF1ZW5jeVVuaXSUk5SMBHN0ZXCUhZRSlIaUgZQu"}, "actor": null, "use_sde_at_warmup": false, "exploration_initial_eps": 1.0, "exploration_final_eps": 0.05, "exploration_fraction": 0.1, "target_update_interval": 625, "_n_calls": 62500, "max_grad_norm": 10, "exploration_rate": 0.05, "exploration_schedule": {":type:": "<class 'function'>", ":serialized:": "gASVYwMAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwNX2J1aWx0aW5fdHlwZZSTlIwKTGFtYmRhVHlwZZSFlFKUKGgCjAhDb2RlVHlwZZSFlFKUKEsBSwBLAUsESxNDLGQBfAAYAIgBawRyEIgAUwCIAmQBfAAYAIgAiAIYABQAiAEbABcAUwBkAFMAlE5LAYaUKYwScHJvZ3Jlc3NfcmVtYWluaW5nlIWUjEgvdXNyL2xvY2FsL2xpYi9weXRob24zLjcvZGlzdC1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUjARmdW5jlEtuQwYAAQwBBAKUjANlbmSUjAxlbmRfZnJhY3Rpb26UjAVzdGFydJSHlCl0lFKUfZQojAtfX3BhY2thZ2VfX5SMGHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbpSMCF9fbmFtZV9flIwec3RhYmxlX2Jhc2VsaW5lczMuY29tbW9uLnV0aWxzlIwIX19maWxlX1+UjEgvdXNyL2xvY2FsL2xpYi9weXRob24zLjcvZGlzdC1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUdU5OaACMEF9tYWtlX2VtcHR5X2NlbGyUk5QpUpRoHilSlGgeKVKUh5R0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaCR9lH2UKGgZaA6MDF9fcXVhbG5hbWVfX5SMG2dldF9saW5lYXJfZm4uPGxvY2Fscz4uZnVuY5SMD19fYW5ub3RhdGlvbnNfX5R9lChoC4wIYnVpbHRpbnOUjAVmbG9hdJSTlIwGcmV0dXJulGgwdYwOX19rd2RlZmF1bHRzX1+UTowMX19kZWZhdWx0c19flE6MCl9fbW9kdWxlX1+UaBqMB19fZG9jX1+UTowLX19jbG9zdXJlX1+UaACMCl9tYWtlX2NlbGyUk5RHP6mZmZmZmZqFlFKUaDhHP7mZmZmZmZqFlFKUaDhHP/AAAAAAAACFlFKUh5SMF19jbG91ZHBpY2tsZV9zdWJtb2R1bGVzlF2UjAtfX2dsb2JhbHNfX5R9lHWGlIZSMC4="}, "system_info": {"OS": "Linux-5.4.188+-x86_64-with-Ubuntu-18.04-bionic #1 SMP Sun Apr 24 10:03:06 PDT 2022", "Python": "3.7.13", "Stable-Baselines3": "1.5.0", "PyTorch": "1.11.0+cu113", "GPU Enabled": "True", "Numpy": "1.21.6", "Gym": "0.21.0"}}
|
dqn-LunarLander-v2.zip
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:13e1384e827841c1a325102739908119f9553762e34e80abdc66f59fccba41af
|
3 |
+
size 108833
|
dqn-LunarLander-v2/_stable_baselines3_version
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
1.5.0
|
dqn-LunarLander-v2/data
ADDED
@@ -0,0 +1,115 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"policy_class": {
|
3 |
+
":type:": "<class 'abc.ABCMeta'>",
|
4 |
+
":serialized:": "gASVMAAAAAAAAACMHnN0YWJsZV9iYXNlbGluZXMzLmRxbi5wb2xpY2llc5SMCURRTlBvbGljeZSTlC4=",
|
5 |
+
"__module__": "stable_baselines3.dqn.policies",
|
6 |
+
"__doc__": "\n Policy class with Q-Value Net and target net for DQN\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ",
|
7 |
+
"__init__": "<function DQNPolicy.__init__ at 0x7fb551f31560>",
|
8 |
+
"_build": "<function DQNPolicy._build at 0x7fb551f315f0>",
|
9 |
+
"make_q_net": "<function DQNPolicy.make_q_net at 0x7fb551f31680>",
|
10 |
+
"forward": "<function DQNPolicy.forward at 0x7fb551f31710>",
|
11 |
+
"_predict": "<function DQNPolicy._predict at 0x7fb551f317a0>",
|
12 |
+
"_get_constructor_parameters": "<function DQNPolicy._get_constructor_parameters at 0x7fb551f31830>",
|
13 |
+
"set_training_mode": "<function DQNPolicy.set_training_mode at 0x7fb551f318c0>",
|
14 |
+
"__abstractmethods__": "frozenset()",
|
15 |
+
"_abc_impl": "<_abc_data object at 0x7fb551f1b960>"
|
16 |
+
},
|
17 |
+
"verbose": 0,
|
18 |
+
"policy_kwargs": {},
|
19 |
+
"observation_space": {
|
20 |
+
":type:": "<class 'gym.spaces.box.Box'>",
|
21 |
+
":serialized:": "gASVwwEAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLCIWUjANsb3eUjBVudW1weS5jb3JlLm11bHRpYXJyYXmUjAxfcmVjb25zdHJ1Y3SUk5RoBowHbmRhcnJheZSTlEsAhZRDAWKUh5RSlChLAUsIhZRoColDIAAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/lHSUYowEaGlnaJRoEmgUSwCFlGgWh5RSlChLAUsIhZRoColDIAAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/lHSUYowNYm91bmRlZF9iZWxvd5RoEmgUSwCFlGgWh5RSlChLAUsIhZRoB4wCYjGUiYiHlFKUKEsDjAF8lE5OTkr/////Sv////9LAHSUYolDCAAAAAAAAAAAlHSUYowNYm91bmRlZF9hYm92ZZRoEmgUSwCFlGgWh5RSlChLAUsIhZRoKolDCAAAAAAAAAAAlHSUYowKX25wX3JhbmRvbZROdWIu",
|
22 |
+
"dtype": "float32",
|
23 |
+
"_shape": [
|
24 |
+
8
|
25 |
+
],
|
26 |
+
"low": "[-inf -inf -inf -inf -inf -inf -inf -inf]",
|
27 |
+
"high": "[inf inf inf inf inf inf inf inf]",
|
28 |
+
"bounded_below": "[False False False False False False False False]",
|
29 |
+
"bounded_above": "[False False False False False False False False]",
|
30 |
+
"_np_random": null
|
31 |
+
},
|
32 |
+
"action_space": {
|
33 |
+
":type:": "<class 'gym.spaces.discrete.Discrete'>",
|
34 |
+
":serialized:": "gASVRgsAAAAAAACME2d5bS5zcGFjZXMuZGlzY3JldGWUjAhEaXNjcmV0ZZSTlCmBlH2UKIwBbpRLBIwGX3NoYXBllCmMBWR0eXBllIwFbnVtcHmUaAeTlIwCaTiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYowKX25wX3JhbmRvbZSMFG51bXB5LnJhbmRvbS5fcGlja2xllIwSX19yYW5kb21zdGF0ZV9jdG9ylJOUjAdNVDE5OTM3lIWUUpR9lCiMDWJpdF9nZW5lcmF0b3KUaBOMBXN0YXRllH2UKIwDa2V5lIwVbnVtcHkuY29yZS5tdWx0aWFycmF5lIwMX3JlY29uc3RydWN0lJOUaAiMB25kYXJyYXmUk5RLAIWUQwFilIeUUpQoSwFNcAKFlGgJjAJ1NJSJiIeUUpQoSwNoDU5OTkr/////Sv////9LAHSUYolCwAkAAJRdL1UktX9HkrwPeZ20ZqyJAdDxHU6iBSUZkBqXxeUYlCljuMrWrUXeB0SecKRb8Da0RLkXrDVamhZSX3kw6JmzEd8oPlSlXQvkY7SaZ/csfzt8oiUEyKwyNSrbKso82R1+QHXvCszqQZQKeuvkSun8iKyCMZ7wd3S0I40rDDE0cga8r4EyJfyS8czkof03ArlRrl0Bq4X8rd10Ejcp7G1h6EDRDu2yDNG/IiZA/U1pHl6wdWpdB7maCSUpSKTFzoA8O/Qw+K2j4t090edELbWRZm1rndi5ulUu/s2X2BRqoLOoqWI3jO8TEroOXOzqteBdTT9N8HstyUFOTdwLGRV4RE9DBcFTGyrFCPgqid2Z0/0Kn4E0r3nCpP+I0qjwZeBaRXhdJnPkFU1eHCXv+3WYt1+vEp/+Kwby1h6Zes5JWTNVxY1b+j+hjkJCsgyibh77959m58YcGFIPMXK0JXOac/wtjnfGjYYNddqaM2Fx8SnUNMt2lhtif+ltt4ZMPeXtJurZJ7j4onS70jIw5VJJuhL0cYtPAJc4rOEYM+MbZCrHN26ZTLtBbvGxnRPlnnsZOgL+X4eH8X0YakoNt+SW9RbiIycoS+qDP5S0IOJnikBLCx73BNu/w/x1lk4AGICoSltHQie3F9osDMIXjUaWPLlV0ciuoRLFklpVEyHluP+JMSpaMK/ylzS0jYZGePuGopbSP2TdcLXJydOisEXjFTZpNeA3VSebWLxCaLT1IOt0FaPY+FxSNdO0FGSRJIxEXl6b5RWuPp+sXEw1GPIuNaRV2oj9KbgOHWJhJeDEAinpNvCFTA3XkK24ZUSgONnh+jWxL5dqu3tH7mQBk2J/OHPjXRCBhxFqxOBG/7vH17AWB6IqMGOBjUkrQDeXllZXj9qv3q+J6aCWXjaNgBRY6Tc4Zr6Bhgi2pEXvhMf5W1y68/en2S/aUaxe4vVYQ4Yzg1T+OArZsF8S+yPDb95t3bcI1vqfJ66HuYKXmvdDEYOwLZ+bR+CmhD9JtVSTfehT6PgUBhIxIHglvUohi3vyj166GmD0k+ZBkyAWP1XEeLvemC7OK/rAZeAeY87dWCFFIm6TOJxvscTRJrllEUtLcDA9gJlgCOAnrFCfa7R/xMTuo6CNukhM1CK3RvZbF88xYfzHx+X1tUpfCUKPM32MR01haSUcCF+bofoOSwt/GllYVgoIs9W6NxE+EWcfRwhBHAzbuQziugm9o+vbtxgXlhx/nb72Rv3xKJ4kS3OimVZldQwFAuCHvbjVO1EM8Gu4nk1RqaxWEwueNZ53QcJ5aAmhN3AF162oLj+3nb5g0/DXdwBjGC6BNbTX+Urgvu/X0jWWTugWBBzJJMvEAS2Dtc2RFyrHu2UFkdrobbUaRyHAmsp4vLggcLH50JckDI8QYCDZG6aOxhf3c8oXzguBvL560yMWDCgAx5RcNDyyyuJBMrZlGEQDuU0Xk4tdaISNhMw0zOcB/SYsWNKmNpdsbfKZnV11/jSwQiyTTebIh3/Pp2mAveet3DxqjxmZ4D6B7XFnO9pFdm8tGpB70Xy5NmWG/qM28OiAj7Bcr4+ltoxIdy41BBetxrdsigORHRSkrc0Ia1GvxFvcQUQFnMpNuAg3VhfLVVk90Egxz8U1+IMvvStVe97t5mTCIYB7kALK5/4vxnDXBfc66qZjvmDo1KC1K2NJtPmhwT9A0qTGnEqg4lNDVrWUtL67BtnnCjDrlsYPqM0OzIVdInWyoVD9lnyML6SpGwM0VB8Fz+duTgYFImqMJ9YadRojnHm9SPYm3fthbcY8RlNeTBznfrYPhkgDuAkycOA/HhD0UZh/rmofnD6mk0N5mhI59uNyoDd6KrNXWWHRpO3VyL8kZiKlfh4m6tjI8/QZlVFlaa3I4meX8BN2ZaywcuUPOSPwpNmfaQ6m7e0yQJpL0zHFmOaivQUTz7b+atB2VCLEX1HFJ4ij5GZYpRAOQvJztTripigwG8nrAqIaaw8QzEsLHq4Qj2UNFi9xdxbfzB8p9OKhbN7+uw5OH6R0Ctn/OlcioFC4ba+a5rqzG6NiZH1UUN99r1dVnylkX5Jm7r2MuelEYoUALWUyFhQ95GnTRESv4ggp5zLSstfpbftSBqRLmVpD8ZOJYsuqnG+zdz5JvY06azJcXrg8YWdyVKPw3iQ9piz3HkUHH0a6IULKpsCqigmc9IfJHo1qX6hfo1Okc1XfS4Dmet59dj3Lafcf8pTwrpeu+AiIqht2P7q86rnF8/Fbp5xtI9U6LpuYWTGialBZXX6vHCAPO/vejuDyxG73TAHSN3/JupF8mo1bpCSvOtHl+VIyvcs+gORsbmVQv5zccIA7r5cOAyUjuKbz9UenpoXHab/cc/CCa7Vgu6pFCUECUmczxm2jfwDdjdVyQ/XSpWkAqHCxvA9szf1LCnVUvuBBuaxGfzj4zidx48+UR4ARzs04+j4+rAy9VGSGQAO3MaK3hLQs4zAGLkJ+R4dWvY6zgpu1qXrnJ0qM9iT0P5GL7svt9ePss5QgNwq3/0DNZk/5ExKNWnpHTD9AhNAGPLtSxF3rjxbMAV8OjB48cpC52vzZtqds6l59ysi0fan5fAE+pNY08Un+E8s3qrhIdFeb2C8cU3lXxJ1v6Qbpw+gljFRplPlcDV80wxFkeTA+8DJWXPKUq7okuk9YEiJOC9LibvwifgJFzllFIL+xM8drUOAWK+HTh2H9tu4v7gM5peJATdB21bwuu7xO8UxxCrcQgm7LHmumur5N63kvTRXs42kGWUKK6VQGjjXTNH6xY6TU3TXtX/SScf7wt0tEgntITCfscUxFR5J43aowocvdw+UGcQsLsonaen+VHa9a2MZmvDVilMSAph/EqJpCFzoD8yu7n1B0FKvp2mXtEo0nJXKcudIKelcncKfieGS51dH+oFzj82p5DItiWvDD/ZO9jxdn9mxJc5bBvXc1w5LmmhGJGQ+9RcANgQ/z4uyUdthEO8gmGSNPIJmvCZkLhvz0K++9wXeHVfkN4Ohvy7BxIjNGfusn1DnLwSc7vQtbi6s+IC5yuthgLHTdgJE7Q3W8Da5NWZgpaju4F2G0LOv4xqSv1oijqXI3pByosqM7CCZyBg9awMdCNgT35fed7CEvX4mnh0ED+pn4MlenRxXw/B9yl0hco6AakH4aPT1MtYmR02053Xt+KOeSb3yE77pO9Sk+kfjGAZat1uKaH7VDtaUto73moJi78M+1LEWf79GATdaAv1BN0DW0lfVhaRsv0NsuRJ6PHGeig68J9tJFYYp6G0AwVdvF0vMRmVFRjnV1obthxxogd2euwodwWJR0lGKMA3Bvc5RLwHWMCWhhc19nYXVzc5RLAIwFZ2F1c3OURwAAAAAAAAAAdWJ1Yi4=",
|
35 |
+
"n": 4,
|
36 |
+
"_shape": [],
|
37 |
+
"dtype": "int64",
|
38 |
+
"_np_random": "RandomState(MT19937)"
|
39 |
+
},
|
40 |
+
"n_envs": 16,
|
41 |
+
"num_timesteps": 1000000,
|
42 |
+
"_total_timesteps": 1000000,
|
43 |
+
"_num_timesteps_at_start": 0,
|
44 |
+
"seed": null,
|
45 |
+
"action_noise": null,
|
46 |
+
"start_time": 1653786251.014536,
|
47 |
+
"learning_rate": 0.0001,
|
48 |
+
"tensorboard_log": null,
|
49 |
+
"lr_schedule": {
|
50 |
+
":type:": "<class 'function'>",
|
51 |
+
":serialized:": "gASVvwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwNX2J1aWx0aW5fdHlwZZSTlIwKTGFtYmRhVHlwZZSFlFKUKGgCjAhDb2RlVHlwZZSFlFKUKEsBSwBLAUsBSxNDBIgAUwCUToWUKYwBX5SFlIxIL3Vzci9sb2NhbC9saWIvcHl0aG9uMy43L2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lIwEZnVuY5RLgEMCAAGUjAN2YWyUhZQpdJRSlH2UKIwLX19wYWNrYWdlX1+UjBhzdGFibGVfYmFzZWxpbmVzMy5jb21tb26UjAhfX25hbWVfX5SMHnN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi51dGlsc5SMCF9fZmlsZV9flIxIL3Vzci9sb2NhbC9saWIvcHl0aG9uMy43L2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaCB9lH2UKGgXaA6MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgYjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz8aNuLrHEMthZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"
|
52 |
+
},
|
53 |
+
"_last_obs": {
|
54 |
+
":type:": "<class 'numpy.ndarray'>",
|
55 |
+
":serialized:": "gASVjQIAAAAAAACMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMDF9yZWNvbnN0cnVjdJSTlIwFbnVtcHmUjAduZGFycmF5lJOUSwCFlEMBYpSHlFKUKEsBSxBLCIaUaAOMBWR0eXBllJOUjAJmNJSJiIeUUpQoSwOMATyUTk5OSv////9K/////0sAdJRiiUIAAgAAvdC9PmKC6z6T41U9ih7UvTSAzbuwJBI8AAAAAAAAAACayzs80UiEP2I5ar3DYBa+ydUCvM6o+jsAAAAAAAAAAMCHEj6qmDo+EAs3vFH/m7222bM8eckDPQAAAAAAAAAAQBavvexR+7f9kCI9RlkrM1oMMTvmQmQzAAAAAAAAgD829+Y+Sl8fPD/wpLpBQJE4GN6qvZ4yzTkAAIA/AACAP7/iCb8sRbc+TFaYvgU8Dr7wbZA8FmQ/vAAAAAAAAAAA0vpHv5Wfqz4FsG2+/p0+vpVijT0mrrw8AAAAAAAAAACzb2Y9BEVRPzNy/j2zaga+J42BPa67JD0AAAAAAAAAABKL1b7YtJM/oDF/vmwDAL7+IBK+eEotPQAAAAAAAAAAYIsEPvV/FD/pE749tIt3vXKtRj0hocE8AAAAAAAAAADTljk+z5JPvPrsprqpub84EIC2vRrzsDkAAIA/AACAPwD1q77bh6s+yb0RvvF4+L1mF+s8EHzaugAAAAAAAAAAs6g8PsP1UzvscAO+0aNfuyN7+Dyixky8AACAPwAAgD8wCdQ+V1b2va9jJ7oJIyU5XCeyvkgYUTkAAAAAAACAP441ir4oYsA+qJZOvVZKu70nuio9XsLDOwAAAAAAAAAA1ltbvgCkoz+G6na+wM4IvvHe7r37KDk9AAAAAAAAAACUdJRiLg=="
|
56 |
+
},
|
57 |
+
"_last_episode_starts": {
|
58 |
+
":type:": "<class 'numpy.ndarray'>",
|
59 |
+
":serialized:": "gASVmAAAAAAAAACMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMDF9yZWNvbnN0cnVjdJSTlIwFbnVtcHmUjAduZGFycmF5lJOUSwCFlEMBYpSHlFKUKEsBSxCFlGgDjAVkdHlwZZSTlIwCYjGUiYiHlFKUKEsDjAF8lE5OTkr/////Sv////9LAHSUYolDEAEBAQEBAQEBAQEBAQEBAQGUdJRiLg=="
|
60 |
+
},
|
61 |
+
"_last_original_obs": {
|
62 |
+
":type:": "<class 'numpy.ndarray'>",
|
63 |
+
":serialized:": "gASVjQIAAAAAAACMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMDF9yZWNvbnN0cnVjdJSTlIwFbnVtcHmUjAduZGFycmF5lJOUSwCFlEMBYpSHlFKUKEsBSxBLCIaUaAOMBWR0eXBllJOUjAJmNJSJiIeUUpQoSwOMATyUTk5OSv////9K/////0sAdJRiiUIAAgAAsIu9Ptez7D6melc9tsYNvm8d3LvG6CE8AAAAAAAAAACaGUU8FrWEP2I5ar2CJPa9BhoJvLWo+jsAAAAAAAAAAMCgEj7JWTw+K7moupHnSL36q6Y8LRP1uwAAAAAAAAAAWuavvexR+7chfA094PKZtpEMMTshO5e1AAAAAAAAgD/T+OY+11gfPOM3BzvQYeG4n+iqvf6BKLoAAIA/AACAP14fCb/U3rg+ksqWvmWHNr7VNpU8MuorvAAAAAAAAAAAd2NHv2jErT4GsG2+dk8jvs4Giz0xrrw8AAAAAAAAAACaQ2E9cwZSP+L4/j1Lrwq+vN16PbB+Gj0AAAAAAAAAADJH1L4qEZQ/mjF/vqJpyb2GSxS+dkotPQAAAAAAAAAA7ZQDPgXZFD82prM9ccTDvTjWQT3Timw8AAAAAAAAAAAmmjk+g5tPvNIbZrsubpY56oi2vaKVczoAAIA/AACAP1Y6q76n7aw+qrQIvkeXwr0uxus8NjUXvQAAAAAAAAAA5vo9PvYAWTvOGA++by2IOuSb/TzuKcg7AACAPwAAgD8DCtQ+JFj2vabaqjoQeaO5tSiyvuP0IzkAAAAAAACAP9jzib7Ub8E++opGvYDQvr3wgCk9FCrKOwAAAAAAAAAAs+lYvqQGpD+D6na+RADbvfh/870AKTk9AAAAAAAAAACUdJRiLg=="
|
64 |
+
},
|
65 |
+
"_episode_num": 2316,
|
66 |
+
"use_sde": false,
|
67 |
+
"sde_sample_freq": -1,
|
68 |
+
"_current_progress_remaining": 0.0,
|
69 |
+
"ep_info_buffer": {
|
70 |
+
":type:": "<class 'collections.deque'>",
|
71 |
+
":serialized:": "gASVfxAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMIknTN5JslYsCUhpRSlIwBbJRNfAKMAXSUR0Civ5kNnXd1dX2UKGgGaAloD0MIti+gF+6tV0CUhpRSlGgVTcICaBZHQKK/5AEdNnJ1fZQoaAZoCWgPQwhUrYVZaCNHwJSGlFKUaBVNWQFoFkdAosAkWfseGXV9lChoBmgJaA9DCPlp3Jvf4mDAlIaUUpRoFU0sAmgWR0CiwRNpmEoOdX2UKGgGaAloD0MIKeeLvRcQW8CUhpRSlGgVTbEBaBZHQKLBLS1maph1fZQoaAZoCWgPQwgPtW0YBddBwJSGlFKUaBVNhAFoFkdAosOFBSk0rXV9lChoBmgJaA9DCGr3qwDflVbAlIaUUpRoFU1SAWgWR0CixciCz1K5dX2UKGgGaAloD0MIMnTsoBKlXcCUhpRSlGgVTSsCaBZHQKLGjAC4jKR1fZQoaAZoCWgPQwiKdhVSfiRSQJSGlFKUaBVNKwNoFkdAoscBFd9lVnV9lChoBmgJaA9DCIXOa+wST0vAlIaUUpRoFU0kAWgWR0CiyLYlyBCldX2UKGgGaAloD0MIRBfUt8z3SkCUhpRSlGgVTegDaBZHQKLJOzNUwSJ1fZQoaAZoCWgPQwjRzmkWaNRSwJSGlFKUaBVNDAFoFkdAoslv6VMVUXV9lChoBmgJaA9DCIszhjlBNzxAlIaUUpRoFU3oA2gWR0CiyoDr7fpEdX2UKGgGaAloD0MIesN95Nb4WkCUhpRSlGgVTcQCaBZHQKLLcAtFrmB1fZQoaAZoCWgPQwgCnUmbqihawJSGlFKUaBVNigFoFkdAosv/SMLncXV9lChoBmgJaA9DCKtdE9IaeybAlIaUUpRoFU0ZAWgWR0CizcrSVnmJdX2UKGgGaAloD0MIxk/j3vzfYMCUhpRSlGgVTRUCaBZHQKLNy2KEWZZ1fZQoaAZoCWgPQwgAUps4uRdhwJSGlFKUaBVN2gFoFkdAos3NTJhfB3V9lChoBmgJaA9DCMgoz7wcPV3AlIaUUpRoFU0OAmgWR0Cizj59d/rjdX2UKGgGaAloD0MImtL6WwJYM8CUhpRSlGgVS9loFkdAotE8UEgW8HV9lChoBmgJaA9DCFKZYg6CelvAlIaUUpRoFU09AmgWR0Ci0cfWlMyrdX2UKGgGaAloD0MICwvuBzyUTECUhpRSlGgVTegDaBZHQKLR7THbRF91fZQoaAZoCWgPQwiyEYjX9X9EwJSGlFKUaBVNXQFoFkdAotKa42CNCXV9lChoBmgJaA9DCEseT8sP0lTAlIaUUpRoFU01AmgWR0Ci03wwCbMHdX2UKGgGaAloD0MIZ7Yr9MFnXsCUhpRSlGgVTZUBaBZHQKLU6Ygq3E11fZQoaAZoCWgPQwi5p6s7FgNSwJSGlFKUaBVNBQJoFkdAotcozFdcB3V9lChoBmgJaA9DCBLYnINndErAlIaUUpRoFU2RAWgWR0Ci2OeA3DNydX2UKGgGaAloD0MImzkktVDvYMCUhpRSlGgVTXYCaBZHQKLaRgYP5Hp1fZQoaAZoCWgPQwg7+8qD9BJVQJSGlFKUaBVNxgJoFkdAotqj+irT6XV9lChoBmgJaA9DCAYOaOkKAktAlIaUUpRoFU3oA2gWR0Ci3AEJjUd8dX2UKGgGaAloD0MIC7jn+dPeVsCUhpRSlGgVTXECaBZHQKLd5/Nqxkd1fZQoaAZoCWgPQwhNLzGW6YFlwJSGlFKUaBVNKwJoFkdAot58XcgyM3V9lChoBmgJaA9DCLt7gO7L5WDAlIaUUpRoFU3sAWgWR0Ci4LFtTDO1dX2UKGgGaAloD0MIWRgipy+lYcCUhpRSlGgVTfsBaBZHQKLiPD8+A3F1fZQoaAZoCWgPQwgpzHucaa5WQJSGlFKUaBVNzgJoFkdAouNr3RG+bnV9lChoBmgJaA9DCE3bv7LSB1TAlIaUUpRoFU1+AWgWR0Ci4+aiKziTdX2UKGgGaAloD0MI3dJqSFxqZECUhpRSlGgVTWICaBZHQKLj6X668QJ1fZQoaAZoCWgPQwj9wcBz730ywJSGlFKUaBVN6ANoFkdAouSM9SuQqHV9lChoBmgJaA9DCLqCbcSTa0XAlIaUUpRoFUvuaBZHQKLlbYMfA9F1fZQoaAZoCWgPQwjZQ/tYwXVJwJSGlFKUaBVNlAFoFkdAouXMBdUsF3V9lChoBmgJaA9DCA5qv7UTumNAlIaUUpRoFU1rAmgWR0Ci5nlHjIaMdX2UKGgGaAloD0MI4e1BCEihZ8CUhpRSlGgVTZECaBZHQKLo69bHIZJ1fZQoaAZoCWgPQwjc1hael0tVwJSGlFKUaBVNSQFoFkdAoun01Q66rnV9lChoBmgJaA9DCILHt3cNSV3AlIaUUpRoFU2eAWgWR0Ci6mS3LFGYdX2UKGgGaAloD0MIWcLaGDsVT8CUhpRSlGgVTTcBaBZHQKLqpF3IMjN1fZQoaAZoCWgPQwiGr691qVdPQJSGlFKUaBVN6ANoFkdAourLgflp5HV9lChoBmgJaA9DCBu5bkp5blTAlIaUUpRoFU0eAWgWR0Ci6uHnuAqedX2UKGgGaAloD0MIFeKReHnBYMCUhpRSlGgVTf4BaBZHQKLq5sVLzwt1fZQoaAZoCWgPQwg+JHzvb1wwwJSGlFKUaBVNJgFoFkdAouvOYhMaj3V9lChoBmgJaA9DCGvwvioXAmfAlIaUUpRoFU1xAmgWR0Ci7GRbr1M/dX2UKGgGaAloD0MIlkOLbGeca8CUhpRSlGgVTYACaBZHQKLse0hNdqt1fZQoaAZoCWgPQwiu8C4X8QVTwJSGlFKUaBVNjQFoFkdAou1ZFiKBNHV9lChoBmgJaA9DCMiXUMHhBlJAlIaUUpRoFU3oA2gWR0Ci7ZERSP2gdX2UKGgGaAloD0MI5X/yd++mVcCUhpRSlGgVTeYBaBZHQKLvB5ftx+91fZQoaAZoCWgPQwjAlleuN4RiwJSGlFKUaBVNDAJoFkdAovGVA7gbZXV9lChoBmgJaA9DCJYmpaDbTVfAlIaUUpRoFU14AWgWR0Ci8nUcn3L3dX2UKGgGaAloD0MIJET5ghZQUMCUhpRSlGgVTVEBaBZHQKL0HO+qR2d1fZQoaAZoCWgPQwjaO6OtSo5WwJSGlFKUaBVNOwFoFkdAovVaWqtHQXV9lChoBmgJaA9DCLZmKy/5jWLAlIaUUpRoFU3UAWgWR0Ci9d4KYzBRdX2UKGgGaAloD0MIrOY5It8ZX8CUhpRSlGgVTa0BaBZHQKL29NKRMex1fZQoaAZoCWgPQwh7o1aYPiBgwJSGlFKUaBVNBQJoFkdAoveA80UGmnV9lChoBmgJaA9DCCy5isXv/2DAlIaUUpRoFU0ZAmgWR0Ci98j2JzkqdX2UKGgGaAloD0MIMuiE0EGFU8CUhpRSlGgVTTUCaBZHQKL32wbEP2B1fZQoaAZoCWgPQwhRZoNMsgJqQJSGlFKUaBVNKQJoFkdAovhnJmuklHV9lChoBmgJaA9DCMLfL2ZLvVbAlIaUUpRoFU38AWgWR0Ci+IWV3Ux3dX2UKGgGaAloD0MI8+ZwrfYdaECUhpRSlGgVTRYCaBZHQKL7GAEt/Wl1fZQoaAZoCWgPQwhqpRDIJaBSQJSGlFKUaBVN6ANoFkdAov7f7FbV0HV9lChoBmgJaA9DCCQMA5bcOWNAlIaUUpRoFU2BAWgWR0Ci/ztWdVebdX2UKGgGaAloD0MI9buwNducYcCUhpRSlGgVTeMBaBZHQKL/jXuE25x1fZQoaAZoCWgPQwiOOjquRvBGQJSGlFKUaBVN6ANoFkdAowAmQMhHLHV9lChoBmgJaA9DCHQLXYlACGdAlIaUUpRoFU3eAWgWR0CjAFOc2BJ7dX2UKGgGaAloD0MIRN0HILUTScCUhpRSlGgVTUMBaBZHQKMAhVcUuct1fZQoaAZoCWgPQwiqCg3EMghoQJSGlFKUaBVNqwFoFkdAowIDpiZv1nV9lChoBmgJaA9DCNBefTz0wUxAlIaUUpRoFU3oA2gWR0CjAt8lHBk7dX2UKGgGaAloD0MIyNCxg0ryZECUhpRSlGgVTfYBaBZHQKMGHC79Q411fZQoaAZoCWgPQwjw+zcvzkViQJSGlFKUaBVNMgNoFkdAowYlFtsN2HV9lChoBmgJaA9DCFOynITSK1HAlIaUUpRoFU0qAWgWR0CjB60t7KJVdX2UKGgGaAloD0MI3pOHhdp2Z0CUhpRSlGgVTbIBaBZHQKMH6RqXWvt1fZQoaAZoCWgPQwjt1FxusMljQJSGlFKUaBVNVAJoFkdAowgFTgl4T3V9lChoBmgJaA9DCMalKm1xqFbAlIaUUpRoFU0nAmgWR0CjCBqQRwqBdX2UKGgGaAloD0MIgxYSMLrfV8CUhpRSlGgVTX4BaBZHQKMKdPjXFtN1fZQoaAZoCWgPQwhZT62+us5DwJSGlFKUaBVNJAFoFkdAows7myPdVXV9lChoBmgJaA9DCPCGNCpw/GZAlIaUUpRoFU3eAWgWR0CjDStGus90dX2UKGgGaAloD0MIGmzqPCoIY0CUhpRSlGgVTfACaBZHQKMNR2IwdsB1fZQoaAZoCWgPQwjOxd/2hPhgQJSGlFKUaBVNVQJoFkdAoxKdcpsoD3V9lChoBmgJaA9DCG399J+1hmBAlIaUUpRoFU1SAmgWR0CjEsHNxEORdX2UKGgGaAloD0MIgLbVrDM2RcCUhpRSlGgVTegDaBZHQKMTV09yLht1fZQoaAZoCWgPQwhlw5rKoklnwJSGlFKUaBVNeAJoFkdAoxOUlXzUZ3V9lChoBmgJaA9DCKmI00m2HkNAlIaUUpRoFU3oA2gWR0CjFuA31jAjdX2UKGgGaAloD0MI4uR+h6KwXsCUhpRSlGgVTdABaBZHQKMXB3zMA3l1fZQoaAZoCWgPQwiGrdnKSzZYQJSGlFKUaBVNFQJoFkdAoxdJScbzb3V9lChoBmgJaA9DCCb/k7/7YGDAlIaUUpRoFU2tAWgWR0CjGOQ3gk1NdX2UKGgGaAloD0MIG0zD8BHwY0CUhpRSlGgVTVcCaBZHQKMZRAJLM9t1fZQoaAZoCWgPQwgXg4dp30ZRwJSGlFKUaBVN1QFoFkdAoxryR2bG3nV9lChoBmgJaA9DCBqk4CnkoFxAlIaUUpRoFU2DAmgWR0CjHKAfEGaAdX2UKGgGaAloD0MINZnxttIrT8CUhpRSlGgVTTEBaBZHQKMdZPC2tuF1fZQoaAZoCWgPQwgvaYzWUTJSwJSGlFKUaBVNhQFoFkdAox9seXAuZnV9lChoBmgJaA9DCBJr8SkAxjtAlIaUUpRoFU3oA2gWR0CjIgaews5GdX2UKGgGaAloD0MIPFCnPLq9OMCUhpRSlGgVTSABaBZHQKMicl0HQhR1fZQoaAZoCWgPQwirXRPSGqFkQJSGlFKUaBVN4wFoFkdAoyNwzrNW2nVlLg=="
|
72 |
+
},
|
73 |
+
"ep_success_buffer": {
|
74 |
+
":type:": "<class 'collections.deque'>",
|
75 |
+
":serialized:": "gASVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="
|
76 |
+
},
|
77 |
+
"_n_updates": 14844,
|
78 |
+
"buffer_size": 1000000,
|
79 |
+
"batch_size": 64,
|
80 |
+
"learning_starts": 50000,
|
81 |
+
"tau": 1.0,
|
82 |
+
"gamma": 0.995,
|
83 |
+
"gradient_steps": 1,
|
84 |
+
"optimize_memory_usage": false,
|
85 |
+
"replay_buffer_class": {
|
86 |
+
":type:": "<class 'abc.ABCMeta'>",
|
87 |
+
":serialized:": "gASVNQAAAAAAAACMIHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5idWZmZXJzlIwMUmVwbGF5QnVmZmVylJOULg==",
|
88 |
+
"__module__": "stable_baselines3.common.buffers",
|
89 |
+
"__doc__": "\n Replay buffer used in off-policy algorithms like SAC/TD3.\n\n :param buffer_size: Max number of element in the buffer\n :param observation_space: Observation space\n :param action_space: Action space\n :param device:\n :param n_envs: Number of parallel environments\n :param optimize_memory_usage: Enable a memory efficient variant\n of the replay buffer which reduces by almost a factor two the memory used,\n at a cost of more complexity.\n See https://github.com/DLR-RM/stable-baselines3/issues/37#issuecomment-637501195\n and https://github.com/DLR-RM/stable-baselines3/pull/28#issuecomment-637559274\n :param handle_timeout_termination: Handle timeout termination (due to timelimit)\n separately and treat the task as infinite horizon task.\n https://github.com/DLR-RM/stable-baselines3/issues/284\n ",
|
90 |
+
"__init__": "<function ReplayBuffer.__init__ at 0x7fb551f84dd0>",
|
91 |
+
"add": "<function ReplayBuffer.add at 0x7fb551f84e60>",
|
92 |
+
"sample": "<function ReplayBuffer.sample at 0x7fb551f84ef0>",
|
93 |
+
"_get_samples": "<function ReplayBuffer._get_samples at 0x7fb551f84f80>",
|
94 |
+
"__abstractmethods__": "frozenset()",
|
95 |
+
"_abc_impl": "<_abc_data object at 0x7fb551f5a810>"
|
96 |
+
},
|
97 |
+
"replay_buffer_kwargs": {},
|
98 |
+
"train_freq": {
|
99 |
+
":type:": "<class 'stable_baselines3.common.type_aliases.TrainFreq'>",
|
100 |
+
":serialized:": "gASVYQAAAAAAAACMJXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi50eXBlX2FsaWFzZXOUjAlUcmFpbkZyZXGUk5RLBGgAjBJUcmFpbkZyZXF1ZW5jeVVuaXSUk5SMBHN0ZXCUhZRSlIaUgZQu"
|
101 |
+
},
|
102 |
+
"actor": null,
|
103 |
+
"use_sde_at_warmup": false,
|
104 |
+
"exploration_initial_eps": 1.0,
|
105 |
+
"exploration_final_eps": 0.05,
|
106 |
+
"exploration_fraction": 0.1,
|
107 |
+
"target_update_interval": 625,
|
108 |
+
"_n_calls": 62500,
|
109 |
+
"max_grad_norm": 10,
|
110 |
+
"exploration_rate": 0.05,
|
111 |
+
"exploration_schedule": {
|
112 |
+
":type:": "<class 'function'>",
|
113 |
+
":serialized:": "gASVYwMAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwNX2J1aWx0aW5fdHlwZZSTlIwKTGFtYmRhVHlwZZSFlFKUKGgCjAhDb2RlVHlwZZSFlFKUKEsBSwBLAUsESxNDLGQBfAAYAIgBawRyEIgAUwCIAmQBfAAYAIgAiAIYABQAiAEbABcAUwBkAFMAlE5LAYaUKYwScHJvZ3Jlc3NfcmVtYWluaW5nlIWUjEgvdXNyL2xvY2FsL2xpYi9weXRob24zLjcvZGlzdC1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUjARmdW5jlEtuQwYAAQwBBAKUjANlbmSUjAxlbmRfZnJhY3Rpb26UjAVzdGFydJSHlCl0lFKUfZQojAtfX3BhY2thZ2VfX5SMGHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbpSMCF9fbmFtZV9flIwec3RhYmxlX2Jhc2VsaW5lczMuY29tbW9uLnV0aWxzlIwIX19maWxlX1+UjEgvdXNyL2xvY2FsL2xpYi9weXRob24zLjcvZGlzdC1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUdU5OaACMEF9tYWtlX2VtcHR5X2NlbGyUk5QpUpRoHilSlGgeKVKUh5R0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaCR9lH2UKGgZaA6MDF9fcXVhbG5hbWVfX5SMG2dldF9saW5lYXJfZm4uPGxvY2Fscz4uZnVuY5SMD19fYW5ub3RhdGlvbnNfX5R9lChoC4wIYnVpbHRpbnOUjAVmbG9hdJSTlIwGcmV0dXJulGgwdYwOX19rd2RlZmF1bHRzX1+UTowMX19kZWZhdWx0c19flE6MCl9fbW9kdWxlX1+UaBqMB19fZG9jX1+UTowLX19jbG9zdXJlX1+UaACMCl9tYWtlX2NlbGyUk5RHP6mZmZmZmZqFlFKUaDhHP7mZmZmZmZqFlFKUaDhHP/AAAAAAAACFlFKUh5SMF19jbG91ZHBpY2tsZV9zdWJtb2R1bGVzlF2UjAtfX2dsb2JhbHNfX5R9lHWGlIZSMC4="
|
114 |
+
}
|
115 |
+
}
|
dqn-LunarLander-v2/policy.optimizer.pth
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:f37c4f16c9e12a60828bf3aba90fc3239f4490c0fe75350b646d84f8d8f4e527
|
3 |
+
size 43265
|
dqn-LunarLander-v2/policy.pth
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:8dd8fec12c77cafb2650a4e1cf8ceabd46dc641a20ab4f3f31c176b6b11ddae4
|
3 |
+
size 44033
|
dqn-LunarLander-v2/pytorch_variables.pth
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:d030ad8db708280fcae77d87e973102039acd23a11bdecc3db8eb6c0ac940ee1
|
3 |
+
size 431
|
dqn-LunarLander-v2/system_info.txt
ADDED
@@ -0,0 +1,7 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
OS: Linux-5.4.188+-x86_64-with-Ubuntu-18.04-bionic #1 SMP Sun Apr 24 10:03:06 PDT 2022
|
2 |
+
Python: 3.7.13
|
3 |
+
Stable-Baselines3: 1.5.0
|
4 |
+
PyTorch: 1.11.0+cu113
|
5 |
+
GPU Enabled: True
|
6 |
+
Numpy: 1.21.6
|
7 |
+
Gym: 0.21.0
|
replay.mp4
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:d1998932cf3fcbe00690167382deaa401e01fc3fc4c7e5aafb163ad030024ab6
|
3 |
+
size 218459
|
results.json
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
{"mean_reward": -53.92119975838723, "std_reward": 90.79500279669091, "is_deterministic": true, "n_eval_episodes": 10, "eval_datetime": "2022-05-29T01:24:40.215713"}
|