podolskipio commited on
Commit
a72f85d
·
1 Parent(s): da25ce5
README.md ADDED
@@ -0,0 +1,37 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ library_name: stable-baselines3
3
+ tags:
4
+ - LunarLander-v2
5
+ - deep-reinforcement-learning
6
+ - reinforcement-learning
7
+ - stable-baselines3
8
+ model-index:
9
+ - name: PPO
10
+ results:
11
+ - task:
12
+ type: reinforcement-learning
13
+ name: reinforcement-learning
14
+ dataset:
15
+ name: LunarLander-v2
16
+ type: LunarLander-v2
17
+ metrics:
18
+ - type: mean_reward
19
+ value: 282.01 +/- 19.59
20
+ name: mean_reward
21
+ verified: false
22
+ ---
23
+
24
+ # **PPO** Agent playing **LunarLander-v2**
25
+ This is a trained model of a **PPO** agent playing **LunarLander-v2**
26
+ using the [stable-baselines3 library](https://github.com/DLR-RM/stable-baselines3).
27
+
28
+ ## Usage (with Stable-baselines3)
29
+ TODO: Add your code
30
+
31
+
32
+ ```python
33
+ from stable_baselines3 import ...
34
+ from huggingface_sb3 import load_from_hub
35
+
36
+ ...
37
+ ```
config.json ADDED
@@ -0,0 +1 @@
 
 
1
+ {"policy_class": {":type:": "<class 'abc.ABCMeta'>", ":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==", "__module__": "stable_baselines3.common.policies", "__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ", "__init__": "<function ActorCriticPolicy.__init__ at 0x7f8384f92c10>", "_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x7f8384f92ca0>", "reset_noise": "<function ActorCriticPolicy.reset_noise at 0x7f8384f92d30>", "_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x7f8384f92dc0>", "_build": "<function ActorCriticPolicy._build at 0x7f8384f92e50>", "forward": "<function ActorCriticPolicy.forward at 0x7f8384f92ee0>", "extract_features": "<function ActorCriticPolicy.extract_features at 0x7f8384f92f70>", "_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x7f8384f96040>", "_predict": "<function ActorCriticPolicy._predict at 0x7f8384f960d0>", "evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x7f8384f96160>", "get_distribution": "<function ActorCriticPolicy.get_distribution at 0x7f8384f961f0>", "predict_values": "<function ActorCriticPolicy.predict_values at 0x7f8384f96280>", "__abstractmethods__": "frozenset()", "_abc_impl": "<_abc._abc_data object at 0x7f8384f94ac0>"}, "verbose": 1, "policy_kwargs": {}, "num_timesteps": 1015808, "_total_timesteps": 1000000, "_num_timesteps_at_start": 0, "seed": null, "action_noise": null, "start_time": 1681152724071008709, "learning_rate": 0.0003, "tensorboard_log": null, "lr_schedule": {":type:": "<class 'function'>", ":serialized:": "gAWVwwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOS9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZSMBGZ1bmOUS4JDAgABlIwDdmFslIWUKXSUUpR9lCiMC19fcGFja2FnZV9flIwYc3RhYmxlX2Jhc2VsaW5lczMuY29tbW9ulIwIX19uYW1lX1+UjB5zdGFibGVfYmFzZWxpbmVzMy5jb21tb24udXRpbHOUjAhfX2ZpbGVfX5SMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOS9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZR1Tk5oAIwQX21ha2VfZW1wdHlfY2VsbJSTlClSlIWUdJRSlIwcY2xvdWRwaWNrbGUuY2xvdWRwaWNrbGVfZmFzdJSMEl9mdW5jdGlvbl9zZXRzdGF0ZZSTlGgffZR9lChoFmgNjAxfX3F1YWxuYW1lX1+UjBljb25zdGFudF9mbi48bG9jYWxzPi5mdW5jlIwPX19hbm5vdGF0aW9uc19flH2UjA5fX2t3ZGVmYXVsdHNfX5ROjAxfX2RlZmF1bHRzX1+UTowKX19tb2R1bGVfX5RoF4wHX19kb2NfX5ROjAtfX2Nsb3N1cmVfX5RoAIwKX21ha2VfY2VsbJSTlEc/M6kqMFUyYYWUUpSFlIwXX2Nsb3VkcGlja2xlX3N1Ym1vZHVsZXOUXZSMC19fZ2xvYmFsc19flH2UdYaUhlIwLg=="}, "_last_obs": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVdQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYAAgAAAAAAAPOWkD0keXc8k5sWvuC2Ob7WRw48yEGmvAAAAAAAAAAAZnwkvPSEn7yFE/K9URCevXWOuD3+A60+AACAPwAAgD+AJwq9zjnOPtZyFD1/VKm+bYHOPTYqJTwAAAAAAAAAAHqINr7sIGU+fpKFPhRqmr7/kMo9K628PAAAAAAAAAAAGmRsvbgu3rkbTuUz9+y4L1MSLrtNZqSzAACAPwAAgD/a9JO9lHoPPo0Nhj4GDpu+XRY0Pn2j5DoAAAAAAAAAAI0LzL1sHPy7KIiJu3fhrDyCR1I9dquPvQAAgD8AAIA/AHxwvI9+CrqLDzS0e5t5sA05iDtq1qAzAACAPwAAgD/Namq89nlHvACPbruLtX08br+rPdBOUb0AAIA/AACAP5pmhL32SQ68YprLPJbJ4Dx90Hy9HZS1PQAAgD8AAIA/GhxlPhdkJT/4fVC9i/HjvtkMKz5Qp5m9AAAAAAAAAABKJby+9244Py4/oz0zovK+45ebvn0bXT0AAAAAAAAAAM1boj1wTxg/xSaoPZcu7r6j0qs9EYI5PQAAAAAAAAAA5koVvR8P2joWrCS+nlYNvusB2LwaIbQ+AACAPwAAAACaps289uRLurgqs7cmZxGzTMK7OljmyjYAAIA/AACAP4blAj5e6Jw/T8MKP0kdIr8I9EQ+kyFyPgAAAAAAAAAAlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksQSwiGlIwBQ5R0lFKULg=="}, "_last_episode_starts": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVgwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSxCFlIwBQ5R0lFKULg=="}, "_last_original_obs": null, "_episode_num": 0, "use_sde": false, "sde_sample_freq": -1, "_current_progress_remaining": -0.015808000000000044, "_stats_window_size": 100, "ep_info_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVXhAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMI0jQomofwb0CUhpRSlIwBbJRNIgKMAXSUR0CZHkvLX+VDdX2UKGgGaAloD0MI4pS5+UbQcECUhpRSlGgVTQkBaBZHQJkfDVbzK9x1fZQoaAZoCWgPQwhC7Eyh8y9xQJSGlFKUaBVL9WgWR0CZIBTY/Vy4dX2UKGgGaAloD0MI4UOJlnyVcECUhpRSlGgVTdUBaBZHQJkgngCOmzl1fZQoaAZoCWgPQwjobAGh9V9zQJSGlFKUaBVNKwFoFkdAmSC9orWiDnV9lChoBmgJaA9DCKhUibL3YXJAlIaUUpRoFU0bAWgWR0CZJAp0wJw9dX2UKGgGaAloD0MIdonqrYFKckCUhpRSlGgVS8xoFkdAmSRxXbM5fnV9lChoBmgJaA9DCGE41zADsnBAlIaUUpRoFU0PAWgWR0CZJO+9alk6dX2UKGgGaAloD0MI0oxF05mVckCUhpRSlGgVTRgBaBZHQJklOc7Qswt1fZQoaAZoCWgPQwjcuTDSS39yQJSGlFKUaBVL3GgWR0CZJTlfqoqDdX2UKGgGaAloD0MILNfbZmqkcUCUhpRSlGgVTQcCaBZHQJklt7hNucd1fZQoaAZoCWgPQwgRUUzeQCtxQJSGlFKUaBVNQwFoFkdAmSZFk+X7cnV9lChoBmgJaA9DCH9LAP5pIHFAlIaUUpRoFU3VAWgWR0CZJm68g6ltdX2UKGgGaAloD0MI097gC1O0cECUhpRSlGgVTZ8BaBZHQJkmqhPCVKR1fZQoaAZoCWgPQwh2wktwKmJwQJSGlFKUaBVL9mgWR0CZJuXkYGdJdX2UKGgGaAloD0MIyf/k754hcUCUhpRSlGgVTQABaBZHQJkowk/r0J51fZQoaAZoCWgPQwgHmPkOvt9wQJSGlFKUaBVNtQFoFkdAmSjhMN+b3HV9lChoBmgJaA9DCPjCZKpghklAlIaUUpRoFUu3aBZHQJkpryDqW1N1fZQoaAZoCWgPQwh2MjhKHglwQJSGlFKUaBVNTwFoFkdAmSqNsabWmXV9lChoBmgJaA9DCBzsTQzJeHBAlIaUUpRoFU1+AmgWR0CZKwrMC9ytdX2UKGgGaAloD0MI26UNh6XeUUCUhpRSlGgVS65oFkdAmS5iCFsYVXV9lChoBmgJaA9DCHeeeM4WVW9AlIaUUpRoFUv2aBZHQJkuqmzjWCp1fZQoaAZoCWgPQwgLYwtBTlJxQJSGlFKUaBVNLAFoFkdAmS6rncL0BnV9lChoBmgJaA9DCED35cy2V3NAlIaUUpRoFU0eAWgWR0CZL2SKm8/VdX2UKGgGaAloD0MI+6wyU9p7b0CUhpRSlGgVTUEBaBZHQJkvdm+TNdJ1fZQoaAZoCWgPQwgIISBfQmhaQJSGlFKUaBVLr2gWR0CZL53iaRZEdX2UKGgGaAloD0MIm5FB7iKycECUhpRSlGgVTXYBaBZHQJkxJgOSW7h1fZQoaAZoCWgPQwiOdAZG3nFxQJSGlFKUaBVNhAFoFkdAmTEmyon8bnV9lChoBmgJaA9DCM/0EmPZ93BAlIaUUpRoFU1jAmgWR0CZMYAsTWXkdX2UKGgGaAloD0MIVtY2xSPhcUCUhpRSlGgVTQcBaBZHQJkx0dgfEGZ1fZQoaAZoCWgPQwirzf+rToNxQJSGlFKUaBVNWgFoFkdAmTH/w3HaOHV9lChoBmgJaA9DCECmtWnsJ29AlIaUUpRoFUveaBZHQJkyOEEkjX51fZQoaAZoCWgPQwg4Ef3a+uxsQJSGlFKUaBVL9WgWR0CZM0n5SFXadX2UKGgGaAloD0MIjINLx5zVSECUhpRSlGgVS6JoFkdAmTSVS88La3V9lChoBmgJaA9DCFuZ8Eu9YnFAlIaUUpRoFU2CAmgWR0CZNTn6Eal2dX2UKGgGaAloD0MIotXJGYpGcUCUhpRSlGgVS9NoFkdAmTVE83dbgXV9lChoBmgJaA9DCGLAkqtYtXBAlIaUUpRoFU3xAWgWR0CZNU5QxesxdX2UKGgGaAloD0MIvYxiuaWRcUCUhpRSlGgVTTkBaBZHQJk4Sy2QXAN1fZQoaAZoCWgPQwiJYYcx6ZBxQJSGlFKUaBVNcQJoFkdAmToZ6MR6GHV9lChoBmgJaA9DCG1TPC5qy3NAlIaUUpRoFU0wAWgWR0CZTS5t3wCsdX2UKGgGaAloD0MIoSx8fe2XcUCUhpRSlGgVTSIBaBZHQJlNyTgVGkN1fZQoaAZoCWgPQwhtqYO8HkxyQJSGlFKUaBVNdQFoFkdAmU3YGpuMuXV9lChoBmgJaA9DCBwlr86xrHFAlIaUUpRoFU1RAWgWR0CZTmVG0/nodX2UKGgGaAloD0MIIoleRnERcECUhpRSlGgVTRIBaBZHQJlO7YywfQt1fZQoaAZoCWgPQwhWRE30eWNxQJSGlFKUaBVNaAFoFkdAmU94lD4QBnV9lChoBmgJaA9DCOPBFrv95W9AlIaUUpRoFUvjaBZHQJlQCWzF+/h1fZQoaAZoCWgPQwj9pNqnIzRyQJSGlFKUaBVNowFoFkdAmVAUp7TlT3V9lChoBmgJaA9DCJnzjH1JKHFAlIaUUpRoFU1dAWgWR0CZUCFRHf/FdX2UKGgGaAloD0MIxvoGJrfCcUCUhpRSlGgVTWcBaBZHQJlQSEL6UJR1fZQoaAZoCWgPQwgYXd4cLtxyQJSGlFKUaBVL7mgWR0CZUF1HvttzdX2UKGgGaAloD0MIBkzg1t3tbkCUhpRSlGgVTQcBaBZHQJlQenk1dgR1fZQoaAZoCWgPQwiFtTF2wrRvQJSGlFKUaBVN8AFoFkdAmVGsF+uvEHV9lChoBmgJaA9DCD1DOGbZ3nBAlIaUUpRoFU0uAWgWR0CZUnjfvWpZdX2UKGgGaAloD0MIlBeZgN+zckCUhpRSlGgVS9VoFkdAmVZhLPD503V9lChoBmgJaA9DCMxDpnwIlnFAlIaUUpRoFU0yAWgWR0CZVoTr3TNMdX2UKGgGaAloD0MIL6NYbmkCc0CUhpRSlGgVS+loFkdAmVbI6GQCCHV9lChoBmgJaA9DCFQ57Sn5ZnNAlIaUUpRoFU0FAWgWR0CZVzfnOjZddX2UKGgGaAloD0MI56kOuRm2cUCUhpRSlGgVTSsBaBZHQJlXx8hLXcx1fZQoaAZoCWgPQwhq2sU0U3RwQJSGlFKUaBVL3GgWR0CZV95N47iidX2UKGgGaAloD0MIQUXVr3S2b0CUhpRSlGgVS/doFkdAmVi5xeb/fnV9lChoBmgJaA9DCKPmq+SjYXFAlIaUUpRoFU0BAWgWR0CZWNUuL740dX2UKGgGaAloD0MIEEHV6FXlcUCUhpRSlGgVTQgBaBZHQJlY/uRcNYt1fZQoaAZoCWgPQwj2fM1yWaFuQJSGlFKUaBVNAAFoFkdAmVkVnVXmvHV9lChoBmgJaA9DCEK1wYmo6nFAlIaUUpRoFUv5aBZHQJlZ2RKYiPh1fZQoaAZoCWgPQwjpKt1dJ35yQJSGlFKUaBVNOQFoFkdAmVngLZzxPXV9lChoBmgJaA9DCDrq6LiaEHBAlIaUUpRoFU1KAWgWR0CZWpuYhMakdX2UKGgGaAloD0MIA3rhzoUhbkCUhpRSlGgVTZMBaBZHQJlbND3M6il1fZQoaAZoCWgPQwhyqN+Fre1KQJSGlFKUaBVLtGgWR0CZW1PwNLDidX2UKGgGaAloD0MIWriswiZ6cUCUhpRSlGgVTZUBaBZHQJlbytQsPJ91fZQoaAZoCWgPQwiTxmgdFflyQJSGlFKUaBVL8GgWR0CZXMAX2ugZdX2UKGgGaAloD0MI641aYbpYcUCUhpRSlGgVTWQBaBZHQJldHJ7sv7F1fZQoaAZoCWgPQwg7bvjd9FJyQJSGlFKUaBVL6mgWR0CZXUR6Ww/xdX2UKGgGaAloD0MITFKZYo6ycUCUhpRSlGgVTQoBaBZHQJldpCv5gw51fZQoaAZoCWgPQwh47dKGQ0BuQJSGlFKUaBVL5WgWR0CZXbR7qptKdX2UKGgGaAloD0MIBac+kHwdc0CUhpRSlGgVTQUBaBZHQJleXNbC79R1fZQoaAZoCWgPQwjElEiil9FvQJSGlFKUaBVL7GgWR0CZXohw2l2vdX2UKGgGaAloD0MI4LvNG2dlcECUhpRSlGgVS+xoFkdAmV+iExqO93V9lChoBmgJaA9DCMXjolpE629AlIaUUpRoFU0aAWgWR0CZYAfKp1ifdX2UKGgGaAloD0MIovFEEGcocUCUhpRSlGgVS95oFkdAmWAbm6oVEnV9lChoBmgJaA9DCGWLpN3oNXFAlIaUUpRoFUvaaBZHQJlgmZZ0Syt1fZQoaAZoCWgPQwg1Bwjm6PtUQJSGlFKUaBVLnGgWR0CZYOmBvrGBdX2UKGgGaAloD0MIq8/VVqz/cUCUhpRSlGgVTU0BaBZHQJlhN4GD+R51fZQoaAZoCWgPQwjEI/HydOhwQJSGlFKUaBVL/GgWR0CZYY7iADq4dX2UKGgGaAloD0MIXRd+cL74cUCUhpRSlGgVTUgBaBZHQJlh7hYNiH91fZQoaAZoCWgPQwjAPc+fNlFvQJSGlFKUaBVNIQFoFkdAmWLfOpsGgXV9lChoBmgJaA9DCFeyYyOQ625AlIaUUpRoFUvyaBZHQJljmeyzHCJ1fZQoaAZoCWgPQwheaK7TSKNuQJSGlFKUaBVNAwFoFkdAmWP3BxgiNnV9lChoBmgJaA9DCED35cw2N3BAlIaUUpRoFU0OAWgWR0CZZRdqtYCAdX2UKGgGaAloD0MIvY+jOTLDcUCUhpRSlGgVTUIBaBZHQJllOMBIWgx1fZQoaAZoCWgPQwiKVu4FZodtQJSGlFKUaBVNFQFoFkdAmWV8FlkH2XV9lChoBmgJaA9DCJ+USQ1ta3FAlIaUUpRoFUv2aBZHQJllxTMqz7d1fZQoaAZoCWgPQwhEUaBP5G9wQJSGlFKUaBVL2GgWR0CZZfR+BpYcdX2UKGgGaAloD0MIQ8h5/98McUCUhpRSlGgVS/NoFkdAmWYM3qAz6HV9lChoBmgJaA9DCM1bdR0qHHJAlIaUUpRoFU1DAmgWR0CZZxJKJ2t/dX2UKGgGaAloD0MI7Q+U23aGcUCUhpRSlGgVTaYBaBZHQJlnGZuyeI51fZQoaAZoCWgPQwjgY7DiVDdxQJSGlFKUaBVL/2gWR0CZZ2LmZE2HdX2UKGgGaAloD0MIDk+vlCUqcUCUhpRSlGgVS+poFkdAmWeYInjQzHV9lChoBmgJaA9DCHU8ZqBy53BAlIaUUpRoFU0VAWgWR0CZZ56QeV9ndX2UKGgGaAloD0MI6xuY3Gj1cECUhpRSlGgVTRMBaBZHQJloHEbYK6Z1fZQoaAZoCWgPQwgyc4HL49RxQJSGlFKUaBVNCgFoFkdAmWk1jVhCt3VlLg=="}, "ep_success_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="}, "_n_updates": 280, "observation_space": {":type:": "<class 'gym.spaces.box.Box'>", ":serialized:": "gAWVnwEAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLCIWUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWIAAAAAAAAAAAAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/5RoCksIhZSMAUOUdJRSlIwEaGlnaJRoEiiWIAAAAAAAAAAAAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAf5RoCksIhZRoFXSUUpSMDWJvdW5kZWRfYmVsb3eUaBIolggAAAAAAAAAAAAAAAAAAACUaAeMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLCIWUaBV0lFKUjA1ib3VuZGVkX2Fib3ZllGgSKJYIAAAAAAAAAAAAAAAAAAAAlGghSwiFlGgVdJRSlIwKX25wX3JhbmRvbZROdWIu", "dtype": "float32", "_shape": [8], "low": "[-inf -inf -inf -inf -inf -inf -inf -inf]", "high": "[inf inf inf inf inf inf inf inf]", "bounded_below": "[False False False False False False False False]", "bounded_above": "[False False False False False False False False]", "_np_random": null}, "action_space": {":type:": "<class 'gym.spaces.discrete.Discrete'>", ":serialized:": "gAWVggAAAAAAAACME2d5bS5zcGFjZXMuZGlzY3JldGWUjAhEaXNjcmV0ZZSTlCmBlH2UKIwBbpRLBIwGX3NoYXBllCmMBWR0eXBllIwFbnVtcHmUaAeTlIwCaTiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYowKX25wX3JhbmRvbZROdWIu", "n": 4, "_shape": [], "dtype": "int64", "_np_random": null}, "n_envs": 16, "n_steps": 1024, "gamma": 0.999, "gae_lambda": 0.98, "ent_coef": 0.01, "vf_coef": 0.5, "max_grad_norm": 0.5, "batch_size": 64, "n_epochs": 4, "clip_range": {":type:": "<class 'function'>", ":serialized:": "gAWVwwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOS9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZSMBGZ1bmOUS4JDAgABlIwDdmFslIWUKXSUUpR9lCiMC19fcGFja2FnZV9flIwYc3RhYmxlX2Jhc2VsaW5lczMuY29tbW9ulIwIX19uYW1lX1+UjB5zdGFibGVfYmFzZWxpbmVzMy5jb21tb24udXRpbHOUjAhfX2ZpbGVfX5SMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOS9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZR1Tk5oAIwQX21ha2VfZW1wdHlfY2VsbJSTlClSlIWUdJRSlIwcY2xvdWRwaWNrbGUuY2xvdWRwaWNrbGVfZmFzdJSMEl9mdW5jdGlvbl9zZXRzdGF0ZZSTlGgffZR9lChoFmgNjAxfX3F1YWxuYW1lX1+UjBljb25zdGFudF9mbi48bG9jYWxzPi5mdW5jlIwPX19hbm5vdGF0aW9uc19flH2UjA5fX2t3ZGVmYXVsdHNfX5ROjAxfX2RlZmF1bHRzX1+UTowKX19tb2R1bGVfX5RoF4wHX19kb2NfX5ROjAtfX2Nsb3N1cmVfX5RoAIwKX21ha2VfY2VsbJSTlEc/yZmZmZmZmoWUUpSFlIwXX2Nsb3VkcGlja2xlX3N1Ym1vZHVsZXOUXZSMC19fZ2xvYmFsc19flH2UdYaUhlIwLg=="}, "clip_range_vf": null, "normalize_advantage": true, "target_kl": null, "system_info": {"OS": "Linux-5.10.147+-x86_64-with-glibc2.31 # 1 SMP Sat Dec 10 16:00:40 UTC 2022", "Python": "3.9.16", "Stable-Baselines3": "1.8.0", "PyTorch": "2.0.0+cu118", "GPU Enabled": "True", "Numpy": "1.22.4", "Gym": "0.21.0"}}
ppo-LunarLander-v2.zip ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:83ce5190081c3e88056168edc884aa536428673040d9c0fdff7059058be9640c
3
+ size 147351
ppo-LunarLander-v2/_stable_baselines3_version ADDED
@@ -0,0 +1 @@
 
 
1
+ 1.8.0
ppo-LunarLander-v2/data ADDED
@@ -0,0 +1,96 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "policy_class": {
3
+ ":type:": "<class 'abc.ABCMeta'>",
4
+ ":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==",
5
+ "__module__": "stable_baselines3.common.policies",
6
+ "__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ",
7
+ "__init__": "<function ActorCriticPolicy.__init__ at 0x7f8384f92c10>",
8
+ "_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x7f8384f92ca0>",
9
+ "reset_noise": "<function ActorCriticPolicy.reset_noise at 0x7f8384f92d30>",
10
+ "_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x7f8384f92dc0>",
11
+ "_build": "<function ActorCriticPolicy._build at 0x7f8384f92e50>",
12
+ "forward": "<function ActorCriticPolicy.forward at 0x7f8384f92ee0>",
13
+ "extract_features": "<function ActorCriticPolicy.extract_features at 0x7f8384f92f70>",
14
+ "_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x7f8384f96040>",
15
+ "_predict": "<function ActorCriticPolicy._predict at 0x7f8384f960d0>",
16
+ "evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x7f8384f96160>",
17
+ "get_distribution": "<function ActorCriticPolicy.get_distribution at 0x7f8384f961f0>",
18
+ "predict_values": "<function ActorCriticPolicy.predict_values at 0x7f8384f96280>",
19
+ "__abstractmethods__": "frozenset()",
20
+ "_abc_impl": "<_abc._abc_data object at 0x7f8384f94ac0>"
21
+ },
22
+ "verbose": 1,
23
+ "policy_kwargs": {},
24
+ "num_timesteps": 1015808,
25
+ "_total_timesteps": 1000000,
26
+ "_num_timesteps_at_start": 0,
27
+ "seed": null,
28
+ "action_noise": null,
29
+ "start_time": 1681152724071008709,
30
+ "learning_rate": 0.0003,
31
+ "tensorboard_log": null,
32
+ "lr_schedule": {
33
+ ":type:": "<class 'function'>",
34
+ ":serialized:": "gAWVwwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOS9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZSMBGZ1bmOUS4JDAgABlIwDdmFslIWUKXSUUpR9lCiMC19fcGFja2FnZV9flIwYc3RhYmxlX2Jhc2VsaW5lczMuY29tbW9ulIwIX19uYW1lX1+UjB5zdGFibGVfYmFzZWxpbmVzMy5jb21tb24udXRpbHOUjAhfX2ZpbGVfX5SMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOS9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZR1Tk5oAIwQX21ha2VfZW1wdHlfY2VsbJSTlClSlIWUdJRSlIwcY2xvdWRwaWNrbGUuY2xvdWRwaWNrbGVfZmFzdJSMEl9mdW5jdGlvbl9zZXRzdGF0ZZSTlGgffZR9lChoFmgNjAxfX3F1YWxuYW1lX1+UjBljb25zdGFudF9mbi48bG9jYWxzPi5mdW5jlIwPX19hbm5vdGF0aW9uc19flH2UjA5fX2t3ZGVmYXVsdHNfX5ROjAxfX2RlZmF1bHRzX1+UTowKX19tb2R1bGVfX5RoF4wHX19kb2NfX5ROjAtfX2Nsb3N1cmVfX5RoAIwKX21ha2VfY2VsbJSTlEc/M6kqMFUyYYWUUpSFlIwXX2Nsb3VkcGlja2xlX3N1Ym1vZHVsZXOUXZSMC19fZ2xvYmFsc19flH2UdYaUhlIwLg=="
35
+ },
36
+ "_last_obs": {
37
+ ":type:": "<class 'numpy.ndarray'>",
38
+ ":serialized:": "gAWVdQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYAAgAAAAAAAPOWkD0keXc8k5sWvuC2Ob7WRw48yEGmvAAAAAAAAAAAZnwkvPSEn7yFE/K9URCevXWOuD3+A60+AACAPwAAgD+AJwq9zjnOPtZyFD1/VKm+bYHOPTYqJTwAAAAAAAAAAHqINr7sIGU+fpKFPhRqmr7/kMo9K628PAAAAAAAAAAAGmRsvbgu3rkbTuUz9+y4L1MSLrtNZqSzAACAPwAAgD/a9JO9lHoPPo0Nhj4GDpu+XRY0Pn2j5DoAAAAAAAAAAI0LzL1sHPy7KIiJu3fhrDyCR1I9dquPvQAAgD8AAIA/AHxwvI9+CrqLDzS0e5t5sA05iDtq1qAzAACAPwAAgD/Namq89nlHvACPbruLtX08br+rPdBOUb0AAIA/AACAP5pmhL32SQ68YprLPJbJ4Dx90Hy9HZS1PQAAgD8AAIA/GhxlPhdkJT/4fVC9i/HjvtkMKz5Qp5m9AAAAAAAAAABKJby+9244Py4/oz0zovK+45ebvn0bXT0AAAAAAAAAAM1boj1wTxg/xSaoPZcu7r6j0qs9EYI5PQAAAAAAAAAA5koVvR8P2joWrCS+nlYNvusB2LwaIbQ+AACAPwAAAACaps289uRLurgqs7cmZxGzTMK7OljmyjYAAIA/AACAP4blAj5e6Jw/T8MKP0kdIr8I9EQ+kyFyPgAAAAAAAAAAlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksQSwiGlIwBQ5R0lFKULg=="
39
+ },
40
+ "_last_episode_starts": {
41
+ ":type:": "<class 'numpy.ndarray'>",
42
+ ":serialized:": "gAWVgwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSxCFlIwBQ5R0lFKULg=="
43
+ },
44
+ "_last_original_obs": null,
45
+ "_episode_num": 0,
46
+ "use_sde": false,
47
+ "sde_sample_freq": -1,
48
+ "_current_progress_remaining": -0.015808000000000044,
49
+ "_stats_window_size": 100,
50
+ "ep_info_buffer": {
51
+ ":type:": "<class 'collections.deque'>",
52
+ ":serialized:": "gAWVXhAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMI0jQomofwb0CUhpRSlIwBbJRNIgKMAXSUR0CZHkvLX+VDdX2UKGgGaAloD0MI4pS5+UbQcECUhpRSlGgVTQkBaBZHQJkfDVbzK9x1fZQoaAZoCWgPQwhC7Eyh8y9xQJSGlFKUaBVL9WgWR0CZIBTY/Vy4dX2UKGgGaAloD0MI4UOJlnyVcECUhpRSlGgVTdUBaBZHQJkgngCOmzl1fZQoaAZoCWgPQwjobAGh9V9zQJSGlFKUaBVNKwFoFkdAmSC9orWiDnV9lChoBmgJaA9DCKhUibL3YXJAlIaUUpRoFU0bAWgWR0CZJAp0wJw9dX2UKGgGaAloD0MIdonqrYFKckCUhpRSlGgVS8xoFkdAmSRxXbM5fnV9lChoBmgJaA9DCGE41zADsnBAlIaUUpRoFU0PAWgWR0CZJO+9alk6dX2UKGgGaAloD0MI0oxF05mVckCUhpRSlGgVTRgBaBZHQJklOc7Qswt1fZQoaAZoCWgPQwjcuTDSS39yQJSGlFKUaBVL3GgWR0CZJTlfqoqDdX2UKGgGaAloD0MILNfbZmqkcUCUhpRSlGgVTQcCaBZHQJklt7hNucd1fZQoaAZoCWgPQwgRUUzeQCtxQJSGlFKUaBVNQwFoFkdAmSZFk+X7cnV9lChoBmgJaA9DCH9LAP5pIHFAlIaUUpRoFU3VAWgWR0CZJm68g6ltdX2UKGgGaAloD0MI097gC1O0cECUhpRSlGgVTZ8BaBZHQJkmqhPCVKR1fZQoaAZoCWgPQwh2wktwKmJwQJSGlFKUaBVL9mgWR0CZJuXkYGdJdX2UKGgGaAloD0MIyf/k754hcUCUhpRSlGgVTQABaBZHQJkowk/r0J51fZQoaAZoCWgPQwgHmPkOvt9wQJSGlFKUaBVNtQFoFkdAmSjhMN+b3HV9lChoBmgJaA9DCPjCZKpghklAlIaUUpRoFUu3aBZHQJkpryDqW1N1fZQoaAZoCWgPQwh2MjhKHglwQJSGlFKUaBVNTwFoFkdAmSqNsabWmXV9lChoBmgJaA9DCBzsTQzJeHBAlIaUUpRoFU1+AmgWR0CZKwrMC9ytdX2UKGgGaAloD0MI26UNh6XeUUCUhpRSlGgVS65oFkdAmS5iCFsYVXV9lChoBmgJaA9DCHeeeM4WVW9AlIaUUpRoFUv2aBZHQJkuqmzjWCp1fZQoaAZoCWgPQwgLYwtBTlJxQJSGlFKUaBVNLAFoFkdAmS6rncL0BnV9lChoBmgJaA9DCED35cy2V3NAlIaUUpRoFU0eAWgWR0CZL2SKm8/VdX2UKGgGaAloD0MI+6wyU9p7b0CUhpRSlGgVTUEBaBZHQJkvdm+TNdJ1fZQoaAZoCWgPQwgIISBfQmhaQJSGlFKUaBVLr2gWR0CZL53iaRZEdX2UKGgGaAloD0MIm5FB7iKycECUhpRSlGgVTXYBaBZHQJkxJgOSW7h1fZQoaAZoCWgPQwiOdAZG3nFxQJSGlFKUaBVNhAFoFkdAmTEmyon8bnV9lChoBmgJaA9DCM/0EmPZ93BAlIaUUpRoFU1jAmgWR0CZMYAsTWXkdX2UKGgGaAloD0MIVtY2xSPhcUCUhpRSlGgVTQcBaBZHQJkx0dgfEGZ1fZQoaAZoCWgPQwirzf+rToNxQJSGlFKUaBVNWgFoFkdAmTH/w3HaOHV9lChoBmgJaA9DCECmtWnsJ29AlIaUUpRoFUveaBZHQJkyOEEkjX51fZQoaAZoCWgPQwg4Ef3a+uxsQJSGlFKUaBVL9WgWR0CZM0n5SFXadX2UKGgGaAloD0MIjINLx5zVSECUhpRSlGgVS6JoFkdAmTSVS88La3V9lChoBmgJaA9DCFuZ8Eu9YnFAlIaUUpRoFU2CAmgWR0CZNTn6Eal2dX2UKGgGaAloD0MIotXJGYpGcUCUhpRSlGgVS9NoFkdAmTVE83dbgXV9lChoBmgJaA9DCGLAkqtYtXBAlIaUUpRoFU3xAWgWR0CZNU5QxesxdX2UKGgGaAloD0MIvYxiuaWRcUCUhpRSlGgVTTkBaBZHQJk4Sy2QXAN1fZQoaAZoCWgPQwiJYYcx6ZBxQJSGlFKUaBVNcQJoFkdAmToZ6MR6GHV9lChoBmgJaA9DCG1TPC5qy3NAlIaUUpRoFU0wAWgWR0CZTS5t3wCsdX2UKGgGaAloD0MIoSx8fe2XcUCUhpRSlGgVTSIBaBZHQJlNyTgVGkN1fZQoaAZoCWgPQwhtqYO8HkxyQJSGlFKUaBVNdQFoFkdAmU3YGpuMuXV9lChoBmgJaA9DCBwlr86xrHFAlIaUUpRoFU1RAWgWR0CZTmVG0/nodX2UKGgGaAloD0MIIoleRnERcECUhpRSlGgVTRIBaBZHQJlO7YywfQt1fZQoaAZoCWgPQwhWRE30eWNxQJSGlFKUaBVNaAFoFkdAmU94lD4QBnV9lChoBmgJaA9DCOPBFrv95W9AlIaUUpRoFUvjaBZHQJlQCWzF+/h1fZQoaAZoCWgPQwj9pNqnIzRyQJSGlFKUaBVNowFoFkdAmVAUp7TlT3V9lChoBmgJaA9DCJnzjH1JKHFAlIaUUpRoFU1dAWgWR0CZUCFRHf/FdX2UKGgGaAloD0MIxvoGJrfCcUCUhpRSlGgVTWcBaBZHQJlQSEL6UJR1fZQoaAZoCWgPQwgYXd4cLtxyQJSGlFKUaBVL7mgWR0CZUF1HvttzdX2UKGgGaAloD0MIBkzg1t3tbkCUhpRSlGgVTQcBaBZHQJlQenk1dgR1fZQoaAZoCWgPQwiFtTF2wrRvQJSGlFKUaBVN8AFoFkdAmVGsF+uvEHV9lChoBmgJaA9DCD1DOGbZ3nBAlIaUUpRoFU0uAWgWR0CZUnjfvWpZdX2UKGgGaAloD0MIlBeZgN+zckCUhpRSlGgVS9VoFkdAmVZhLPD503V9lChoBmgJaA9DCMxDpnwIlnFAlIaUUpRoFU0yAWgWR0CZVoTr3TNMdX2UKGgGaAloD0MIL6NYbmkCc0CUhpRSlGgVS+loFkdAmVbI6GQCCHV9lChoBmgJaA9DCFQ57Sn5ZnNAlIaUUpRoFU0FAWgWR0CZVzfnOjZddX2UKGgGaAloD0MI56kOuRm2cUCUhpRSlGgVTSsBaBZHQJlXx8hLXcx1fZQoaAZoCWgPQwhq2sU0U3RwQJSGlFKUaBVL3GgWR0CZV95N47iidX2UKGgGaAloD0MIQUXVr3S2b0CUhpRSlGgVS/doFkdAmVi5xeb/fnV9lChoBmgJaA9DCKPmq+SjYXFAlIaUUpRoFU0BAWgWR0CZWNUuL740dX2UKGgGaAloD0MIEEHV6FXlcUCUhpRSlGgVTQgBaBZHQJlY/uRcNYt1fZQoaAZoCWgPQwj2fM1yWaFuQJSGlFKUaBVNAAFoFkdAmVkVnVXmvHV9lChoBmgJaA9DCEK1wYmo6nFAlIaUUpRoFUv5aBZHQJlZ2RKYiPh1fZQoaAZoCWgPQwjpKt1dJ35yQJSGlFKUaBVNOQFoFkdAmVngLZzxPXV9lChoBmgJaA9DCDrq6LiaEHBAlIaUUpRoFU1KAWgWR0CZWpuYhMakdX2UKGgGaAloD0MIA3rhzoUhbkCUhpRSlGgVTZMBaBZHQJlbND3M6il1fZQoaAZoCWgPQwhyqN+Fre1KQJSGlFKUaBVLtGgWR0CZW1PwNLDidX2UKGgGaAloD0MIWriswiZ6cUCUhpRSlGgVTZUBaBZHQJlbytQsPJ91fZQoaAZoCWgPQwiTxmgdFflyQJSGlFKUaBVL8GgWR0CZXMAX2ugZdX2UKGgGaAloD0MI641aYbpYcUCUhpRSlGgVTWQBaBZHQJldHJ7sv7F1fZQoaAZoCWgPQwg7bvjd9FJyQJSGlFKUaBVL6mgWR0CZXUR6Ww/xdX2UKGgGaAloD0MITFKZYo6ycUCUhpRSlGgVTQoBaBZHQJldpCv5gw51fZQoaAZoCWgPQwh47dKGQ0BuQJSGlFKUaBVL5WgWR0CZXbR7qptKdX2UKGgGaAloD0MIBac+kHwdc0CUhpRSlGgVTQUBaBZHQJleXNbC79R1fZQoaAZoCWgPQwjElEiil9FvQJSGlFKUaBVL7GgWR0CZXohw2l2vdX2UKGgGaAloD0MI4LvNG2dlcECUhpRSlGgVS+xoFkdAmV+iExqO93V9lChoBmgJaA9DCMXjolpE629AlIaUUpRoFU0aAWgWR0CZYAfKp1ifdX2UKGgGaAloD0MIovFEEGcocUCUhpRSlGgVS95oFkdAmWAbm6oVEnV9lChoBmgJaA9DCGWLpN3oNXFAlIaUUpRoFUvaaBZHQJlgmZZ0Syt1fZQoaAZoCWgPQwg1Bwjm6PtUQJSGlFKUaBVLnGgWR0CZYOmBvrGBdX2UKGgGaAloD0MIq8/VVqz/cUCUhpRSlGgVTU0BaBZHQJlhN4GD+R51fZQoaAZoCWgPQwjEI/HydOhwQJSGlFKUaBVL/GgWR0CZYY7iADq4dX2UKGgGaAloD0MIXRd+cL74cUCUhpRSlGgVTUgBaBZHQJlh7hYNiH91fZQoaAZoCWgPQwjAPc+fNlFvQJSGlFKUaBVNIQFoFkdAmWLfOpsGgXV9lChoBmgJaA9DCFeyYyOQ625AlIaUUpRoFUvyaBZHQJljmeyzHCJ1fZQoaAZoCWgPQwheaK7TSKNuQJSGlFKUaBVNAwFoFkdAmWP3BxgiNnV9lChoBmgJaA9DCED35cw2N3BAlIaUUpRoFU0OAWgWR0CZZRdqtYCAdX2UKGgGaAloD0MIvY+jOTLDcUCUhpRSlGgVTUIBaBZHQJllOMBIWgx1fZQoaAZoCWgPQwiKVu4FZodtQJSGlFKUaBVNFQFoFkdAmWV8FlkH2XV9lChoBmgJaA9DCJ+USQ1ta3FAlIaUUpRoFUv2aBZHQJllxTMqz7d1fZQoaAZoCWgPQwhEUaBP5G9wQJSGlFKUaBVL2GgWR0CZZfR+BpYcdX2UKGgGaAloD0MIQ8h5/98McUCUhpRSlGgVS/NoFkdAmWYM3qAz6HV9lChoBmgJaA9DCM1bdR0qHHJAlIaUUpRoFU1DAmgWR0CZZxJKJ2t/dX2UKGgGaAloD0MI7Q+U23aGcUCUhpRSlGgVTaYBaBZHQJlnGZuyeI51fZQoaAZoCWgPQwjgY7DiVDdxQJSGlFKUaBVL/2gWR0CZZ2LmZE2HdX2UKGgGaAloD0MIDk+vlCUqcUCUhpRSlGgVS+poFkdAmWeYInjQzHV9lChoBmgJaA9DCHU8ZqBy53BAlIaUUpRoFU0VAWgWR0CZZ56QeV9ndX2UKGgGaAloD0MI6xuY3Gj1cECUhpRSlGgVTRMBaBZHQJloHEbYK6Z1fZQoaAZoCWgPQwgyc4HL49RxQJSGlFKUaBVNCgFoFkdAmWk1jVhCt3VlLg=="
53
+ },
54
+ "ep_success_buffer": {
55
+ ":type:": "<class 'collections.deque'>",
56
+ ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="
57
+ },
58
+ "_n_updates": 280,
59
+ "observation_space": {
60
+ ":type:": "<class 'gym.spaces.box.Box'>",
61
+ ":serialized:": "gAWVnwEAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLCIWUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWIAAAAAAAAAAAAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/5RoCksIhZSMAUOUdJRSlIwEaGlnaJRoEiiWIAAAAAAAAAAAAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAf5RoCksIhZRoFXSUUpSMDWJvdW5kZWRfYmVsb3eUaBIolggAAAAAAAAAAAAAAAAAAACUaAeMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLCIWUaBV0lFKUjA1ib3VuZGVkX2Fib3ZllGgSKJYIAAAAAAAAAAAAAAAAAAAAlGghSwiFlGgVdJRSlIwKX25wX3JhbmRvbZROdWIu",
62
+ "dtype": "float32",
63
+ "_shape": [
64
+ 8
65
+ ],
66
+ "low": "[-inf -inf -inf -inf -inf -inf -inf -inf]",
67
+ "high": "[inf inf inf inf inf inf inf inf]",
68
+ "bounded_below": "[False False False False False False False False]",
69
+ "bounded_above": "[False False False False False False False False]",
70
+ "_np_random": null
71
+ },
72
+ "action_space": {
73
+ ":type:": "<class 'gym.spaces.discrete.Discrete'>",
74
+ ":serialized:": "gAWVggAAAAAAAACME2d5bS5zcGFjZXMuZGlzY3JldGWUjAhEaXNjcmV0ZZSTlCmBlH2UKIwBbpRLBIwGX3NoYXBllCmMBWR0eXBllIwFbnVtcHmUaAeTlIwCaTiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYowKX25wX3JhbmRvbZROdWIu",
75
+ "n": 4,
76
+ "_shape": [],
77
+ "dtype": "int64",
78
+ "_np_random": null
79
+ },
80
+ "n_envs": 16,
81
+ "n_steps": 1024,
82
+ "gamma": 0.999,
83
+ "gae_lambda": 0.98,
84
+ "ent_coef": 0.01,
85
+ "vf_coef": 0.5,
86
+ "max_grad_norm": 0.5,
87
+ "batch_size": 64,
88
+ "n_epochs": 4,
89
+ "clip_range": {
90
+ ":type:": "<class 'function'>",
91
+ ":serialized:": "gAWVwwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOS9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZSMBGZ1bmOUS4JDAgABlIwDdmFslIWUKXSUUpR9lCiMC19fcGFja2FnZV9flIwYc3RhYmxlX2Jhc2VsaW5lczMuY29tbW9ulIwIX19uYW1lX1+UjB5zdGFibGVfYmFzZWxpbmVzMy5jb21tb24udXRpbHOUjAhfX2ZpbGVfX5SMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOS9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZR1Tk5oAIwQX21ha2VfZW1wdHlfY2VsbJSTlClSlIWUdJRSlIwcY2xvdWRwaWNrbGUuY2xvdWRwaWNrbGVfZmFzdJSMEl9mdW5jdGlvbl9zZXRzdGF0ZZSTlGgffZR9lChoFmgNjAxfX3F1YWxuYW1lX1+UjBljb25zdGFudF9mbi48bG9jYWxzPi5mdW5jlIwPX19hbm5vdGF0aW9uc19flH2UjA5fX2t3ZGVmYXVsdHNfX5ROjAxfX2RlZmF1bHRzX1+UTowKX19tb2R1bGVfX5RoF4wHX19kb2NfX5ROjAtfX2Nsb3N1cmVfX5RoAIwKX21ha2VfY2VsbJSTlEc/yZmZmZmZmoWUUpSFlIwXX2Nsb3VkcGlja2xlX3N1Ym1vZHVsZXOUXZSMC19fZ2xvYmFsc19flH2UdYaUhlIwLg=="
92
+ },
93
+ "clip_range_vf": null,
94
+ "normalize_advantage": true,
95
+ "target_kl": null
96
+ }
ppo-LunarLander-v2/policy.optimizer.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:10bf9f9535c79c485bcf99376483d22fbd3267c7b01eae120b699cffe1de2224
3
+ size 87929
ppo-LunarLander-v2/policy.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:1e90469e4f863e18733495ac6524c6cb848f83b4b966698c58218423c88df2e6
3
+ size 43329
ppo-LunarLander-v2/pytorch_variables.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:d030ad8db708280fcae77d87e973102039acd23a11bdecc3db8eb6c0ac940ee1
3
+ size 431
ppo-LunarLander-v2/system_info.txt ADDED
@@ -0,0 +1,7 @@
 
 
 
 
 
 
 
 
1
+ - OS: Linux-5.10.147+-x86_64-with-glibc2.31 # 1 SMP Sat Dec 10 16:00:40 UTC 2022
2
+ - Python: 3.9.16
3
+ - Stable-Baselines3: 1.8.0
4
+ - PyTorch: 2.0.0+cu118
5
+ - GPU Enabled: True
6
+ - Numpy: 1.22.4
7
+ - Gym: 0.21.0
replay.mp4 ADDED
Binary file (186 kB). View file
 
results.json ADDED
@@ -0,0 +1 @@
 
 
1
+ {"mean_reward": 282.0072675198169, "std_reward": 19.59236929042278, "is_deterministic": true, "n_eval_episodes": 10, "eval_datetime": "2023-04-10T19:12:17.181526"}