End of training
Browse files
README.md
ADDED
@@ -0,0 +1,72 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
---
|
2 |
+
base_model: distilbert-base-uncased
|
3 |
+
library_name: peft
|
4 |
+
license: apache-2.0
|
5 |
+
metrics:
|
6 |
+
- precision
|
7 |
+
- recall
|
8 |
+
- f1
|
9 |
+
- accuracy
|
10 |
+
tags:
|
11 |
+
- generated_from_trainer
|
12 |
+
model-index:
|
13 |
+
- name: distilbert-ner-lorafinetune-runs-v1
|
14 |
+
results: []
|
15 |
+
---
|
16 |
+
|
17 |
+
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
|
18 |
+
should probably proofread and complete it, then remove this comment. -->
|
19 |
+
|
20 |
+
# distilbert-ner-lorafinetune-runs-v1
|
21 |
+
|
22 |
+
This model is a fine-tuned version of [distilbert-base-uncased](https://huggingface.co/distilbert-base-uncased) on an unknown dataset.
|
23 |
+
It achieves the following results on the evaluation set:
|
24 |
+
- Loss: 0.0735
|
25 |
+
- Precision: 0.9638
|
26 |
+
- Recall: 0.9778
|
27 |
+
- F1: 0.9708
|
28 |
+
- Accuracy: 0.9888
|
29 |
+
|
30 |
+
## Model description
|
31 |
+
|
32 |
+
More information needed
|
33 |
+
|
34 |
+
## Intended uses & limitations
|
35 |
+
|
36 |
+
More information needed
|
37 |
+
|
38 |
+
## Training and evaluation data
|
39 |
+
|
40 |
+
More information needed
|
41 |
+
|
42 |
+
## Training procedure
|
43 |
+
|
44 |
+
### Training hyperparameters
|
45 |
+
|
46 |
+
The following hyperparameters were used during training:
|
47 |
+
- learning_rate: 0.0004
|
48 |
+
- train_batch_size: 16
|
49 |
+
- eval_batch_size: 16
|
50 |
+
- seed: 42
|
51 |
+
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
|
52 |
+
- lr_scheduler_type: linear
|
53 |
+
- num_epochs: 4
|
54 |
+
- mixed_precision_training: Native AMP
|
55 |
+
|
56 |
+
### Training results
|
57 |
+
|
58 |
+
| Training Loss | Epoch | Step | Validation Loss | Precision | Recall | F1 | Accuracy |
|
59 |
+
|:-------------:|:-----:|:-----:|:---------------:|:---------:|:------:|:------:|:--------:|
|
60 |
+
| 0.0808 | 1.0 | 2643 | 0.1186 | 0.9399 | 0.9629 | 0.9513 | 0.9818 |
|
61 |
+
| 0.0648 | 2.0 | 5286 | 0.0807 | 0.9556 | 0.9736 | 0.9645 | 0.9868 |
|
62 |
+
| 0.0366 | 3.0 | 7929 | 0.0761 | 0.9611 | 0.9770 | 0.9690 | 0.9883 |
|
63 |
+
| 0.0306 | 4.0 | 10572 | 0.0735 | 0.9638 | 0.9778 | 0.9708 | 0.9888 |
|
64 |
+
|
65 |
+
|
66 |
+
### Framework versions
|
67 |
+
|
68 |
+
- PEFT 0.12.0
|
69 |
+
- Transformers 4.43.3
|
70 |
+
- Pytorch 2.4.1+cu121
|
71 |
+
- Datasets 2.20.0
|
72 |
+
- Tokenizers 0.19.1
|