End of training
Browse files- README.md +20 -20
- logs/events.out.tfevents.1679079265.instance-1.22775.0 +2 -2
- tokenizer.json +16 -2
- tokenizer_config.json +1 -1
README.md
CHANGED
@@ -11,21 +11,21 @@ should probably proofread and complete it, then remove this comment. -->
|
|
11 |
|
12 |
# layoutlm-doclaynet-test
|
13 |
|
14 |
-
This model is a fine-tuned version of [
|
15 |
It achieves the following results on the evaluation set:
|
16 |
-
- Loss: 0.
|
17 |
-
- Footer: {'precision': 0.
|
18 |
-
- Header: {'precision': 0.
|
19 |
-
- Able: {'precision': 0.
|
20 |
-
- Aption: {'precision': 0.
|
21 |
-
- Ext: {'precision': 0.
|
22 |
-
- Icture: {'precision': 0.
|
23 |
-
- Itle: {'precision': 0.0, 'recall': 0.0, 'f1': 0.0, 'number':
|
24 |
-
- Ootnote: {'precision': 0.0, 'recall': 0.0, 'f1': 0.0, 'number':
|
25 |
-
- Overall Precision: 0.
|
26 |
-
- Overall Recall: 0.
|
27 |
-
- Overall F1: 0.
|
28 |
-
- Overall Accuracy: 0.
|
29 |
|
30 |
## Model description
|
31 |
|
@@ -54,16 +54,16 @@ The following hyperparameters were used during training:
|
|
54 |
|
55 |
### Training results
|
56 |
|
57 |
-
| Training Loss | Epoch | Step | Validation Loss | Footer
|
58 |
-
|
59 |
-
| 0.
|
60 |
-
| 0.
|
61 |
-
| 0.
|
62 |
|
63 |
|
64 |
### Framework versions
|
65 |
|
66 |
- Transformers 4.26.1
|
67 |
-
- Pytorch 1.12.1
|
68 |
- Datasets 2.9.0
|
69 |
- Tokenizers 0.13.2
|
|
|
11 |
|
12 |
# layoutlm-doclaynet-test
|
13 |
|
14 |
+
This model is a fine-tuned version of [microsoft/layoutlm-base-uncased](https://huggingface.co/microsoft/layoutlm-base-uncased) on an unknown dataset.
|
15 |
It achieves the following results on the evaluation set:
|
16 |
+
- Loss: 0.3029
|
17 |
+
- Footer: {'precision': 0.7619047619047619, 'recall': 0.7960199004975125, 'f1': 0.7785888077858881, 'number': 201}
|
18 |
+
- Header: {'precision': 0.7631578947368421, 'recall': 0.6987951807228916, 'f1': 0.7295597484276729, 'number': 83}
|
19 |
+
- Able: {'precision': 0.569377990430622, 'recall': 0.7531645569620253, 'f1': 0.6485013623978202, 'number': 158}
|
20 |
+
- Aption: {'precision': 0.2857142857142857, 'recall': 0.26865671641791045, 'f1': 0.2769230769230769, 'number': 67}
|
21 |
+
- Ext: {'precision': 0.6098901098901099, 'recall': 0.6809815950920245, 'f1': 0.6434782608695652, 'number': 326}
|
22 |
+
- Icture: {'precision': 0.18055555555555555, 'recall': 0.2, 'f1': 0.18978102189781024, 'number': 65}
|
23 |
+
- Itle: {'precision': 0.0, 'recall': 0.0, 'f1': 0.0, 'number': 3}
|
24 |
+
- Ootnote: {'precision': 0.0, 'recall': 0.0, 'f1': 0.0, 'number': 4}
|
25 |
+
- Overall Precision: 0.5930
|
26 |
+
- Overall Recall: 0.6505
|
27 |
+
- Overall F1: 0.6204
|
28 |
+
- Overall Accuracy: 0.9197
|
29 |
|
30 |
## Model description
|
31 |
|
|
|
54 |
|
55 |
### Training results
|
56 |
|
57 |
+
| Training Loss | Epoch | Step | Validation Loss | Footer | Header | Able | Aption | Ext | Icture | Itle | Ootnote | Overall Precision | Overall Recall | Overall F1 | Overall Accuracy |
|
58 |
+
|:-------------:|:-----:|:----:|:---------------:|:--------------------------------------------------------------------------------------------------------:|:-------------------------------------------------------------------------------------------------------:|:--------------------------------------------------------------------------------------------------------:|:----------------------------------------------------------------------------------------------------------:|:--------------------------------------------------------------------------------------------------------:|:----------------------------------------------------------------------------------------------------------:|:---------------------------------------------------------:|:---------------------------------------------------------:|:-----------------:|:--------------:|:----------:|:----------------:|
|
59 |
+
| 0.2414 | 1.0 | 426 | 0.1727 | {'precision': 0.6724137931034483, 'recall': 0.7761194029850746, 'f1': 0.720554272517321, 'number': 201} | {'precision': 0.7142857142857143, 'recall': 0.5421686746987951, 'f1': 0.6164383561643836, 'number': 83} | {'precision': 0.5069124423963134, 'recall': 0.6962025316455697, 'f1': 0.5866666666666668, 'number': 158} | {'precision': 0.22916666666666666, 'recall': 0.16417910447761194, 'f1': 0.19130434782608696, 'number': 67} | {'precision': 0.5323383084577115, 'recall': 0.656441717791411, 'f1': 0.587912087912088, 'number': 326} | {'precision': 0.24528301886792453, 'recall': 0.2, 'f1': 0.22033898305084745, 'number': 65} | {'precision': 0.0, 'recall': 0.0, 'f1': 0.0, 'number': 3} | {'precision': 0.0, 'recall': 0.0, 'f1': 0.0, 'number': 4} | 0.5409 | 0.6053 | 0.5713 | 0.9584 |
|
60 |
+
| 0.1037 | 2.0 | 852 | 0.1726 | {'precision': 0.7045454545454546, 'recall': 0.7711442786069652, 'f1': 0.7363420427553445, 'number': 201} | {'precision': 0.8529411764705882, 'recall': 0.6987951807228916, 'f1': 0.7682119205298014, 'number': 83} | {'precision': 0.5658536585365853, 'recall': 0.7341772151898734, 'f1': 0.6391184573002755, 'number': 158} | {'precision': 0.25333333333333335, 'recall': 0.2835820895522388, 'f1': 0.2676056338028169, 'number': 67} | {'precision': 0.5640394088669951, 'recall': 0.7024539877300614, 'f1': 0.6256830601092896, 'number': 326} | {'precision': 0.16666666666666666, 'recall': 0.18461538461538463, 'f1': 0.17518248175182485, 'number': 65} | {'precision': 0.0, 'recall': 0.0, 'f1': 0.0, 'number': 3} | {'precision': 0.0, 'recall': 0.0, 'f1': 0.0, 'number': 4} | 0.5631 | 0.6494 | 0.6032 | 0.9510 |
|
61 |
+
| 0.0647 | 3.0 | 1278 | 0.3029 | {'precision': 0.7619047619047619, 'recall': 0.7960199004975125, 'f1': 0.7785888077858881, 'number': 201} | {'precision': 0.7631578947368421, 'recall': 0.6987951807228916, 'f1': 0.7295597484276729, 'number': 83} | {'precision': 0.569377990430622, 'recall': 0.7531645569620253, 'f1': 0.6485013623978202, 'number': 158} | {'precision': 0.2857142857142857, 'recall': 0.26865671641791045, 'f1': 0.2769230769230769, 'number': 67} | {'precision': 0.6098901098901099, 'recall': 0.6809815950920245, 'f1': 0.6434782608695652, 'number': 326} | {'precision': 0.18055555555555555, 'recall': 0.2, 'f1': 0.18978102189781024, 'number': 65} | {'precision': 0.0, 'recall': 0.0, 'f1': 0.0, 'number': 3} | {'precision': 0.0, 'recall': 0.0, 'f1': 0.0, 'number': 4} | 0.5930 | 0.6505 | 0.6204 | 0.9197 |
|
62 |
|
63 |
|
64 |
### Framework versions
|
65 |
|
66 |
- Transformers 4.26.1
|
67 |
+
- Pytorch 1.12.1+cu102
|
68 |
- Datasets 2.9.0
|
69 |
- Tokenizers 0.13.2
|
logs/events.out.tfevents.1679079265.instance-1.22775.0
CHANGED
@@ -1,3 +1,3 @@
|
|
1 |
version https://git-lfs.github.com/spec/v1
|
2 |
-
oid sha256:
|
3 |
-
size
|
|
|
1 |
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:b2152f959f5718a31563fbc36ccca4464d38871e5944fc05c05b7affc7399367
|
3 |
+
size 6681
|
tokenizer.json
CHANGED
@@ -1,7 +1,21 @@
|
|
1 |
{
|
2 |
"version": "1.0",
|
3 |
-
"truncation":
|
4 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
5 |
"added_tokens": [
|
6 |
{
|
7 |
"id": 0,
|
|
|
1 |
{
|
2 |
"version": "1.0",
|
3 |
+
"truncation": {
|
4 |
+
"direction": "Right",
|
5 |
+
"max_length": 512,
|
6 |
+
"strategy": "LongestFirst",
|
7 |
+
"stride": 0
|
8 |
+
},
|
9 |
+
"padding": {
|
10 |
+
"strategy": {
|
11 |
+
"Fixed": 512
|
12 |
+
},
|
13 |
+
"direction": "Right",
|
14 |
+
"pad_to_multiple_of": null,
|
15 |
+
"pad_id": 0,
|
16 |
+
"pad_type_id": 0,
|
17 |
+
"pad_token": "[PAD]"
|
18 |
+
},
|
19 |
"added_tokens": [
|
20 |
{
|
21 |
"id": 0,
|
tokenizer_config.json
CHANGED
@@ -12,7 +12,7 @@
|
|
12 |
"do_lower_case": true,
|
13 |
"mask_token": "[MASK]",
|
14 |
"model_max_length": 512,
|
15 |
-
"name_or_path": "
|
16 |
"never_split": null,
|
17 |
"only_label_first_subword": true,
|
18 |
"pad_token": "[PAD]",
|
|
|
12 |
"do_lower_case": true,
|
13 |
"mask_token": "[MASK]",
|
14 |
"model_max_length": 512,
|
15 |
+
"name_or_path": "microsoft/layoutlmv2-base-uncased",
|
16 |
"never_split": null,
|
17 |
"only_label_first_subword": true,
|
18 |
"pad_token": "[PAD]",
|