Initial commit
Browse files- README.md +36 -0
- a2c-HalfCheetahBulletEnv-v0.zip +3 -0
- a2c-HalfCheetahBulletEnv-v0/_stable_baselines3_version +1 -0
- a2c-HalfCheetahBulletEnv-v0/data +105 -0
- a2c-HalfCheetahBulletEnv-v0/policy.optimizer.pth +3 -0
- a2c-HalfCheetahBulletEnv-v0/policy.pth +3 -0
- a2c-HalfCheetahBulletEnv-v0/pytorch_variables.pth +3 -0
- a2c-HalfCheetahBulletEnv-v0/system_info.txt +7 -0
- config.json +1 -0
- replay.mp4 +0 -0
- results.json +1 -0
- vec_normalize.pkl +3 -0
README.md
ADDED
@@ -0,0 +1,36 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
---
|
2 |
+
library_name: stable-baselines3
|
3 |
+
tags:
|
4 |
+
- HalfCheetahBulletEnv-v0
|
5 |
+
- deep-reinforcement-learning
|
6 |
+
- reinforcement-learning
|
7 |
+
- stable-baselines3
|
8 |
+
model-index:
|
9 |
+
- name: A2C
|
10 |
+
results:
|
11 |
+
- metrics:
|
12 |
+
- type: mean_reward
|
13 |
+
value: 992.00 +/- 62.14
|
14 |
+
name: mean_reward
|
15 |
+
task:
|
16 |
+
type: reinforcement-learning
|
17 |
+
name: reinforcement-learning
|
18 |
+
dataset:
|
19 |
+
name: HalfCheetahBulletEnv-v0
|
20 |
+
type: HalfCheetahBulletEnv-v0
|
21 |
+
---
|
22 |
+
|
23 |
+
# **A2C** Agent playing **HalfCheetahBulletEnv-v0**
|
24 |
+
This is a trained model of a **A2C** agent playing **HalfCheetahBulletEnv-v0**
|
25 |
+
using the [stable-baselines3 library](https://github.com/DLR-RM/stable-baselines3).
|
26 |
+
|
27 |
+
## Usage (with Stable-baselines3)
|
28 |
+
TODO: Add your code
|
29 |
+
|
30 |
+
|
31 |
+
```python
|
32 |
+
from stable_baselines3 import ...
|
33 |
+
from huggingface_sb3 import load_from_hub
|
34 |
+
|
35 |
+
...
|
36 |
+
```
|
a2c-HalfCheetahBulletEnv-v0.zip
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:e7b6ebcbc95ea19eb70f46821e0364ceb5c2273c9e9bbc0b3a548a3eee9c21db
|
3 |
+
size 124880
|
a2c-HalfCheetahBulletEnv-v0/_stable_baselines3_version
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
1.6.0
|
a2c-HalfCheetahBulletEnv-v0/data
ADDED
@@ -0,0 +1,105 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"policy_class": {
|
3 |
+
":type:": "<class 'abc.ABCMeta'>",
|
4 |
+
":serialized:": "gASVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==",
|
5 |
+
"__module__": "stable_baselines3.common.policies",
|
6 |
+
"__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param sde_net_arch: Network architecture for extracting features\n when using gSDE. If None, the latent features from the policy will be used.\n Pass an empty list to use the states as features.\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ",
|
7 |
+
"__init__": "<function ActorCriticPolicy.__init__ at 0x7f6dc0db5f80>",
|
8 |
+
"_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x7f6dc0dbe050>",
|
9 |
+
"reset_noise": "<function ActorCriticPolicy.reset_noise at 0x7f6dc0dbe0e0>",
|
10 |
+
"_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x7f6dc0dbe170>",
|
11 |
+
"_build": "<function ActorCriticPolicy._build at 0x7f6dc0dbe200>",
|
12 |
+
"forward": "<function ActorCriticPolicy.forward at 0x7f6dc0dbe290>",
|
13 |
+
"_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x7f6dc0dbe320>",
|
14 |
+
"_predict": "<function ActorCriticPolicy._predict at 0x7f6dc0dbe3b0>",
|
15 |
+
"evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x7f6dc0dbe440>",
|
16 |
+
"get_distribution": "<function ActorCriticPolicy.get_distribution at 0x7f6dc0dbe4d0>",
|
17 |
+
"predict_values": "<function ActorCriticPolicy.predict_values at 0x7f6dc0dbe560>",
|
18 |
+
"__abstractmethods__": "frozenset()",
|
19 |
+
"_abc_impl": "<_abc_data object at 0x7f6dc0e04ae0>"
|
20 |
+
},
|
21 |
+
"verbose": 1,
|
22 |
+
"policy_kwargs": {
|
23 |
+
":type:": "<class 'dict'>",
|
24 |
+
":serialized:": "gASVowAAAAAAAAB9lCiMDGxvZ19zdGRfaW5pdJRK/v///4wKb3J0aG9faW5pdJSIjA9vcHRpbWl6ZXJfY2xhc3OUjBN0b3JjaC5vcHRpbS5ybXNwcm9wlIwHUk1TcHJvcJSTlIwQb3B0aW1pemVyX2t3YXJnc5R9lCiMBWFscGhhlEc/764UeuFHrowDZXBzlEc+5Pi1iONo8YwMd2VpZ2h0X2RlY2F5lEsAdXUu",
|
25 |
+
"log_std_init": -2,
|
26 |
+
"ortho_init": true,
|
27 |
+
"optimizer_class": "<class 'torch.optim.rmsprop.RMSprop'>",
|
28 |
+
"optimizer_kwargs": {
|
29 |
+
"alpha": 0.99,
|
30 |
+
"eps": 1e-05,
|
31 |
+
"weight_decay": 0
|
32 |
+
}
|
33 |
+
},
|
34 |
+
"observation_space": {
|
35 |
+
":type:": "<class 'gym.spaces.box.Box'>",
|
36 |
+
":serialized:": "gASVdwIAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLGoWUjANsb3eUjBVudW1weS5jb3JlLm11bHRpYXJyYXmUjAxfcmVjb25zdHJ1Y3SUk5RoBowHbmRhcnJheZSTlEsAhZRDAWKUh5RSlChLAUsahZRoColDaAAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/lHSUYowEaGlnaJRoEmgUSwCFlGgWh5RSlChLAUsahZRoColDaAAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/lHSUYowNYm91bmRlZF9iZWxvd5RoEmgUSwCFlGgWh5RSlChLAUsahZRoB4wCYjGUiYiHlFKUKEsDjAF8lE5OTkr/////Sv////9LAHSUYolDGgAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAlHSUYowNYm91bmRlZF9hYm92ZZRoEmgUSwCFlGgWh5RSlChLAUsahZRoKolDGgAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAlHSUYowKX25wX3JhbmRvbZROdWIu",
|
37 |
+
"dtype": "float32",
|
38 |
+
"_shape": [
|
39 |
+
26
|
40 |
+
],
|
41 |
+
"low": "[-inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf\n -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf]",
|
42 |
+
"high": "[inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf\n inf inf inf inf inf inf inf inf]",
|
43 |
+
"bounded_below": "[False False False False False False False False False False False False\n False False False False False False False False False False False False\n False False]",
|
44 |
+
"bounded_above": "[False False False False False False False False False False False False\n False False False False False False False False False False False False\n False False]",
|
45 |
+
"_np_random": null
|
46 |
+
},
|
47 |
+
"action_space": {
|
48 |
+
":type:": "<class 'gym.spaces.box.Box'>",
|
49 |
+
":serialized:": "gASVrwEAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLBoWUjANsb3eUjBVudW1weS5jb3JlLm11bHRpYXJyYXmUjAxfcmVjb25zdHJ1Y3SUk5RoBowHbmRhcnJheZSTlEsAhZRDAWKUh5RSlChLAUsGhZRoColDGAAAgL8AAIC/AACAvwAAgL8AAIC/AACAv5R0lGKMBGhpZ2iUaBJoFEsAhZRoFoeUUpQoSwFLBoWUaAqJQxgAAIA/AACAPwAAgD8AAIA/AACAPwAAgD+UdJRijA1ib3VuZGVkX2JlbG93lGgSaBRLAIWUaBaHlFKUKEsBSwaFlGgHjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiiUMGAQEBAQEBlHSUYowNYm91bmRlZF9hYm92ZZRoEmgUSwCFlGgWh5RSlChLAUsGhZRoKolDBgEBAQEBAZR0lGKMCl9ucF9yYW5kb22UTnViLg==",
|
50 |
+
"dtype": "float32",
|
51 |
+
"_shape": [
|
52 |
+
6
|
53 |
+
],
|
54 |
+
"low": "[-1. -1. -1. -1. -1. -1.]",
|
55 |
+
"high": "[1. 1. 1. 1. 1. 1.]",
|
56 |
+
"bounded_below": "[ True True True True True True]",
|
57 |
+
"bounded_above": "[ True True True True True True]",
|
58 |
+
"_np_random": null
|
59 |
+
},
|
60 |
+
"n_envs": 4,
|
61 |
+
"num_timesteps": 2000000,
|
62 |
+
"_total_timesteps": 2000000,
|
63 |
+
"_num_timesteps_at_start": 0,
|
64 |
+
"seed": null,
|
65 |
+
"action_noise": null,
|
66 |
+
"start_time": 1658693683.302555,
|
67 |
+
"learning_rate": 0.00105,
|
68 |
+
"tensorboard_log": "./tensorboard",
|
69 |
+
"lr_schedule": {
|
70 |
+
":type:": "<class 'function'>",
|
71 |
+
":serialized:": "gASVvwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwNX2J1aWx0aW5fdHlwZZSTlIwKTGFtYmRhVHlwZZSFlFKUKGgCjAhDb2RlVHlwZZSFlFKUKEsBSwBLAUsBSxNDBIgAUwCUToWUKYwBX5SFlIxIL3Vzci9sb2NhbC9saWIvcHl0aG9uMy43L2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lIwEZnVuY5RLgEMCAAGUjAN2YWyUhZQpdJRSlH2UKIwLX19wYWNrYWdlX1+UjBhzdGFibGVfYmFzZWxpbmVzMy5jb21tb26UjAhfX25hbWVfX5SMHnN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi51dGlsc5SMCF9fZmlsZV9flIxIL3Vzci9sb2NhbC9saWIvcHl0aG9uMy43L2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaCB9lH2UKGgXaA6MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgYjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz9RNATqSowVhZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"
|
72 |
+
},
|
73 |
+
"_last_obs": {
|
74 |
+
":type:": "<class 'numpy.ndarray'>",
|
75 |
+
":serialized:": "gASVLQIAAAAAAACMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMDF9yZWNvbnN0cnVjdJSTlIwFbnVtcHmUjAduZGFycmF5lJOUSwCFlEMBYpSHlFKUKEsBSwRLGoaUaAOMBWR0eXBllJOUjAJmNJSJiIeUUpQoSwOMATyUTk5OSv////9K/////0sAdJRiiUKgAQAAGUxbQD8tWSj4ccw96w6bv6aIs6XgRx89+XHMvW6kOMDTf6k+gdWtOxGvAEBI74Y8i8kUwJPLTLxgYBvAMwsgu30T3L8XK6G8LKNpP3fXCzwMMza/t9xevm++sr44WAbAT+DWvSK9WL4ZTFtAPy1ZKPhxzD3rDpu/poizpeBHHz35ccy9bqQ4wPdujD6B1a075Q0HQEjvhjxUGPG/k8tMvIOJNMAzCyC7wl/lvxcrobxCTCc/d9cLPAwzNr+33F6+b76yvjhYBsBP4Na9Ir1YvhlMW0A/LVko+HHMPesOm7+miLOl4EcfPflxzL1upDjAE7qxPoHVrTtFctU/SO+GPFJKDsCTy0y8oCkNwDMLILvtfs6/FyuhvA4UST931ws8DDM2v7fcXr5vvrK+OFgGwE/g1r0ivVi+GUxbQD8tWSj4ccw96w6bv6aIs6XgRx89+XHMvW6kOMAcZwc/gdWtO0sH3z9I74Y8ed8NwJPLTLwtyTvAMwsgu6jJ0L8XK6G8HIseP3fXCzwMMza/t9xevm++sr44WAbAT+DWvSK9WL6UdJRiLg=="
|
76 |
+
},
|
77 |
+
"_last_episode_starts": {
|
78 |
+
":type:": "<class 'numpy.ndarray'>",
|
79 |
+
":serialized:": "gASVjAAAAAAAAACMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMDF9yZWNvbnN0cnVjdJSTlIwFbnVtcHmUjAduZGFycmF5lJOUSwCFlEMBYpSHlFKUKEsBSwSFlGgDjAVkdHlwZZSTlIwCYjGUiYiHlFKUKEsDjAF8lE5OTkr/////Sv////9LAHSUYolDBAEBAQGUdJRiLg=="
|
80 |
+
},
|
81 |
+
"_last_original_obs": {
|
82 |
+
":type:": "<class 'numpy.ndarray'>",
|
83 |
+
":serialized:": "gASVLQIAAAAAAACMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMDF9yZWNvbnN0cnVjdJSTlIwFbnVtcHmUjAduZGFycmF5lJOUSwCFlEMBYpSHlFKUKEsBSwRLGoaUaAOMBWR0eXBllJOUjAJmNJSJiIeUUpQoSwOMATyUTk5OSv////9K/////0sAdJRiiUKgAQAAAAAAAAAAAAAAAIA/AAAAAAAAAAAAAAAAAAAAAAAAAIC6O4a+AAAAAI4+oz0AAAAArHggvgAAAAAkLaU+AAAAADdlm7sAAAAA9aaiPwAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAgD8AAAAAAAAAAAAAAAAAAAAAAAAAgNT0n74AAAAAfCVivQAAAAB3Joa+AAAAAENihD4AAAAAwl5uuwAAAAC0aZs/AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACAPwAAAAAAAAAAAAAAAAAAAAAAAACA861tvgAAAACeBXY8AAAAAFCmXb4AAAAApBnAPgAAAAAumUI9AAAAALE3oD8AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAIA/AAAAAAAAAAAAAAAAAAAAAAAAAIDfebe+AAAAABXdeDwAAAAAUtYqvgAAAAAXKng+AAAAAKnstzwAAAAAu+qZPwAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUdJRiLg=="
|
84 |
+
},
|
85 |
+
"_episode_num": 0,
|
86 |
+
"use_sde": true,
|
87 |
+
"sde_sample_freq": -1,
|
88 |
+
"_current_progress_remaining": 0.0,
|
89 |
+
"ep_info_buffer": {
|
90 |
+
":type:": "<class 'collections.deque'>",
|
91 |
+
":serialized:": "gASVRAwAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpRHQJIdUSHuZ1GMAWyUTegDjAF0lEdAqO6Cohpxm3V9lChoBkdAkGKD6vaDf2gHTegDaAhHQKjugx9oexR1fZQoaAZHQJFTCVv/BFdoB03oA2gIR0Co7oOLBKtgdX2UKGgGR0CR41W1+iJwaAdN6ANoCEdAqO6D+T/yXnV9lChoBkdAkXo6EeyRjmgHTegDaAhHQKj6DBO58Sh1fZQoaAZHQJK0ocsDnvFoB03oA2gIR0Co+gyRSxZ/dX2UKGgGR0CRNqbaAWi2aAdN6ANoCEdAqPoNC5VfeHV9lChoBkdAkRjrAUL2H2gHTegDaAhHQKj6Da2WpqB1fZQoaAZHQJF+BW6shgVoB03oA2gIR0CpBYfR3NcGdX2UKGgGR0CKwcPT5O8DaAdN6ANoCEdAqQWIQg9vCXV9lChoBkdAkdJFA3T/hmgHTegDaAhHQKkFiJaaCtl1fZQoaAZHQJA1cZsKsuFoB03oA2gIR0CpBYkPtlZpdX2UKGgGR0CSu/T4+KTCaAdN6ANoCEdAqRDsl7dBSnV9lChoBkdAkXs3Kr7wa2gHTegDaAhHQKkQ7P5YYBN1fZQoaAZHQJL56t/4IrxoB03oA2gIR0CpEO2NWEK3dX2UKGgGR0CR0eTpgTh6aAdN6ANoCEdAqRDuK2rn1XV9lChoBkdAklDWUW2w3mgHTegDaAhHQKkcaN2ki2V1fZQoaAZHQJIm3+KjzqdoB03oA2gIR0CpHGlmnO0LdX2UKGgGR0CQxo1VYISlaAdN6ANoCEdAqRxpuXNTtXV9lChoBkdAkmVnW4EwFmgHTegDaAhHQKkcahX8wYd1fZQoaAZHQJFwMBQvYe1oB03oA2gIR0CpJ+MvqTr3dX2UKGgGR0COrVJ2dNFjaAdN6ANoCEdAqSfj0J4SpXV9lChoBkdAkNWbMxGlRGgHTegDaAhHQKkn5DQZ4wB1fZQoaAZHQJDZDnSv1UVoB03oA2gIR0CpJ+SiudPMdX2UKGgGR0CSMgvIfbKzaAdN6ANoCEdAqTN4YaYNRXV9lChoBkdAkHGfechC+mgHTegDaAhHQKkzeOearm11fZQoaAZHQJCgk87p3X9oB03oA2gIR0CpM3lXaJyidX2UKGgGR0COM2/Dcdo4aAdN6ANoCEdAqTN5tcfNinV9lChoBkdAkQNUYXO4X2gHTegDaAhHQKk+54xk/bF1fZQoaAZHQI+N5LkCFK1oB03oA2gIR0CpPuf779AHdX2UKGgGR0CN/ceV9nbqaAdN6ANoCEdAqT7oYaYNRXV9lChoBkdAkrywbuMMqmgHTegDaAhHQKk+6NmUW2x1fZQoaAZHQJBfZZTyauxoB03oA2gIR0CpSmjurp7kdX2UKGgGR0CNFS7nPmgbaAdN6ANoCEdAqUppg7YChnV9lChoBkdAkj+wyAQQMGgHTegDaAhHQKlKaeo1k2B1fZQoaAZHQJIk6oddVvNoB03oA2gIR0CpSmpeeFtbdX2UKGgGR0CSVOTURWcSaAdN6ANoCEdAqVYbKJVKgHV9lChoBkdAkKfpqM3qA2gHTegDaAhHQKlWG63iJfp1fZQoaAZHQIvsbKeTV2BoB03oA2gIR0CpVhwkPczqdX2UKGgGR0CQrQ/7SApbaAdN6ANoCEdAqVYcvqTr3XV9lChoBkdAkIujBInSfGgHTegDaAhHQKlhv0V8CxN1fZQoaAZHQJFxCerdWQxoB03oA2gIR0CpYb/MW43FdX2UKGgGR0CR8tPq9oN/aAdN6ANoCEdAqWHAezUqhHV9lChoBkdAjyew9aEBbWgHTegDaAhHQKlhwSowVTJ1fZQoaAZHQJFP0R8MNMJoB03oA2gIR0CpbWvw3HaOdX2UKGgGR0CRKBhGH58CaAdN6ANoCEdAqW1sr08NhHV9lChoBkdAkcVKwIMSb2gHTegDaAhHQKltbTNMXad1fZQoaAZHQJJQGRYA80VoB03oA2gIR0CpbW2zv7WNdX2UKGgGR0CQ13Jo0ygxaAdN6ANoCEdAqXkbQAuIynV9lChoBkdAkGvYI4VARmgHTegDaAhHQKl5G7nxJ/Z1fZQoaAZHQJA0qJaaCtloB03oA2gIR0CpeRwYk3S8dX2UKGgGR0CSHUfMwDeTaAdN6ANoCEdAqXkceCCjDnV9lChoBkdAkBPAkxASnWgHTegDaAhHQKmEwCnP3SN1fZQoaAZHQJBxfxpcophoB03oA2gIR0CphMC2MKkVdX2UKGgGR0CRCa987ZFoaAdN6ANoCEdAqYTBT2nKn3V9lChoBkdAkD/lBt1p02gHTegDaAhHQKmEwcZLqUx1fZQoaAZHQJEKxCVrylNoB03oA2gIR0CpkEcO09hadX2UKGgGR0CQyCnuiN83aAdN6ANoCEdAqZBHhKlHjXV9lChoBkdAkT4egYgq3GgHTegDaAhHQKmQR+y7f511fZQoaAZHQJGi3889wFVoB03oA2gIR0CpkEhIOH32dX2UKGgGR0CR6IfmcOLBaAdN6ANoCEdAqZvO7Bfrr3V9lChoBkdAkYxAfQrtmmgHTegDaAhHQKmbz24d6s11fZQoaAZHQJF6EG+sYEZoB03oA2gIR0Cpm8/qPfbcdX2UKGgGR0CSP4JT2nKoaAdN6ANoCEdAqZvQUrTYunV9lChoBkdAkidJHmRvFWgHTegDaAhHQKmnRCpFTeh1fZQoaAZHQJHF5schkiFoB03oA2gIR0Cpp0TM7lq8dX2UKGgGR0CQpSy5qdpZaAdN6ANoCEdAqadFYMfA9HV9lChoBkdAkTytwrDqGGgHTegDaAhHQKmnRf8/D+B1fZQoaAZHQI5AQ7xNIsloB03oA2gIR0CpstjA8B+4dX2UKGgGR0CRqB1uivgWaAdN6ANoCEdAqbLZPRArx3V9lChoBkdAkX6bl7tzCGgHTegDaAhHQKmy2ZhKDkF1fZQoaAZHQJJJOaiKziVoB03oA2gIR0Cpstn+IdlvdX2UKGgGR0CSBiyrxRVIaAdN6ANoCEdAqb6MaS9ug3V9lChoBkdAkwyLiyY5UGgHTegDaAhHQKm+jOdGy5Z1fZQoaAZHQJChAr/bTMJoB03oA2gIR0Cpvo1YISlFdX2UKGgGR0CQx+MZP2wnaAdN6ANoCEdAqb6N25hBq3V9lChoBkdAiMplVDKHPGgHTegDaAhHQKnKJn3+MqB1fZQoaAZHQJBbhev6j35oB03oA2gIR0Cpyib+DOC5dX2UKGgGR0B+E3kFOfukaAdN6ANoCEdAqconaWX1J3V9lChoBkdAkHh4o7V8TmgHTegDaAhHQKnKJ9Sde6Z1fZQoaAZHQIx89kBjnV5oB03oA2gIR0Cp1efRNRFadX2UKGgGR0CSR7SvTw2EaAdN6ANoCEdAqdXoTCcf/3V9lChoBkdAkjuA4KhL5GgHTegDaAhHQKnV6LApKBd1fZQoaAZHQI/v6kTHsC1oB03oA2gIR0Cp1ekiliz+dX2UKGgGR0CPIS/HHWBjaAdN6ANoCEdAqeGFDx9XtHV9lChoBkdAjtKw/xDst2gHTegDaAhHQKnhhYSQHRl1fZQoaAZHQI8qjBAOav1oB03oA2gIR0Cp4YXvphWpdX2UKGgGR0CL+g9t/FzdaAdN6ANoCEdAqeGGY8dPtXV9lChoBkdAjn5A+pwS8WgHTegDaAhHQKntGA8Swnp1fZQoaAZHQI+cCoVEd/9oB03oA2gIR0Cp7RidjG1hdX2UKGgGR0CG9zHUc4o7aAdN6ANoCEdAqe0ZAbADaHV9lChoBkdAjh3WuPmxMWgHTegDaAhHQKntGXVsk6d1fZQoaAZHQJELGekHlfZoB03oA2gIR0Cp+MwHqu8sdX2UKGgGR0CPNFEH+qBFaAdN6ANoCEdAqfjMfcN6PnV9lChoBkdAiL0MZP2wmmgHTegDaAhHQKn4zPdEb5x1fZQoaAZHQI9q+UhV2idoB03oA2gIR0Cp+M1schkidX2UKGgGR0COvTDu0CzUaAdN6ANoCEdAqgRAplSS/3V9lChoBkdAj6gW87IT5GgHTegDaAhHQKoEQSzPa+N1fZQoaAZHQIvHiHRCx/xoB03oA2gIR0CqBEGj9GZvdX2UKGgGR0CE2XB/qgRLaAdN6ANoCEdAqgRCFyq+8HVlLg=="
|
92 |
+
},
|
93 |
+
"ep_success_buffer": {
|
94 |
+
":type:": "<class 'collections.deque'>",
|
95 |
+
":serialized:": "gASVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="
|
96 |
+
},
|
97 |
+
"_n_updates": 62500,
|
98 |
+
"n_steps": 8,
|
99 |
+
"gamma": 0.99,
|
100 |
+
"gae_lambda": 0.9,
|
101 |
+
"ent_coef": 0.005,
|
102 |
+
"vf_coef": 0.4,
|
103 |
+
"max_grad_norm": 0.4,
|
104 |
+
"normalize_advantage": true
|
105 |
+
}
|
a2c-HalfCheetahBulletEnv-v0/policy.optimizer.pth
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:bbdf42cd6a98664751bef0e33e1bd80631b9235f20e40508bc4ebbdb49051375
|
3 |
+
size 54078
|
a2c-HalfCheetahBulletEnv-v0/policy.pth
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:81e08a37f5e0c04c9db64018c3f21cb999baee11c09c0a383a80508a332707a4
|
3 |
+
size 54718
|
a2c-HalfCheetahBulletEnv-v0/pytorch_variables.pth
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:d030ad8db708280fcae77d87e973102039acd23a11bdecc3db8eb6c0ac940ee1
|
3 |
+
size 431
|
a2c-HalfCheetahBulletEnv-v0/system_info.txt
ADDED
@@ -0,0 +1,7 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
OS: Linux-5.4.188+-x86_64-with-Ubuntu-18.04-bionic #1 SMP Sun Apr 24 10:03:06 PDT 2022
|
2 |
+
Python: 3.7.13
|
3 |
+
Stable-Baselines3: 1.6.0
|
4 |
+
PyTorch: 1.12.0+cu113
|
5 |
+
GPU Enabled: True
|
6 |
+
Numpy: 1.21.6
|
7 |
+
Gym: 0.21.0
|
config.json
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
{"policy_class": {":type:": "<class 'abc.ABCMeta'>", ":serialized:": "gASVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==", "__module__": "stable_baselines3.common.policies", "__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param sde_net_arch: Network architecture for extracting features\n when using gSDE. If None, the latent features from the policy will be used.\n Pass an empty list to use the states as features.\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ", "__init__": "<function ActorCriticPolicy.__init__ at 0x7f6dc0db5f80>", "_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x7f6dc0dbe050>", "reset_noise": "<function ActorCriticPolicy.reset_noise at 0x7f6dc0dbe0e0>", "_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x7f6dc0dbe170>", "_build": "<function ActorCriticPolicy._build at 0x7f6dc0dbe200>", "forward": "<function ActorCriticPolicy.forward at 0x7f6dc0dbe290>", "_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x7f6dc0dbe320>", "_predict": "<function ActorCriticPolicy._predict at 0x7f6dc0dbe3b0>", "evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x7f6dc0dbe440>", "get_distribution": "<function ActorCriticPolicy.get_distribution at 0x7f6dc0dbe4d0>", "predict_values": "<function ActorCriticPolicy.predict_values at 0x7f6dc0dbe560>", "__abstractmethods__": "frozenset()", "_abc_impl": "<_abc_data object at 0x7f6dc0e04ae0>"}, "verbose": 1, "policy_kwargs": {":type:": "<class 'dict'>", ":serialized:": "gASVowAAAAAAAAB9lCiMDGxvZ19zdGRfaW5pdJRK/v///4wKb3J0aG9faW5pdJSIjA9vcHRpbWl6ZXJfY2xhc3OUjBN0b3JjaC5vcHRpbS5ybXNwcm9wlIwHUk1TcHJvcJSTlIwQb3B0aW1pemVyX2t3YXJnc5R9lCiMBWFscGhhlEc/764UeuFHrowDZXBzlEc+5Pi1iONo8YwMd2VpZ2h0X2RlY2F5lEsAdXUu", "log_std_init": -2, "ortho_init": true, "optimizer_class": "<class 'torch.optim.rmsprop.RMSprop'>", "optimizer_kwargs": {"alpha": 0.99, "eps": 1e-05, "weight_decay": 0}}, "observation_space": {":type:": "<class 'gym.spaces.box.Box'>", ":serialized:": "gASVdwIAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLGoWUjANsb3eUjBVudW1weS5jb3JlLm11bHRpYXJyYXmUjAxfcmVjb25zdHJ1Y3SUk5RoBowHbmRhcnJheZSTlEsAhZRDAWKUh5RSlChLAUsahZRoColDaAAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/lHSUYowEaGlnaJRoEmgUSwCFlGgWh5RSlChLAUsahZRoColDaAAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/lHSUYowNYm91bmRlZF9iZWxvd5RoEmgUSwCFlGgWh5RSlChLAUsahZRoB4wCYjGUiYiHlFKUKEsDjAF8lE5OTkr/////Sv////9LAHSUYolDGgAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAlHSUYowNYm91bmRlZF9hYm92ZZRoEmgUSwCFlGgWh5RSlChLAUsahZRoKolDGgAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAlHSUYowKX25wX3JhbmRvbZROdWIu", "dtype": "float32", "_shape": [26], "low": "[-inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf\n -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf]", "high": "[inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf\n inf inf inf inf inf inf inf inf]", "bounded_below": "[False False False False False False False False False False False False\n False False False False False False False False False False False False\n False False]", "bounded_above": "[False False False False False False False False False False False False\n False False False False False False False False False False False False\n False False]", "_np_random": null}, "action_space": {":type:": "<class 'gym.spaces.box.Box'>", ":serialized:": "gASVrwEAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLBoWUjANsb3eUjBVudW1weS5jb3JlLm11bHRpYXJyYXmUjAxfcmVjb25zdHJ1Y3SUk5RoBowHbmRhcnJheZSTlEsAhZRDAWKUh5RSlChLAUsGhZRoColDGAAAgL8AAIC/AACAvwAAgL8AAIC/AACAv5R0lGKMBGhpZ2iUaBJoFEsAhZRoFoeUUpQoSwFLBoWUaAqJQxgAAIA/AACAPwAAgD8AAIA/AACAPwAAgD+UdJRijA1ib3VuZGVkX2JlbG93lGgSaBRLAIWUaBaHlFKUKEsBSwaFlGgHjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiiUMGAQEBAQEBlHSUYowNYm91bmRlZF9hYm92ZZRoEmgUSwCFlGgWh5RSlChLAUsGhZRoKolDBgEBAQEBAZR0lGKMCl9ucF9yYW5kb22UTnViLg==", "dtype": "float32", "_shape": [6], "low": "[-1. -1. -1. -1. -1. -1.]", "high": "[1. 1. 1. 1. 1. 1.]", "bounded_below": "[ True True True True True True]", "bounded_above": "[ True True True True True True]", "_np_random": null}, "n_envs": 4, "num_timesteps": 2000000, "_total_timesteps": 2000000, "_num_timesteps_at_start": 0, "seed": null, "action_noise": null, "start_time": 1658693683.302555, "learning_rate": 0.00105, "tensorboard_log": "./tensorboard", "lr_schedule": {":type:": "<class 'function'>", ":serialized:": "gASVvwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwNX2J1aWx0aW5fdHlwZZSTlIwKTGFtYmRhVHlwZZSFlFKUKGgCjAhDb2RlVHlwZZSFlFKUKEsBSwBLAUsBSxNDBIgAUwCUToWUKYwBX5SFlIxIL3Vzci9sb2NhbC9saWIvcHl0aG9uMy43L2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lIwEZnVuY5RLgEMCAAGUjAN2YWyUhZQpdJRSlH2UKIwLX19wYWNrYWdlX1+UjBhzdGFibGVfYmFzZWxpbmVzMy5jb21tb26UjAhfX25hbWVfX5SMHnN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi51dGlsc5SMCF9fZmlsZV9flIxIL3Vzci9sb2NhbC9saWIvcHl0aG9uMy43L2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaCB9lH2UKGgXaA6MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgYjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz9RNATqSowVhZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"}, "_last_obs": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gASVLQIAAAAAAACMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMDF9yZWNvbnN0cnVjdJSTlIwFbnVtcHmUjAduZGFycmF5lJOUSwCFlEMBYpSHlFKUKEsBSwRLGoaUaAOMBWR0eXBllJOUjAJmNJSJiIeUUpQoSwOMATyUTk5OSv////9K/////0sAdJRiiUKgAQAAGUxbQD8tWSj4ccw96w6bv6aIs6XgRx89+XHMvW6kOMDTf6k+gdWtOxGvAEBI74Y8i8kUwJPLTLxgYBvAMwsgu30T3L8XK6G8LKNpP3fXCzwMMza/t9xevm++sr44WAbAT+DWvSK9WL4ZTFtAPy1ZKPhxzD3rDpu/poizpeBHHz35ccy9bqQ4wPdujD6B1a075Q0HQEjvhjxUGPG/k8tMvIOJNMAzCyC7wl/lvxcrobxCTCc/d9cLPAwzNr+33F6+b76yvjhYBsBP4Na9Ir1YvhlMW0A/LVko+HHMPesOm7+miLOl4EcfPflxzL1upDjAE7qxPoHVrTtFctU/SO+GPFJKDsCTy0y8oCkNwDMLILvtfs6/FyuhvA4UST931ws8DDM2v7fcXr5vvrK+OFgGwE/g1r0ivVi+GUxbQD8tWSj4ccw96w6bv6aIs6XgRx89+XHMvW6kOMAcZwc/gdWtO0sH3z9I74Y8ed8NwJPLTLwtyTvAMwsgu6jJ0L8XK6G8HIseP3fXCzwMMza/t9xevm++sr44WAbAT+DWvSK9WL6UdJRiLg=="}, "_last_episode_starts": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gASVjAAAAAAAAACMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMDF9yZWNvbnN0cnVjdJSTlIwFbnVtcHmUjAduZGFycmF5lJOUSwCFlEMBYpSHlFKUKEsBSwSFlGgDjAVkdHlwZZSTlIwCYjGUiYiHlFKUKEsDjAF8lE5OTkr/////Sv////9LAHSUYolDBAEBAQGUdJRiLg=="}, "_last_original_obs": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gASVLQIAAAAAAACMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMDF9yZWNvbnN0cnVjdJSTlIwFbnVtcHmUjAduZGFycmF5lJOUSwCFlEMBYpSHlFKUKEsBSwRLGoaUaAOMBWR0eXBllJOUjAJmNJSJiIeUUpQoSwOMATyUTk5OSv////9K/////0sAdJRiiUKgAQAAAAAAAAAAAAAAAIA/AAAAAAAAAAAAAAAAAAAAAAAAAIC6O4a+AAAAAI4+oz0AAAAArHggvgAAAAAkLaU+AAAAADdlm7sAAAAA9aaiPwAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAgD8AAAAAAAAAAAAAAAAAAAAAAAAAgNT0n74AAAAAfCVivQAAAAB3Joa+AAAAAENihD4AAAAAwl5uuwAAAAC0aZs/AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACAPwAAAAAAAAAAAAAAAAAAAAAAAACA861tvgAAAACeBXY8AAAAAFCmXb4AAAAApBnAPgAAAAAumUI9AAAAALE3oD8AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAIA/AAAAAAAAAAAAAAAAAAAAAAAAAIDfebe+AAAAABXdeDwAAAAAUtYqvgAAAAAXKng+AAAAAKnstzwAAAAAu+qZPwAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUdJRiLg=="}, "_episode_num": 0, "use_sde": true, "sde_sample_freq": -1, "_current_progress_remaining": 0.0, "ep_info_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gASVRAwAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpRHQJIdUSHuZ1GMAWyUTegDjAF0lEdAqO6Cohpxm3V9lChoBkdAkGKD6vaDf2gHTegDaAhHQKjugx9oexR1fZQoaAZHQJFTCVv/BFdoB03oA2gIR0Co7oOLBKtgdX2UKGgGR0CR41W1+iJwaAdN6ANoCEdAqO6D+T/yXnV9lChoBkdAkXo6EeyRjmgHTegDaAhHQKj6DBO58Sh1fZQoaAZHQJK0ocsDnvFoB03oA2gIR0Co+gyRSxZ/dX2UKGgGR0CRNqbaAWi2aAdN6ANoCEdAqPoNC5VfeHV9lChoBkdAkRjrAUL2H2gHTegDaAhHQKj6Da2WpqB1fZQoaAZHQJF+BW6shgVoB03oA2gIR0CpBYfR3NcGdX2UKGgGR0CKwcPT5O8DaAdN6ANoCEdAqQWIQg9vCXV9lChoBkdAkdJFA3T/hmgHTegDaAhHQKkFiJaaCtl1fZQoaAZHQJA1cZsKsuFoB03oA2gIR0CpBYkPtlZpdX2UKGgGR0CSu/T4+KTCaAdN6ANoCEdAqRDsl7dBSnV9lChoBkdAkXs3Kr7wa2gHTegDaAhHQKkQ7P5YYBN1fZQoaAZHQJL56t/4IrxoB03oA2gIR0CpEO2NWEK3dX2UKGgGR0CR0eTpgTh6aAdN6ANoCEdAqRDuK2rn1XV9lChoBkdAklDWUW2w3mgHTegDaAhHQKkcaN2ki2V1fZQoaAZHQJIm3+KjzqdoB03oA2gIR0CpHGlmnO0LdX2UKGgGR0CQxo1VYISlaAdN6ANoCEdAqRxpuXNTtXV9lChoBkdAkmVnW4EwFmgHTegDaAhHQKkcahX8wYd1fZQoaAZHQJFwMBQvYe1oB03oA2gIR0CpJ+MvqTr3dX2UKGgGR0COrVJ2dNFjaAdN6ANoCEdAqSfj0J4SpXV9lChoBkdAkNWbMxGlRGgHTegDaAhHQKkn5DQZ4wB1fZQoaAZHQJDZDnSv1UVoB03oA2gIR0CpJ+SiudPMdX2UKGgGR0CSMgvIfbKzaAdN6ANoCEdAqTN4YaYNRXV9lChoBkdAkHGfechC+mgHTegDaAhHQKkzeOearm11fZQoaAZHQJCgk87p3X9oB03oA2gIR0CpM3lXaJyidX2UKGgGR0COM2/Dcdo4aAdN6ANoCEdAqTN5tcfNinV9lChoBkdAkQNUYXO4X2gHTegDaAhHQKk+54xk/bF1fZQoaAZHQI+N5LkCFK1oB03oA2gIR0CpPuf779AHdX2UKGgGR0CN/ceV9nbqaAdN6ANoCEdAqT7oYaYNRXV9lChoBkdAkrywbuMMqmgHTegDaAhHQKk+6NmUW2x1fZQoaAZHQJBfZZTyauxoB03oA2gIR0CpSmjurp7kdX2UKGgGR0CNFS7nPmgbaAdN6ANoCEdAqUppg7YChnV9lChoBkdAkj+wyAQQMGgHTegDaAhHQKlKaeo1k2B1fZQoaAZHQJIk6oddVvNoB03oA2gIR0CpSmpeeFtbdX2UKGgGR0CSVOTURWcSaAdN6ANoCEdAqVYbKJVKgHV9lChoBkdAkKfpqM3qA2gHTegDaAhHQKlWG63iJfp1fZQoaAZHQIvsbKeTV2BoB03oA2gIR0CpVhwkPczqdX2UKGgGR0CQrQ/7SApbaAdN6ANoCEdAqVYcvqTr3XV9lChoBkdAkIujBInSfGgHTegDaAhHQKlhv0V8CxN1fZQoaAZHQJFxCerdWQxoB03oA2gIR0CpYb/MW43FdX2UKGgGR0CR8tPq9oN/aAdN6ANoCEdAqWHAezUqhHV9lChoBkdAjyew9aEBbWgHTegDaAhHQKlhwSowVTJ1fZQoaAZHQJFP0R8MNMJoB03oA2gIR0CpbWvw3HaOdX2UKGgGR0CRKBhGH58CaAdN6ANoCEdAqW1sr08NhHV9lChoBkdAkcVKwIMSb2gHTegDaAhHQKltbTNMXad1fZQoaAZHQJJQGRYA80VoB03oA2gIR0CpbW2zv7WNdX2UKGgGR0CQ13Jo0ygxaAdN6ANoCEdAqXkbQAuIynV9lChoBkdAkGvYI4VARmgHTegDaAhHQKl5G7nxJ/Z1fZQoaAZHQJA0qJaaCtloB03oA2gIR0CpeRwYk3S8dX2UKGgGR0CSHUfMwDeTaAdN6ANoCEdAqXkceCCjDnV9lChoBkdAkBPAkxASnWgHTegDaAhHQKmEwCnP3SN1fZQoaAZHQJBxfxpcophoB03oA2gIR0CphMC2MKkVdX2UKGgGR0CRCa987ZFoaAdN6ANoCEdAqYTBT2nKn3V9lChoBkdAkD/lBt1p02gHTegDaAhHQKmEwcZLqUx1fZQoaAZHQJEKxCVrylNoB03oA2gIR0CpkEcO09hadX2UKGgGR0CQyCnuiN83aAdN6ANoCEdAqZBHhKlHjXV9lChoBkdAkT4egYgq3GgHTegDaAhHQKmQR+y7f511fZQoaAZHQJGi3889wFVoB03oA2gIR0CpkEhIOH32dX2UKGgGR0CR6IfmcOLBaAdN6ANoCEdAqZvO7Bfrr3V9lChoBkdAkYxAfQrtmmgHTegDaAhHQKmbz24d6s11fZQoaAZHQJF6EG+sYEZoB03oA2gIR0Cpm8/qPfbcdX2UKGgGR0CSP4JT2nKoaAdN6ANoCEdAqZvQUrTYunV9lChoBkdAkidJHmRvFWgHTegDaAhHQKmnRCpFTeh1fZQoaAZHQJHF5schkiFoB03oA2gIR0Cpp0TM7lq8dX2UKGgGR0CQpSy5qdpZaAdN6ANoCEdAqadFYMfA9HV9lChoBkdAkTytwrDqGGgHTegDaAhHQKmnRf8/D+B1fZQoaAZHQI5AQ7xNIsloB03oA2gIR0CpstjA8B+4dX2UKGgGR0CRqB1uivgWaAdN6ANoCEdAqbLZPRArx3V9lChoBkdAkX6bl7tzCGgHTegDaAhHQKmy2ZhKDkF1fZQoaAZHQJJJOaiKziVoB03oA2gIR0Cpstn+IdlvdX2UKGgGR0CSBiyrxRVIaAdN6ANoCEdAqb6MaS9ug3V9lChoBkdAkwyLiyY5UGgHTegDaAhHQKm+jOdGy5Z1fZQoaAZHQJChAr/bTMJoB03oA2gIR0Cpvo1YISlFdX2UKGgGR0CQx+MZP2wnaAdN6ANoCEdAqb6N25hBq3V9lChoBkdAiMplVDKHPGgHTegDaAhHQKnKJn3+MqB1fZQoaAZHQJBbhev6j35oB03oA2gIR0Cpyib+DOC5dX2UKGgGR0B+E3kFOfukaAdN6ANoCEdAqconaWX1J3V9lChoBkdAkHh4o7V8TmgHTegDaAhHQKnKJ9Sde6Z1fZQoaAZHQIx89kBjnV5oB03oA2gIR0Cp1efRNRFadX2UKGgGR0CSR7SvTw2EaAdN6ANoCEdAqdXoTCcf/3V9lChoBkdAkjuA4KhL5GgHTegDaAhHQKnV6LApKBd1fZQoaAZHQI/v6kTHsC1oB03oA2gIR0Cp1ekiliz+dX2UKGgGR0CPIS/HHWBjaAdN6ANoCEdAqeGFDx9XtHV9lChoBkdAjtKw/xDst2gHTegDaAhHQKnhhYSQHRl1fZQoaAZHQI8qjBAOav1oB03oA2gIR0Cp4YXvphWpdX2UKGgGR0CL+g9t/FzdaAdN6ANoCEdAqeGGY8dPtXV9lChoBkdAjn5A+pwS8WgHTegDaAhHQKntGA8Swnp1fZQoaAZHQI+cCoVEd/9oB03oA2gIR0Cp7RidjG1hdX2UKGgGR0CG9zHUc4o7aAdN6ANoCEdAqe0ZAbADaHV9lChoBkdAjh3WuPmxMWgHTegDaAhHQKntGXVsk6d1fZQoaAZHQJELGekHlfZoB03oA2gIR0Cp+MwHqu8sdX2UKGgGR0CPNFEH+qBFaAdN6ANoCEdAqfjMfcN6PnV9lChoBkdAiL0MZP2wmmgHTegDaAhHQKn4zPdEb5x1fZQoaAZHQI9q+UhV2idoB03oA2gIR0Cp+M1schkidX2UKGgGR0COvTDu0CzUaAdN6ANoCEdAqgRAplSS/3V9lChoBkdAj6gW87IT5GgHTegDaAhHQKoEQSzPa+N1fZQoaAZHQIvHiHRCx/xoB03oA2gIR0CqBEGj9GZvdX2UKGgGR0CE2XB/qgRLaAdN6ANoCEdAqgRCFyq+8HVlLg=="}, "ep_success_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gASVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="}, "_n_updates": 62500, "n_steps": 8, "gamma": 0.99, "gae_lambda": 0.9, "ent_coef": 0.005, "vf_coef": 0.4, "max_grad_norm": 0.4, "normalize_advantage": true, "system_info": {"OS": "Linux-5.4.188+-x86_64-with-Ubuntu-18.04-bionic #1 SMP Sun Apr 24 10:03:06 PDT 2022", "Python": "3.7.13", "Stable-Baselines3": "1.6.0", "PyTorch": "1.12.0+cu113", "GPU Enabled": "True", "Numpy": "1.21.6", "Gym": "0.21.0"}}
|
replay.mp4
ADDED
Binary file (933 kB). View file
|
|
results.json
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
{"mean_reward": 992.0022899256495, "std_reward": 62.144914581148974, "is_deterministic": true, "n_eval_episodes": 10, "eval_datetime": "2022-07-24T21:03:42.297671"}
|
vec_normalize.pkl
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:85290026004b7df6579351b25f4ee2b3e31e9f0fa663e5091759c28e3a39c395
|
3 |
+
size 2659
|