pm390 commited on
Commit
5a5d0b7
1 Parent(s): a89633a

Initial commit

Browse files
README.md ADDED
@@ -0,0 +1,36 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ library_name: stable-baselines3
3
+ tags:
4
+ - HalfCheetahBulletEnv-v0
5
+ - deep-reinforcement-learning
6
+ - reinforcement-learning
7
+ - stable-baselines3
8
+ model-index:
9
+ - name: A2C
10
+ results:
11
+ - metrics:
12
+ - type: mean_reward
13
+ value: 992.00 +/- 62.14
14
+ name: mean_reward
15
+ task:
16
+ type: reinforcement-learning
17
+ name: reinforcement-learning
18
+ dataset:
19
+ name: HalfCheetahBulletEnv-v0
20
+ type: HalfCheetahBulletEnv-v0
21
+ ---
22
+
23
+ # **A2C** Agent playing **HalfCheetahBulletEnv-v0**
24
+ This is a trained model of a **A2C** agent playing **HalfCheetahBulletEnv-v0**
25
+ using the [stable-baselines3 library](https://github.com/DLR-RM/stable-baselines3).
26
+
27
+ ## Usage (with Stable-baselines3)
28
+ TODO: Add your code
29
+
30
+
31
+ ```python
32
+ from stable_baselines3 import ...
33
+ from huggingface_sb3 import load_from_hub
34
+
35
+ ...
36
+ ```
a2c-HalfCheetahBulletEnv-v0.zip ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:e7b6ebcbc95ea19eb70f46821e0364ceb5c2273c9e9bbc0b3a548a3eee9c21db
3
+ size 124880
a2c-HalfCheetahBulletEnv-v0/_stable_baselines3_version ADDED
@@ -0,0 +1 @@
 
 
1
+ 1.6.0
a2c-HalfCheetahBulletEnv-v0/data ADDED
@@ -0,0 +1,105 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "policy_class": {
3
+ ":type:": "<class 'abc.ABCMeta'>",
4
+ ":serialized:": "gASVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==",
5
+ "__module__": "stable_baselines3.common.policies",
6
+ "__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param sde_net_arch: Network architecture for extracting features\n when using gSDE. If None, the latent features from the policy will be used.\n Pass an empty list to use the states as features.\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ",
7
+ "__init__": "<function ActorCriticPolicy.__init__ at 0x7f6dc0db5f80>",
8
+ "_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x7f6dc0dbe050>",
9
+ "reset_noise": "<function ActorCriticPolicy.reset_noise at 0x7f6dc0dbe0e0>",
10
+ "_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x7f6dc0dbe170>",
11
+ "_build": "<function ActorCriticPolicy._build at 0x7f6dc0dbe200>",
12
+ "forward": "<function ActorCriticPolicy.forward at 0x7f6dc0dbe290>",
13
+ "_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x7f6dc0dbe320>",
14
+ "_predict": "<function ActorCriticPolicy._predict at 0x7f6dc0dbe3b0>",
15
+ "evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x7f6dc0dbe440>",
16
+ "get_distribution": "<function ActorCriticPolicy.get_distribution at 0x7f6dc0dbe4d0>",
17
+ "predict_values": "<function ActorCriticPolicy.predict_values at 0x7f6dc0dbe560>",
18
+ "__abstractmethods__": "frozenset()",
19
+ "_abc_impl": "<_abc_data object at 0x7f6dc0e04ae0>"
20
+ },
21
+ "verbose": 1,
22
+ "policy_kwargs": {
23
+ ":type:": "<class 'dict'>",
24
+ ":serialized:": "gASVowAAAAAAAAB9lCiMDGxvZ19zdGRfaW5pdJRK/v///4wKb3J0aG9faW5pdJSIjA9vcHRpbWl6ZXJfY2xhc3OUjBN0b3JjaC5vcHRpbS5ybXNwcm9wlIwHUk1TcHJvcJSTlIwQb3B0aW1pemVyX2t3YXJnc5R9lCiMBWFscGhhlEc/764UeuFHrowDZXBzlEc+5Pi1iONo8YwMd2VpZ2h0X2RlY2F5lEsAdXUu",
25
+ "log_std_init": -2,
26
+ "ortho_init": true,
27
+ "optimizer_class": "<class 'torch.optim.rmsprop.RMSprop'>",
28
+ "optimizer_kwargs": {
29
+ "alpha": 0.99,
30
+ "eps": 1e-05,
31
+ "weight_decay": 0
32
+ }
33
+ },
34
+ "observation_space": {
35
+ ":type:": "<class 'gym.spaces.box.Box'>",
36
+ ":serialized:": "gASVdwIAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLGoWUjANsb3eUjBVudW1weS5jb3JlLm11bHRpYXJyYXmUjAxfcmVjb25zdHJ1Y3SUk5RoBowHbmRhcnJheZSTlEsAhZRDAWKUh5RSlChLAUsahZRoColDaAAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/lHSUYowEaGlnaJRoEmgUSwCFlGgWh5RSlChLAUsahZRoColDaAAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/lHSUYowNYm91bmRlZF9iZWxvd5RoEmgUSwCFlGgWh5RSlChLAUsahZRoB4wCYjGUiYiHlFKUKEsDjAF8lE5OTkr/////Sv////9LAHSUYolDGgAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAlHSUYowNYm91bmRlZF9hYm92ZZRoEmgUSwCFlGgWh5RSlChLAUsahZRoKolDGgAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAlHSUYowKX25wX3JhbmRvbZROdWIu",
37
+ "dtype": "float32",
38
+ "_shape": [
39
+ 26
40
+ ],
41
+ "low": "[-inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf\n -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf]",
42
+ "high": "[inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf\n inf inf inf inf inf inf inf inf]",
43
+ "bounded_below": "[False False False False False False False False False False False False\n False False False False False False False False False False False False\n False False]",
44
+ "bounded_above": "[False False False False False False False False False False False False\n False False False False False False False False False False False False\n False False]",
45
+ "_np_random": null
46
+ },
47
+ "action_space": {
48
+ ":type:": "<class 'gym.spaces.box.Box'>",
49
+ ":serialized:": "gASVrwEAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLBoWUjANsb3eUjBVudW1weS5jb3JlLm11bHRpYXJyYXmUjAxfcmVjb25zdHJ1Y3SUk5RoBowHbmRhcnJheZSTlEsAhZRDAWKUh5RSlChLAUsGhZRoColDGAAAgL8AAIC/AACAvwAAgL8AAIC/AACAv5R0lGKMBGhpZ2iUaBJoFEsAhZRoFoeUUpQoSwFLBoWUaAqJQxgAAIA/AACAPwAAgD8AAIA/AACAPwAAgD+UdJRijA1ib3VuZGVkX2JlbG93lGgSaBRLAIWUaBaHlFKUKEsBSwaFlGgHjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiiUMGAQEBAQEBlHSUYowNYm91bmRlZF9hYm92ZZRoEmgUSwCFlGgWh5RSlChLAUsGhZRoKolDBgEBAQEBAZR0lGKMCl9ucF9yYW5kb22UTnViLg==",
50
+ "dtype": "float32",
51
+ "_shape": [
52
+ 6
53
+ ],
54
+ "low": "[-1. -1. -1. -1. -1. -1.]",
55
+ "high": "[1. 1. 1. 1. 1. 1.]",
56
+ "bounded_below": "[ True True True True True True]",
57
+ "bounded_above": "[ True True True True True True]",
58
+ "_np_random": null
59
+ },
60
+ "n_envs": 4,
61
+ "num_timesteps": 2000000,
62
+ "_total_timesteps": 2000000,
63
+ "_num_timesteps_at_start": 0,
64
+ "seed": null,
65
+ "action_noise": null,
66
+ "start_time": 1658693683.302555,
67
+ "learning_rate": 0.00105,
68
+ "tensorboard_log": "./tensorboard",
69
+ "lr_schedule": {
70
+ ":type:": "<class 'function'>",
71
+ ":serialized:": "gASVvwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwNX2J1aWx0aW5fdHlwZZSTlIwKTGFtYmRhVHlwZZSFlFKUKGgCjAhDb2RlVHlwZZSFlFKUKEsBSwBLAUsBSxNDBIgAUwCUToWUKYwBX5SFlIxIL3Vzci9sb2NhbC9saWIvcHl0aG9uMy43L2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lIwEZnVuY5RLgEMCAAGUjAN2YWyUhZQpdJRSlH2UKIwLX19wYWNrYWdlX1+UjBhzdGFibGVfYmFzZWxpbmVzMy5jb21tb26UjAhfX25hbWVfX5SMHnN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi51dGlsc5SMCF9fZmlsZV9flIxIL3Vzci9sb2NhbC9saWIvcHl0aG9uMy43L2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaCB9lH2UKGgXaA6MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgYjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz9RNATqSowVhZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"
72
+ },
73
+ "_last_obs": {
74
+ ":type:": "<class 'numpy.ndarray'>",
75
+ ":serialized:": "gASVLQIAAAAAAACMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMDF9yZWNvbnN0cnVjdJSTlIwFbnVtcHmUjAduZGFycmF5lJOUSwCFlEMBYpSHlFKUKEsBSwRLGoaUaAOMBWR0eXBllJOUjAJmNJSJiIeUUpQoSwOMATyUTk5OSv////9K/////0sAdJRiiUKgAQAAGUxbQD8tWSj4ccw96w6bv6aIs6XgRx89+XHMvW6kOMDTf6k+gdWtOxGvAEBI74Y8i8kUwJPLTLxgYBvAMwsgu30T3L8XK6G8LKNpP3fXCzwMMza/t9xevm++sr44WAbAT+DWvSK9WL4ZTFtAPy1ZKPhxzD3rDpu/poizpeBHHz35ccy9bqQ4wPdujD6B1a075Q0HQEjvhjxUGPG/k8tMvIOJNMAzCyC7wl/lvxcrobxCTCc/d9cLPAwzNr+33F6+b76yvjhYBsBP4Na9Ir1YvhlMW0A/LVko+HHMPesOm7+miLOl4EcfPflxzL1upDjAE7qxPoHVrTtFctU/SO+GPFJKDsCTy0y8oCkNwDMLILvtfs6/FyuhvA4UST931ws8DDM2v7fcXr5vvrK+OFgGwE/g1r0ivVi+GUxbQD8tWSj4ccw96w6bv6aIs6XgRx89+XHMvW6kOMAcZwc/gdWtO0sH3z9I74Y8ed8NwJPLTLwtyTvAMwsgu6jJ0L8XK6G8HIseP3fXCzwMMza/t9xevm++sr44WAbAT+DWvSK9WL6UdJRiLg=="
76
+ },
77
+ "_last_episode_starts": {
78
+ ":type:": "<class 'numpy.ndarray'>",
79
+ ":serialized:": "gASVjAAAAAAAAACMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMDF9yZWNvbnN0cnVjdJSTlIwFbnVtcHmUjAduZGFycmF5lJOUSwCFlEMBYpSHlFKUKEsBSwSFlGgDjAVkdHlwZZSTlIwCYjGUiYiHlFKUKEsDjAF8lE5OTkr/////Sv////9LAHSUYolDBAEBAQGUdJRiLg=="
80
+ },
81
+ "_last_original_obs": {
82
+ ":type:": "<class 'numpy.ndarray'>",
83
+ ":serialized:": "gASVLQIAAAAAAACMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMDF9yZWNvbnN0cnVjdJSTlIwFbnVtcHmUjAduZGFycmF5lJOUSwCFlEMBYpSHlFKUKEsBSwRLGoaUaAOMBWR0eXBllJOUjAJmNJSJiIeUUpQoSwOMATyUTk5OSv////9K/////0sAdJRiiUKgAQAAAAAAAAAAAAAAAIA/AAAAAAAAAAAAAAAAAAAAAAAAAIC6O4a+AAAAAI4+oz0AAAAArHggvgAAAAAkLaU+AAAAADdlm7sAAAAA9aaiPwAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAgD8AAAAAAAAAAAAAAAAAAAAAAAAAgNT0n74AAAAAfCVivQAAAAB3Joa+AAAAAENihD4AAAAAwl5uuwAAAAC0aZs/AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACAPwAAAAAAAAAAAAAAAAAAAAAAAACA861tvgAAAACeBXY8AAAAAFCmXb4AAAAApBnAPgAAAAAumUI9AAAAALE3oD8AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAIA/AAAAAAAAAAAAAAAAAAAAAAAAAIDfebe+AAAAABXdeDwAAAAAUtYqvgAAAAAXKng+AAAAAKnstzwAAAAAu+qZPwAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUdJRiLg=="
84
+ },
85
+ "_episode_num": 0,
86
+ "use_sde": true,
87
+ "sde_sample_freq": -1,
88
+ "_current_progress_remaining": 0.0,
89
+ "ep_info_buffer": {
90
+ ":type:": "<class 'collections.deque'>",
91
+ ":serialized:": "gASVRAwAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpRHQJIdUSHuZ1GMAWyUTegDjAF0lEdAqO6Cohpxm3V9lChoBkdAkGKD6vaDf2gHTegDaAhHQKjugx9oexR1fZQoaAZHQJFTCVv/BFdoB03oA2gIR0Co7oOLBKtgdX2UKGgGR0CR41W1+iJwaAdN6ANoCEdAqO6D+T/yXnV9lChoBkdAkXo6EeyRjmgHTegDaAhHQKj6DBO58Sh1fZQoaAZHQJK0ocsDnvFoB03oA2gIR0Co+gyRSxZ/dX2UKGgGR0CRNqbaAWi2aAdN6ANoCEdAqPoNC5VfeHV9lChoBkdAkRjrAUL2H2gHTegDaAhHQKj6Da2WpqB1fZQoaAZHQJF+BW6shgVoB03oA2gIR0CpBYfR3NcGdX2UKGgGR0CKwcPT5O8DaAdN6ANoCEdAqQWIQg9vCXV9lChoBkdAkdJFA3T/hmgHTegDaAhHQKkFiJaaCtl1fZQoaAZHQJA1cZsKsuFoB03oA2gIR0CpBYkPtlZpdX2UKGgGR0CSu/T4+KTCaAdN6ANoCEdAqRDsl7dBSnV9lChoBkdAkXs3Kr7wa2gHTegDaAhHQKkQ7P5YYBN1fZQoaAZHQJL56t/4IrxoB03oA2gIR0CpEO2NWEK3dX2UKGgGR0CR0eTpgTh6aAdN6ANoCEdAqRDuK2rn1XV9lChoBkdAklDWUW2w3mgHTegDaAhHQKkcaN2ki2V1fZQoaAZHQJIm3+KjzqdoB03oA2gIR0CpHGlmnO0LdX2UKGgGR0CQxo1VYISlaAdN6ANoCEdAqRxpuXNTtXV9lChoBkdAkmVnW4EwFmgHTegDaAhHQKkcahX8wYd1fZQoaAZHQJFwMBQvYe1oB03oA2gIR0CpJ+MvqTr3dX2UKGgGR0COrVJ2dNFjaAdN6ANoCEdAqSfj0J4SpXV9lChoBkdAkNWbMxGlRGgHTegDaAhHQKkn5DQZ4wB1fZQoaAZHQJDZDnSv1UVoB03oA2gIR0CpJ+SiudPMdX2UKGgGR0CSMgvIfbKzaAdN6ANoCEdAqTN4YaYNRXV9lChoBkdAkHGfechC+mgHTegDaAhHQKkzeOearm11fZQoaAZHQJCgk87p3X9oB03oA2gIR0CpM3lXaJyidX2UKGgGR0COM2/Dcdo4aAdN6ANoCEdAqTN5tcfNinV9lChoBkdAkQNUYXO4X2gHTegDaAhHQKk+54xk/bF1fZQoaAZHQI+N5LkCFK1oB03oA2gIR0CpPuf779AHdX2UKGgGR0CN/ceV9nbqaAdN6ANoCEdAqT7oYaYNRXV9lChoBkdAkrywbuMMqmgHTegDaAhHQKk+6NmUW2x1fZQoaAZHQJBfZZTyauxoB03oA2gIR0CpSmjurp7kdX2UKGgGR0CNFS7nPmgbaAdN6ANoCEdAqUppg7YChnV9lChoBkdAkj+wyAQQMGgHTegDaAhHQKlKaeo1k2B1fZQoaAZHQJIk6oddVvNoB03oA2gIR0CpSmpeeFtbdX2UKGgGR0CSVOTURWcSaAdN6ANoCEdAqVYbKJVKgHV9lChoBkdAkKfpqM3qA2gHTegDaAhHQKlWG63iJfp1fZQoaAZHQIvsbKeTV2BoB03oA2gIR0CpVhwkPczqdX2UKGgGR0CQrQ/7SApbaAdN6ANoCEdAqVYcvqTr3XV9lChoBkdAkIujBInSfGgHTegDaAhHQKlhv0V8CxN1fZQoaAZHQJFxCerdWQxoB03oA2gIR0CpYb/MW43FdX2UKGgGR0CR8tPq9oN/aAdN6ANoCEdAqWHAezUqhHV9lChoBkdAjyew9aEBbWgHTegDaAhHQKlhwSowVTJ1fZQoaAZHQJFP0R8MNMJoB03oA2gIR0CpbWvw3HaOdX2UKGgGR0CRKBhGH58CaAdN6ANoCEdAqW1sr08NhHV9lChoBkdAkcVKwIMSb2gHTegDaAhHQKltbTNMXad1fZQoaAZHQJJQGRYA80VoB03oA2gIR0CpbW2zv7WNdX2UKGgGR0CQ13Jo0ygxaAdN6ANoCEdAqXkbQAuIynV9lChoBkdAkGvYI4VARmgHTegDaAhHQKl5G7nxJ/Z1fZQoaAZHQJA0qJaaCtloB03oA2gIR0CpeRwYk3S8dX2UKGgGR0CSHUfMwDeTaAdN6ANoCEdAqXkceCCjDnV9lChoBkdAkBPAkxASnWgHTegDaAhHQKmEwCnP3SN1fZQoaAZHQJBxfxpcophoB03oA2gIR0CphMC2MKkVdX2UKGgGR0CRCa987ZFoaAdN6ANoCEdAqYTBT2nKn3V9lChoBkdAkD/lBt1p02gHTegDaAhHQKmEwcZLqUx1fZQoaAZHQJEKxCVrylNoB03oA2gIR0CpkEcO09hadX2UKGgGR0CQyCnuiN83aAdN6ANoCEdAqZBHhKlHjXV9lChoBkdAkT4egYgq3GgHTegDaAhHQKmQR+y7f511fZQoaAZHQJGi3889wFVoB03oA2gIR0CpkEhIOH32dX2UKGgGR0CR6IfmcOLBaAdN6ANoCEdAqZvO7Bfrr3V9lChoBkdAkYxAfQrtmmgHTegDaAhHQKmbz24d6s11fZQoaAZHQJF6EG+sYEZoB03oA2gIR0Cpm8/qPfbcdX2UKGgGR0CSP4JT2nKoaAdN6ANoCEdAqZvQUrTYunV9lChoBkdAkidJHmRvFWgHTegDaAhHQKmnRCpFTeh1fZQoaAZHQJHF5schkiFoB03oA2gIR0Cpp0TM7lq8dX2UKGgGR0CQpSy5qdpZaAdN6ANoCEdAqadFYMfA9HV9lChoBkdAkTytwrDqGGgHTegDaAhHQKmnRf8/D+B1fZQoaAZHQI5AQ7xNIsloB03oA2gIR0CpstjA8B+4dX2UKGgGR0CRqB1uivgWaAdN6ANoCEdAqbLZPRArx3V9lChoBkdAkX6bl7tzCGgHTegDaAhHQKmy2ZhKDkF1fZQoaAZHQJJJOaiKziVoB03oA2gIR0Cpstn+IdlvdX2UKGgGR0CSBiyrxRVIaAdN6ANoCEdAqb6MaS9ug3V9lChoBkdAkwyLiyY5UGgHTegDaAhHQKm+jOdGy5Z1fZQoaAZHQJChAr/bTMJoB03oA2gIR0Cpvo1YISlFdX2UKGgGR0CQx+MZP2wnaAdN6ANoCEdAqb6N25hBq3V9lChoBkdAiMplVDKHPGgHTegDaAhHQKnKJn3+MqB1fZQoaAZHQJBbhev6j35oB03oA2gIR0Cpyib+DOC5dX2UKGgGR0B+E3kFOfukaAdN6ANoCEdAqconaWX1J3V9lChoBkdAkHh4o7V8TmgHTegDaAhHQKnKJ9Sde6Z1fZQoaAZHQIx89kBjnV5oB03oA2gIR0Cp1efRNRFadX2UKGgGR0CSR7SvTw2EaAdN6ANoCEdAqdXoTCcf/3V9lChoBkdAkjuA4KhL5GgHTegDaAhHQKnV6LApKBd1fZQoaAZHQI/v6kTHsC1oB03oA2gIR0Cp1ekiliz+dX2UKGgGR0CPIS/HHWBjaAdN6ANoCEdAqeGFDx9XtHV9lChoBkdAjtKw/xDst2gHTegDaAhHQKnhhYSQHRl1fZQoaAZHQI8qjBAOav1oB03oA2gIR0Cp4YXvphWpdX2UKGgGR0CL+g9t/FzdaAdN6ANoCEdAqeGGY8dPtXV9lChoBkdAjn5A+pwS8WgHTegDaAhHQKntGA8Swnp1fZQoaAZHQI+cCoVEd/9oB03oA2gIR0Cp7RidjG1hdX2UKGgGR0CG9zHUc4o7aAdN6ANoCEdAqe0ZAbADaHV9lChoBkdAjh3WuPmxMWgHTegDaAhHQKntGXVsk6d1fZQoaAZHQJELGekHlfZoB03oA2gIR0Cp+MwHqu8sdX2UKGgGR0CPNFEH+qBFaAdN6ANoCEdAqfjMfcN6PnV9lChoBkdAiL0MZP2wmmgHTegDaAhHQKn4zPdEb5x1fZQoaAZHQI9q+UhV2idoB03oA2gIR0Cp+M1schkidX2UKGgGR0COvTDu0CzUaAdN6ANoCEdAqgRAplSS/3V9lChoBkdAj6gW87IT5GgHTegDaAhHQKoEQSzPa+N1fZQoaAZHQIvHiHRCx/xoB03oA2gIR0CqBEGj9GZvdX2UKGgGR0CE2XB/qgRLaAdN6ANoCEdAqgRCFyq+8HVlLg=="
92
+ },
93
+ "ep_success_buffer": {
94
+ ":type:": "<class 'collections.deque'>",
95
+ ":serialized:": "gASVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="
96
+ },
97
+ "_n_updates": 62500,
98
+ "n_steps": 8,
99
+ "gamma": 0.99,
100
+ "gae_lambda": 0.9,
101
+ "ent_coef": 0.005,
102
+ "vf_coef": 0.4,
103
+ "max_grad_norm": 0.4,
104
+ "normalize_advantage": true
105
+ }
a2c-HalfCheetahBulletEnv-v0/policy.optimizer.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:bbdf42cd6a98664751bef0e33e1bd80631b9235f20e40508bc4ebbdb49051375
3
+ size 54078
a2c-HalfCheetahBulletEnv-v0/policy.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:81e08a37f5e0c04c9db64018c3f21cb999baee11c09c0a383a80508a332707a4
3
+ size 54718
a2c-HalfCheetahBulletEnv-v0/pytorch_variables.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:d030ad8db708280fcae77d87e973102039acd23a11bdecc3db8eb6c0ac940ee1
3
+ size 431
a2c-HalfCheetahBulletEnv-v0/system_info.txt ADDED
@@ -0,0 +1,7 @@
 
 
 
 
 
 
 
 
1
+ OS: Linux-5.4.188+-x86_64-with-Ubuntu-18.04-bionic #1 SMP Sun Apr 24 10:03:06 PDT 2022
2
+ Python: 3.7.13
3
+ Stable-Baselines3: 1.6.0
4
+ PyTorch: 1.12.0+cu113
5
+ GPU Enabled: True
6
+ Numpy: 1.21.6
7
+ Gym: 0.21.0
config.json ADDED
@@ -0,0 +1 @@
 
 
1
+ {"policy_class": {":type:": "<class 'abc.ABCMeta'>", ":serialized:": "gASVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==", "__module__": "stable_baselines3.common.policies", "__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param sde_net_arch: Network architecture for extracting features\n when using gSDE. If None, the latent features from the policy will be used.\n Pass an empty list to use the states as features.\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ", "__init__": "<function ActorCriticPolicy.__init__ at 0x7f6dc0db5f80>", "_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x7f6dc0dbe050>", "reset_noise": "<function ActorCriticPolicy.reset_noise at 0x7f6dc0dbe0e0>", "_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x7f6dc0dbe170>", "_build": "<function ActorCriticPolicy._build at 0x7f6dc0dbe200>", "forward": "<function ActorCriticPolicy.forward at 0x7f6dc0dbe290>", "_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x7f6dc0dbe320>", "_predict": "<function ActorCriticPolicy._predict at 0x7f6dc0dbe3b0>", "evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x7f6dc0dbe440>", "get_distribution": "<function ActorCriticPolicy.get_distribution at 0x7f6dc0dbe4d0>", "predict_values": "<function ActorCriticPolicy.predict_values at 0x7f6dc0dbe560>", "__abstractmethods__": "frozenset()", "_abc_impl": "<_abc_data object at 0x7f6dc0e04ae0>"}, "verbose": 1, "policy_kwargs": {":type:": "<class 'dict'>", ":serialized:": "gASVowAAAAAAAAB9lCiMDGxvZ19zdGRfaW5pdJRK/v///4wKb3J0aG9faW5pdJSIjA9vcHRpbWl6ZXJfY2xhc3OUjBN0b3JjaC5vcHRpbS5ybXNwcm9wlIwHUk1TcHJvcJSTlIwQb3B0aW1pemVyX2t3YXJnc5R9lCiMBWFscGhhlEc/764UeuFHrowDZXBzlEc+5Pi1iONo8YwMd2VpZ2h0X2RlY2F5lEsAdXUu", "log_std_init": -2, "ortho_init": true, "optimizer_class": "<class 'torch.optim.rmsprop.RMSprop'>", "optimizer_kwargs": {"alpha": 0.99, "eps": 1e-05, "weight_decay": 0}}, "observation_space": {":type:": "<class 'gym.spaces.box.Box'>", ":serialized:": "gASVdwIAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLGoWUjANsb3eUjBVudW1weS5jb3JlLm11bHRpYXJyYXmUjAxfcmVjb25zdHJ1Y3SUk5RoBowHbmRhcnJheZSTlEsAhZRDAWKUh5RSlChLAUsahZRoColDaAAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/lHSUYowEaGlnaJRoEmgUSwCFlGgWh5RSlChLAUsahZRoColDaAAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/lHSUYowNYm91bmRlZF9iZWxvd5RoEmgUSwCFlGgWh5RSlChLAUsahZRoB4wCYjGUiYiHlFKUKEsDjAF8lE5OTkr/////Sv////9LAHSUYolDGgAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAlHSUYowNYm91bmRlZF9hYm92ZZRoEmgUSwCFlGgWh5RSlChLAUsahZRoKolDGgAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAlHSUYowKX25wX3JhbmRvbZROdWIu", "dtype": "float32", "_shape": [26], "low": "[-inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf\n -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf]", "high": "[inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf\n inf inf inf inf inf inf inf inf]", "bounded_below": "[False False False False False False False False False False False False\n False False False False False False False False False False False False\n False False]", "bounded_above": "[False False False False False False False False False False False False\n False False False False False False False False False False False False\n False False]", "_np_random": null}, "action_space": {":type:": "<class 'gym.spaces.box.Box'>", ":serialized:": "gASVrwEAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLBoWUjANsb3eUjBVudW1weS5jb3JlLm11bHRpYXJyYXmUjAxfcmVjb25zdHJ1Y3SUk5RoBowHbmRhcnJheZSTlEsAhZRDAWKUh5RSlChLAUsGhZRoColDGAAAgL8AAIC/AACAvwAAgL8AAIC/AACAv5R0lGKMBGhpZ2iUaBJoFEsAhZRoFoeUUpQoSwFLBoWUaAqJQxgAAIA/AACAPwAAgD8AAIA/AACAPwAAgD+UdJRijA1ib3VuZGVkX2JlbG93lGgSaBRLAIWUaBaHlFKUKEsBSwaFlGgHjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiiUMGAQEBAQEBlHSUYowNYm91bmRlZF9hYm92ZZRoEmgUSwCFlGgWh5RSlChLAUsGhZRoKolDBgEBAQEBAZR0lGKMCl9ucF9yYW5kb22UTnViLg==", "dtype": "float32", "_shape": [6], "low": "[-1. -1. -1. -1. -1. -1.]", "high": "[1. 1. 1. 1. 1. 1.]", "bounded_below": "[ True True True True True True]", "bounded_above": "[ True True True True True True]", "_np_random": null}, "n_envs": 4, "num_timesteps": 2000000, "_total_timesteps": 2000000, "_num_timesteps_at_start": 0, "seed": null, "action_noise": null, "start_time": 1658693683.302555, "learning_rate": 0.00105, "tensorboard_log": "./tensorboard", "lr_schedule": {":type:": "<class 'function'>", ":serialized:": "gASVvwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwNX2J1aWx0aW5fdHlwZZSTlIwKTGFtYmRhVHlwZZSFlFKUKGgCjAhDb2RlVHlwZZSFlFKUKEsBSwBLAUsBSxNDBIgAUwCUToWUKYwBX5SFlIxIL3Vzci9sb2NhbC9saWIvcHl0aG9uMy43L2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lIwEZnVuY5RLgEMCAAGUjAN2YWyUhZQpdJRSlH2UKIwLX19wYWNrYWdlX1+UjBhzdGFibGVfYmFzZWxpbmVzMy5jb21tb26UjAhfX25hbWVfX5SMHnN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi51dGlsc5SMCF9fZmlsZV9flIxIL3Vzci9sb2NhbC9saWIvcHl0aG9uMy43L2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaCB9lH2UKGgXaA6MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgYjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz9RNATqSowVhZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"}, "_last_obs": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gASVLQIAAAAAAACMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMDF9yZWNvbnN0cnVjdJSTlIwFbnVtcHmUjAduZGFycmF5lJOUSwCFlEMBYpSHlFKUKEsBSwRLGoaUaAOMBWR0eXBllJOUjAJmNJSJiIeUUpQoSwOMATyUTk5OSv////9K/////0sAdJRiiUKgAQAAGUxbQD8tWSj4ccw96w6bv6aIs6XgRx89+XHMvW6kOMDTf6k+gdWtOxGvAEBI74Y8i8kUwJPLTLxgYBvAMwsgu30T3L8XK6G8LKNpP3fXCzwMMza/t9xevm++sr44WAbAT+DWvSK9WL4ZTFtAPy1ZKPhxzD3rDpu/poizpeBHHz35ccy9bqQ4wPdujD6B1a075Q0HQEjvhjxUGPG/k8tMvIOJNMAzCyC7wl/lvxcrobxCTCc/d9cLPAwzNr+33F6+b76yvjhYBsBP4Na9Ir1YvhlMW0A/LVko+HHMPesOm7+miLOl4EcfPflxzL1upDjAE7qxPoHVrTtFctU/SO+GPFJKDsCTy0y8oCkNwDMLILvtfs6/FyuhvA4UST931ws8DDM2v7fcXr5vvrK+OFgGwE/g1r0ivVi+GUxbQD8tWSj4ccw96w6bv6aIs6XgRx89+XHMvW6kOMAcZwc/gdWtO0sH3z9I74Y8ed8NwJPLTLwtyTvAMwsgu6jJ0L8XK6G8HIseP3fXCzwMMza/t9xevm++sr44WAbAT+DWvSK9WL6UdJRiLg=="}, "_last_episode_starts": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gASVjAAAAAAAAACMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMDF9yZWNvbnN0cnVjdJSTlIwFbnVtcHmUjAduZGFycmF5lJOUSwCFlEMBYpSHlFKUKEsBSwSFlGgDjAVkdHlwZZSTlIwCYjGUiYiHlFKUKEsDjAF8lE5OTkr/////Sv////9LAHSUYolDBAEBAQGUdJRiLg=="}, "_last_original_obs": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gASVLQIAAAAAAACMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMDF9yZWNvbnN0cnVjdJSTlIwFbnVtcHmUjAduZGFycmF5lJOUSwCFlEMBYpSHlFKUKEsBSwRLGoaUaAOMBWR0eXBllJOUjAJmNJSJiIeUUpQoSwOMATyUTk5OSv////9K/////0sAdJRiiUKgAQAAAAAAAAAAAAAAAIA/AAAAAAAAAAAAAAAAAAAAAAAAAIC6O4a+AAAAAI4+oz0AAAAArHggvgAAAAAkLaU+AAAAADdlm7sAAAAA9aaiPwAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAgD8AAAAAAAAAAAAAAAAAAAAAAAAAgNT0n74AAAAAfCVivQAAAAB3Joa+AAAAAENihD4AAAAAwl5uuwAAAAC0aZs/AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACAPwAAAAAAAAAAAAAAAAAAAAAAAACA861tvgAAAACeBXY8AAAAAFCmXb4AAAAApBnAPgAAAAAumUI9AAAAALE3oD8AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAIA/AAAAAAAAAAAAAAAAAAAAAAAAAIDfebe+AAAAABXdeDwAAAAAUtYqvgAAAAAXKng+AAAAAKnstzwAAAAAu+qZPwAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUdJRiLg=="}, "_episode_num": 0, "use_sde": true, "sde_sample_freq": -1, "_current_progress_remaining": 0.0, "ep_info_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gASVRAwAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpRHQJIdUSHuZ1GMAWyUTegDjAF0lEdAqO6Cohpxm3V9lChoBkdAkGKD6vaDf2gHTegDaAhHQKjugx9oexR1fZQoaAZHQJFTCVv/BFdoB03oA2gIR0Co7oOLBKtgdX2UKGgGR0CR41W1+iJwaAdN6ANoCEdAqO6D+T/yXnV9lChoBkdAkXo6EeyRjmgHTegDaAhHQKj6DBO58Sh1fZQoaAZHQJK0ocsDnvFoB03oA2gIR0Co+gyRSxZ/dX2UKGgGR0CRNqbaAWi2aAdN6ANoCEdAqPoNC5VfeHV9lChoBkdAkRjrAUL2H2gHTegDaAhHQKj6Da2WpqB1fZQoaAZHQJF+BW6shgVoB03oA2gIR0CpBYfR3NcGdX2UKGgGR0CKwcPT5O8DaAdN6ANoCEdAqQWIQg9vCXV9lChoBkdAkdJFA3T/hmgHTegDaAhHQKkFiJaaCtl1fZQoaAZHQJA1cZsKsuFoB03oA2gIR0CpBYkPtlZpdX2UKGgGR0CSu/T4+KTCaAdN6ANoCEdAqRDsl7dBSnV9lChoBkdAkXs3Kr7wa2gHTegDaAhHQKkQ7P5YYBN1fZQoaAZHQJL56t/4IrxoB03oA2gIR0CpEO2NWEK3dX2UKGgGR0CR0eTpgTh6aAdN6ANoCEdAqRDuK2rn1XV9lChoBkdAklDWUW2w3mgHTegDaAhHQKkcaN2ki2V1fZQoaAZHQJIm3+KjzqdoB03oA2gIR0CpHGlmnO0LdX2UKGgGR0CQxo1VYISlaAdN6ANoCEdAqRxpuXNTtXV9lChoBkdAkmVnW4EwFmgHTegDaAhHQKkcahX8wYd1fZQoaAZHQJFwMBQvYe1oB03oA2gIR0CpJ+MvqTr3dX2UKGgGR0COrVJ2dNFjaAdN6ANoCEdAqSfj0J4SpXV9lChoBkdAkNWbMxGlRGgHTegDaAhHQKkn5DQZ4wB1fZQoaAZHQJDZDnSv1UVoB03oA2gIR0CpJ+SiudPMdX2UKGgGR0CSMgvIfbKzaAdN6ANoCEdAqTN4YaYNRXV9lChoBkdAkHGfechC+mgHTegDaAhHQKkzeOearm11fZQoaAZHQJCgk87p3X9oB03oA2gIR0CpM3lXaJyidX2UKGgGR0COM2/Dcdo4aAdN6ANoCEdAqTN5tcfNinV9lChoBkdAkQNUYXO4X2gHTegDaAhHQKk+54xk/bF1fZQoaAZHQI+N5LkCFK1oB03oA2gIR0CpPuf779AHdX2UKGgGR0CN/ceV9nbqaAdN6ANoCEdAqT7oYaYNRXV9lChoBkdAkrywbuMMqmgHTegDaAhHQKk+6NmUW2x1fZQoaAZHQJBfZZTyauxoB03oA2gIR0CpSmjurp7kdX2UKGgGR0CNFS7nPmgbaAdN6ANoCEdAqUppg7YChnV9lChoBkdAkj+wyAQQMGgHTegDaAhHQKlKaeo1k2B1fZQoaAZHQJIk6oddVvNoB03oA2gIR0CpSmpeeFtbdX2UKGgGR0CSVOTURWcSaAdN6ANoCEdAqVYbKJVKgHV9lChoBkdAkKfpqM3qA2gHTegDaAhHQKlWG63iJfp1fZQoaAZHQIvsbKeTV2BoB03oA2gIR0CpVhwkPczqdX2UKGgGR0CQrQ/7SApbaAdN6ANoCEdAqVYcvqTr3XV9lChoBkdAkIujBInSfGgHTegDaAhHQKlhv0V8CxN1fZQoaAZHQJFxCerdWQxoB03oA2gIR0CpYb/MW43FdX2UKGgGR0CR8tPq9oN/aAdN6ANoCEdAqWHAezUqhHV9lChoBkdAjyew9aEBbWgHTegDaAhHQKlhwSowVTJ1fZQoaAZHQJFP0R8MNMJoB03oA2gIR0CpbWvw3HaOdX2UKGgGR0CRKBhGH58CaAdN6ANoCEdAqW1sr08NhHV9lChoBkdAkcVKwIMSb2gHTegDaAhHQKltbTNMXad1fZQoaAZHQJJQGRYA80VoB03oA2gIR0CpbW2zv7WNdX2UKGgGR0CQ13Jo0ygxaAdN6ANoCEdAqXkbQAuIynV9lChoBkdAkGvYI4VARmgHTegDaAhHQKl5G7nxJ/Z1fZQoaAZHQJA0qJaaCtloB03oA2gIR0CpeRwYk3S8dX2UKGgGR0CSHUfMwDeTaAdN6ANoCEdAqXkceCCjDnV9lChoBkdAkBPAkxASnWgHTegDaAhHQKmEwCnP3SN1fZQoaAZHQJBxfxpcophoB03oA2gIR0CphMC2MKkVdX2UKGgGR0CRCa987ZFoaAdN6ANoCEdAqYTBT2nKn3V9lChoBkdAkD/lBt1p02gHTegDaAhHQKmEwcZLqUx1fZQoaAZHQJEKxCVrylNoB03oA2gIR0CpkEcO09hadX2UKGgGR0CQyCnuiN83aAdN6ANoCEdAqZBHhKlHjXV9lChoBkdAkT4egYgq3GgHTegDaAhHQKmQR+y7f511fZQoaAZHQJGi3889wFVoB03oA2gIR0CpkEhIOH32dX2UKGgGR0CR6IfmcOLBaAdN6ANoCEdAqZvO7Bfrr3V9lChoBkdAkYxAfQrtmmgHTegDaAhHQKmbz24d6s11fZQoaAZHQJF6EG+sYEZoB03oA2gIR0Cpm8/qPfbcdX2UKGgGR0CSP4JT2nKoaAdN6ANoCEdAqZvQUrTYunV9lChoBkdAkidJHmRvFWgHTegDaAhHQKmnRCpFTeh1fZQoaAZHQJHF5schkiFoB03oA2gIR0Cpp0TM7lq8dX2UKGgGR0CQpSy5qdpZaAdN6ANoCEdAqadFYMfA9HV9lChoBkdAkTytwrDqGGgHTegDaAhHQKmnRf8/D+B1fZQoaAZHQI5AQ7xNIsloB03oA2gIR0CpstjA8B+4dX2UKGgGR0CRqB1uivgWaAdN6ANoCEdAqbLZPRArx3V9lChoBkdAkX6bl7tzCGgHTegDaAhHQKmy2ZhKDkF1fZQoaAZHQJJJOaiKziVoB03oA2gIR0Cpstn+IdlvdX2UKGgGR0CSBiyrxRVIaAdN6ANoCEdAqb6MaS9ug3V9lChoBkdAkwyLiyY5UGgHTegDaAhHQKm+jOdGy5Z1fZQoaAZHQJChAr/bTMJoB03oA2gIR0Cpvo1YISlFdX2UKGgGR0CQx+MZP2wnaAdN6ANoCEdAqb6N25hBq3V9lChoBkdAiMplVDKHPGgHTegDaAhHQKnKJn3+MqB1fZQoaAZHQJBbhev6j35oB03oA2gIR0Cpyib+DOC5dX2UKGgGR0B+E3kFOfukaAdN6ANoCEdAqconaWX1J3V9lChoBkdAkHh4o7V8TmgHTegDaAhHQKnKJ9Sde6Z1fZQoaAZHQIx89kBjnV5oB03oA2gIR0Cp1efRNRFadX2UKGgGR0CSR7SvTw2EaAdN6ANoCEdAqdXoTCcf/3V9lChoBkdAkjuA4KhL5GgHTegDaAhHQKnV6LApKBd1fZQoaAZHQI/v6kTHsC1oB03oA2gIR0Cp1ekiliz+dX2UKGgGR0CPIS/HHWBjaAdN6ANoCEdAqeGFDx9XtHV9lChoBkdAjtKw/xDst2gHTegDaAhHQKnhhYSQHRl1fZQoaAZHQI8qjBAOav1oB03oA2gIR0Cp4YXvphWpdX2UKGgGR0CL+g9t/FzdaAdN6ANoCEdAqeGGY8dPtXV9lChoBkdAjn5A+pwS8WgHTegDaAhHQKntGA8Swnp1fZQoaAZHQI+cCoVEd/9oB03oA2gIR0Cp7RidjG1hdX2UKGgGR0CG9zHUc4o7aAdN6ANoCEdAqe0ZAbADaHV9lChoBkdAjh3WuPmxMWgHTegDaAhHQKntGXVsk6d1fZQoaAZHQJELGekHlfZoB03oA2gIR0Cp+MwHqu8sdX2UKGgGR0CPNFEH+qBFaAdN6ANoCEdAqfjMfcN6PnV9lChoBkdAiL0MZP2wmmgHTegDaAhHQKn4zPdEb5x1fZQoaAZHQI9q+UhV2idoB03oA2gIR0Cp+M1schkidX2UKGgGR0COvTDu0CzUaAdN6ANoCEdAqgRAplSS/3V9lChoBkdAj6gW87IT5GgHTegDaAhHQKoEQSzPa+N1fZQoaAZHQIvHiHRCx/xoB03oA2gIR0CqBEGj9GZvdX2UKGgGR0CE2XB/qgRLaAdN6ANoCEdAqgRCFyq+8HVlLg=="}, "ep_success_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gASVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="}, "_n_updates": 62500, "n_steps": 8, "gamma": 0.99, "gae_lambda": 0.9, "ent_coef": 0.005, "vf_coef": 0.4, "max_grad_norm": 0.4, "normalize_advantage": true, "system_info": {"OS": "Linux-5.4.188+-x86_64-with-Ubuntu-18.04-bionic #1 SMP Sun Apr 24 10:03:06 PDT 2022", "Python": "3.7.13", "Stable-Baselines3": "1.6.0", "PyTorch": "1.12.0+cu113", "GPU Enabled": "True", "Numpy": "1.21.6", "Gym": "0.21.0"}}
replay.mp4 ADDED
Binary file (933 kB). View file
 
results.json ADDED
@@ -0,0 +1 @@
 
 
1
+ {"mean_reward": 992.0022899256495, "std_reward": 62.144914581148974, "is_deterministic": true, "n_eval_episodes": 10, "eval_datetime": "2022-07-24T21:03:42.297671"}
vec_normalize.pkl ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:85290026004b7df6579351b25f4ee2b3e31e9f0fa663e5091759c28e3a39c395
3
+ size 2659