plaguss HF staff commited on
Commit
7a2e427
·
verified ·
1 Parent(s): a39d357

Add new SentenceTransformer model.

Browse files
1_Pooling/config.json ADDED
@@ -0,0 +1,10 @@
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "word_embedding_dimension": 768,
3
+ "pooling_mode_cls_token": true,
4
+ "pooling_mode_mean_tokens": false,
5
+ "pooling_mode_max_tokens": false,
6
+ "pooling_mode_mean_sqrt_len_tokens": false,
7
+ "pooling_mode_weightedmean_tokens": false,
8
+ "pooling_mode_lasttoken": false,
9
+ "include_prompt": true
10
+ }
README.md ADDED
@@ -0,0 +1,854 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ language:
3
+ - en
4
+ license: apache-2.0
5
+ library_name: sentence-transformers
6
+ tags:
7
+ - sentence-transformers
8
+ - sentence-similarity
9
+ - feature-extraction
10
+ - generated_from_trainer
11
+ - dataset_size:882
12
+ - loss:MatryoshkaLoss
13
+ - loss:TripletLoss
14
+ base_model: BAAI/bge-base-en-v1.5
15
+ datasets: []
16
+ metrics:
17
+ - cosine_accuracy@1
18
+ - cosine_accuracy@3
19
+ - cosine_accuracy@5
20
+ - cosine_accuracy@10
21
+ - cosine_precision@1
22
+ - cosine_precision@3
23
+ - cosine_precision@5
24
+ - cosine_precision@10
25
+ - cosine_recall@1
26
+ - cosine_recall@3
27
+ - cosine_recall@5
28
+ - cosine_recall@10
29
+ - cosine_ndcg@10
30
+ - cosine_mrr@10
31
+ - cosine_map@100
32
+ widget:
33
+ - source_sentence: 'hide: footer
34
+
35
+
36
+ Fields
37
+
38
+
39
+ Fields in Argilla are define the content of a record that will be reviewed by
40
+ a user.'
41
+ sentences:
42
+ - The tourists tried to hide their footprints in the sand as they walked along the
43
+ deserted beach.
44
+ - Can the rg.Suggestion class be used to handle model predictions in Argilla?
45
+ - Can users customize the fields in Argilla to fit their specific annotation needs?
46
+ - source_sentence: "=== \"Single condition\"\n\n=== \"Multiple conditions\"\n\nFilter\
47
+ \ by status\n\nYou can filter records based on their status. The status can be\
48
+ \ pending, draft, submitted, or discarded.\n\n```python\nimport argilla_sdk as\
49
+ \ rg\n\nclient = rg.Argilla(api_url=\"\", api_key=\"\")\n\nworkspace = client.workspaces(\"\
50
+ my_workspace\")\n\ndataset = client.datasets(name=\"my_dataset\", workspace=workspace)\n\
51
+ \nstatus_filter = rg.Query(\n filter = rg.Filter((\"status\", \"==\", \"submitted\"\
52
+ ))\n)"
53
+ sentences:
54
+ - The submitted application was rejected due to incomplete documentation.
55
+ - How can I apply filters to records by their status in Argilla?
56
+ - Can Argilla's IntegerMetadataProperty support a range of integer values as metadata?
57
+ - source_sentence: 'description: In this section, we will provide a step-by-step guide
58
+ to show how to filter and query a dataset.
59
+
60
+
61
+ Query, filter, and export records
62
+
63
+
64
+ This guide provides an overview of how to query and filter a dataset in Argilla
65
+ and export records.'
66
+ sentences:
67
+ - The new restaurant in town offers a unique filter coffee that is a must-try for
68
+ coffee enthusiasts.
69
+ - Is it possible to design a user role with tailored access permissions within Argilla?
70
+ - Can Argilla be employed to search and filter datasets based on particular requirements
71
+ or keywords?
72
+ - source_sentence: 'hide: footer
73
+
74
+
75
+ Fields
76
+
77
+
78
+ Fields in Argilla are define the content of a record that will be reviewed by
79
+ a user.'
80
+ sentences:
81
+ - Is it possible for annotators to tailor Argilla's fields to their unique annotation
82
+ requirements?
83
+ - The tourists tried to hide their footprints in the sand as they walked along the
84
+ deserted beach.
85
+ - Can this partnership with Prolific provide researchers with a broader range of
86
+ annotators to draw from, enhancing the quality of their studies?
87
+ - source_sentence: 'hide: footer
88
+
89
+
90
+ rg.Argilla
91
+
92
+
93
+ To interact with the Argilla server from python you can use the Argilla class.
94
+ The Argilla client is used to create, get, update, and delete all Argilla resources,
95
+ such as workspaces, users, datasets, and records.
96
+
97
+
98
+ Usage Examples
99
+
100
+
101
+ Connecting to an Argilla server
102
+
103
+
104
+ To connect to an Argilla server, instantiate the Argilla class and pass the api_url
105
+ of the server and the api_key to authenticate.
106
+
107
+
108
+ ```python
109
+
110
+ import argilla_sdk as rg'
111
+ sentences:
112
+ - Can the Argilla class be employed to streamline dataset administration tasks in
113
+ my Argilla server setup?
114
+ - Is it possible to create new data entries in my dataset via Argilla's annotation
115
+ tools?
116
+ - The Argilla flowers were blooming beautifully in the garden.
117
+ pipeline_tag: sentence-similarity
118
+ model-index:
119
+ - name: BGE base ArgillaSDK Matryoshka
120
+ results:
121
+ - task:
122
+ type: information-retrieval
123
+ name: Information Retrieval
124
+ dataset:
125
+ name: dim 768
126
+ type: dim_768
127
+ metrics:
128
+ - type: cosine_accuracy@1
129
+ value: 0.1326530612244898
130
+ name: Cosine Accuracy@1
131
+ - type: cosine_accuracy@3
132
+ value: 0.2857142857142857
133
+ name: Cosine Accuracy@3
134
+ - type: cosine_accuracy@5
135
+ value: 0.3877551020408163
136
+ name: Cosine Accuracy@5
137
+ - type: cosine_accuracy@10
138
+ value: 0.5204081632653061
139
+ name: Cosine Accuracy@10
140
+ - type: cosine_precision@1
141
+ value: 0.1326530612244898
142
+ name: Cosine Precision@1
143
+ - type: cosine_precision@3
144
+ value: 0.09523809523809525
145
+ name: Cosine Precision@3
146
+ - type: cosine_precision@5
147
+ value: 0.07755102040816327
148
+ name: Cosine Precision@5
149
+ - type: cosine_precision@10
150
+ value: 0.05204081632653061
151
+ name: Cosine Precision@10
152
+ - type: cosine_recall@1
153
+ value: 0.1326530612244898
154
+ name: Cosine Recall@1
155
+ - type: cosine_recall@3
156
+ value: 0.2857142857142857
157
+ name: Cosine Recall@3
158
+ - type: cosine_recall@5
159
+ value: 0.3877551020408163
160
+ name: Cosine Recall@5
161
+ - type: cosine_recall@10
162
+ value: 0.5204081632653061
163
+ name: Cosine Recall@10
164
+ - type: cosine_ndcg@10
165
+ value: 0.3086125494748455
166
+ name: Cosine Ndcg@10
167
+ - type: cosine_mrr@10
168
+ value: 0.24321752510528016
169
+ name: Cosine Mrr@10
170
+ - type: cosine_map@100
171
+ value: 0.26038538311827203
172
+ name: Cosine Map@100
173
+ - task:
174
+ type: information-retrieval
175
+ name: Information Retrieval
176
+ dataset:
177
+ name: dim 512
178
+ type: dim_512
179
+ metrics:
180
+ - type: cosine_accuracy@1
181
+ value: 0.10204081632653061
182
+ name: Cosine Accuracy@1
183
+ - type: cosine_accuracy@3
184
+ value: 0.2755102040816326
185
+ name: Cosine Accuracy@3
186
+ - type: cosine_accuracy@5
187
+ value: 0.3877551020408163
188
+ name: Cosine Accuracy@5
189
+ - type: cosine_accuracy@10
190
+ value: 0.5102040816326531
191
+ name: Cosine Accuracy@10
192
+ - type: cosine_precision@1
193
+ value: 0.10204081632653061
194
+ name: Cosine Precision@1
195
+ - type: cosine_precision@3
196
+ value: 0.09183673469387756
197
+ name: Cosine Precision@3
198
+ - type: cosine_precision@5
199
+ value: 0.07755102040816327
200
+ name: Cosine Precision@5
201
+ - type: cosine_precision@10
202
+ value: 0.05102040816326531
203
+ name: Cosine Precision@10
204
+ - type: cosine_recall@1
205
+ value: 0.10204081632653061
206
+ name: Cosine Recall@1
207
+ - type: cosine_recall@3
208
+ value: 0.2755102040816326
209
+ name: Cosine Recall@3
210
+ - type: cosine_recall@5
211
+ value: 0.3877551020408163
212
+ name: Cosine Recall@5
213
+ - type: cosine_recall@10
214
+ value: 0.5102040816326531
215
+ name: Cosine Recall@10
216
+ - type: cosine_ndcg@10
217
+ value: 0.29420081448590024
218
+ name: Cosine Ndcg@10
219
+ - type: cosine_mrr@10
220
+ value: 0.22640913508260446
221
+ name: Cosine Mrr@10
222
+ - type: cosine_map@100
223
+ value: 0.24259809105769914
224
+ name: Cosine Map@100
225
+ - task:
226
+ type: information-retrieval
227
+ name: Information Retrieval
228
+ dataset:
229
+ name: dim 256
230
+ type: dim_256
231
+ metrics:
232
+ - type: cosine_accuracy@1
233
+ value: 0.12244897959183673
234
+ name: Cosine Accuracy@1
235
+ - type: cosine_accuracy@3
236
+ value: 0.2755102040816326
237
+ name: Cosine Accuracy@3
238
+ - type: cosine_accuracy@5
239
+ value: 0.3877551020408163
240
+ name: Cosine Accuracy@5
241
+ - type: cosine_accuracy@10
242
+ value: 0.5
243
+ name: Cosine Accuracy@10
244
+ - type: cosine_precision@1
245
+ value: 0.12244897959183673
246
+ name: Cosine Precision@1
247
+ - type: cosine_precision@3
248
+ value: 0.09183673469387753
249
+ name: Cosine Precision@3
250
+ - type: cosine_precision@5
251
+ value: 0.07755102040816327
252
+ name: Cosine Precision@5
253
+ - type: cosine_precision@10
254
+ value: 0.049999999999999996
255
+ name: Cosine Precision@10
256
+ - type: cosine_recall@1
257
+ value: 0.12244897959183673
258
+ name: Cosine Recall@1
259
+ - type: cosine_recall@3
260
+ value: 0.2755102040816326
261
+ name: Cosine Recall@3
262
+ - type: cosine_recall@5
263
+ value: 0.3877551020408163
264
+ name: Cosine Recall@5
265
+ - type: cosine_recall@10
266
+ value: 0.5
267
+ name: Cosine Recall@10
268
+ - type: cosine_ndcg@10
269
+ value: 0.2931450934182018
270
+ name: Cosine Ndcg@10
271
+ - type: cosine_mrr@10
272
+ value: 0.2290937803692905
273
+ name: Cosine Mrr@10
274
+ - type: cosine_map@100
275
+ value: 0.24454883014070852
276
+ name: Cosine Map@100
277
+ - task:
278
+ type: information-retrieval
279
+ name: Information Retrieval
280
+ dataset:
281
+ name: dim 128
282
+ type: dim_128
283
+ metrics:
284
+ - type: cosine_accuracy@1
285
+ value: 0.09183673469387756
286
+ name: Cosine Accuracy@1
287
+ - type: cosine_accuracy@3
288
+ value: 0.25510204081632654
289
+ name: Cosine Accuracy@3
290
+ - type: cosine_accuracy@5
291
+ value: 0.3163265306122449
292
+ name: Cosine Accuracy@5
293
+ - type: cosine_accuracy@10
294
+ value: 0.46938775510204084
295
+ name: Cosine Accuracy@10
296
+ - type: cosine_precision@1
297
+ value: 0.09183673469387756
298
+ name: Cosine Precision@1
299
+ - type: cosine_precision@3
300
+ value: 0.08503401360544219
301
+ name: Cosine Precision@3
302
+ - type: cosine_precision@5
303
+ value: 0.06326530612244897
304
+ name: Cosine Precision@5
305
+ - type: cosine_precision@10
306
+ value: 0.046938775510204075
307
+ name: Cosine Precision@10
308
+ - type: cosine_recall@1
309
+ value: 0.09183673469387756
310
+ name: Cosine Recall@1
311
+ - type: cosine_recall@3
312
+ value: 0.25510204081632654
313
+ name: Cosine Recall@3
314
+ - type: cosine_recall@5
315
+ value: 0.3163265306122449
316
+ name: Cosine Recall@5
317
+ - type: cosine_recall@10
318
+ value: 0.46938775510204084
319
+ name: Cosine Recall@10
320
+ - type: cosine_ndcg@10
321
+ value: 0.2629197762336244
322
+ name: Cosine Ndcg@10
323
+ - type: cosine_mrr@10
324
+ value: 0.1992265954000647
325
+ name: Cosine Mrr@10
326
+ - type: cosine_map@100
327
+ value: 0.2164845577697655
328
+ name: Cosine Map@100
329
+ - task:
330
+ type: information-retrieval
331
+ name: Information Retrieval
332
+ dataset:
333
+ name: dim 64
334
+ type: dim_64
335
+ metrics:
336
+ - type: cosine_accuracy@1
337
+ value: 0.08163265306122448
338
+ name: Cosine Accuracy@1
339
+ - type: cosine_accuracy@3
340
+ value: 0.25510204081632654
341
+ name: Cosine Accuracy@3
342
+ - type: cosine_accuracy@5
343
+ value: 0.3163265306122449
344
+ name: Cosine Accuracy@5
345
+ - type: cosine_accuracy@10
346
+ value: 0.47959183673469385
347
+ name: Cosine Accuracy@10
348
+ - type: cosine_precision@1
349
+ value: 0.08163265306122448
350
+ name: Cosine Precision@1
351
+ - type: cosine_precision@3
352
+ value: 0.08503401360544219
353
+ name: Cosine Precision@3
354
+ - type: cosine_precision@5
355
+ value: 0.06326530612244897
356
+ name: Cosine Precision@5
357
+ - type: cosine_precision@10
358
+ value: 0.04795918367346938
359
+ name: Cosine Precision@10
360
+ - type: cosine_recall@1
361
+ value: 0.08163265306122448
362
+ name: Cosine Recall@1
363
+ - type: cosine_recall@3
364
+ value: 0.25510204081632654
365
+ name: Cosine Recall@3
366
+ - type: cosine_recall@5
367
+ value: 0.3163265306122449
368
+ name: Cosine Recall@5
369
+ - type: cosine_recall@10
370
+ value: 0.47959183673469385
371
+ name: Cosine Recall@10
372
+ - type: cosine_ndcg@10
373
+ value: 0.2610977190273289
374
+ name: Cosine Ndcg@10
375
+ - type: cosine_mrr@10
376
+ value: 0.19399497894395853
377
+ name: Cosine Mrr@10
378
+ - type: cosine_map@100
379
+ value: 0.20591442395637935
380
+ name: Cosine Map@100
381
+ ---
382
+
383
+ # BGE base ArgillaSDK Matryoshka
384
+
385
+ This is a [sentence-transformers](https://www.SBERT.net) model finetuned from [BAAI/bge-base-en-v1.5](https://huggingface.co/BAAI/bge-base-en-v1.5). It maps sentences & paragraphs to a 768-dimensional dense vector space and can be used for semantic textual similarity, semantic search, paraphrase mining, text classification, clustering, and more.
386
+
387
+ ## Model Details
388
+
389
+ ### Model Description
390
+ - **Model Type:** Sentence Transformer
391
+ - **Base model:** [BAAI/bge-base-en-v1.5](https://huggingface.co/BAAI/bge-base-en-v1.5) <!-- at revision a5beb1e3e68b9ab74eb54cfd186867f64f240e1a -->
392
+ - **Maximum Sequence Length:** 512 tokens
393
+ - **Output Dimensionality:** 768 tokens
394
+ - **Similarity Function:** Cosine Similarity
395
+ <!-- - **Training Dataset:** Unknown -->
396
+ - **Language:** en
397
+ - **License:** apache-2.0
398
+
399
+ ### Model Sources
400
+
401
+ - **Documentation:** [Sentence Transformers Documentation](https://sbert.net)
402
+ - **Repository:** [Sentence Transformers on GitHub](https://github.com/UKPLab/sentence-transformers)
403
+ - **Hugging Face:** [Sentence Transformers on Hugging Face](https://huggingface.co/models?library=sentence-transformers)
404
+
405
+ ### Full Model Architecture
406
+
407
+ ```
408
+ SentenceTransformer(
409
+ (0): Transformer({'max_seq_length': 512, 'do_lower_case': True}) with Transformer model: BertModel
410
+ (1): Pooling({'word_embedding_dimension': 768, 'pooling_mode_cls_token': True, 'pooling_mode_mean_tokens': False, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False, 'pooling_mode_weightedmean_tokens': False, 'pooling_mode_lasttoken': False, 'include_prompt': True})
411
+ (2): Normalize()
412
+ )
413
+ ```
414
+
415
+ ## Usage
416
+
417
+ ### Direct Usage (Sentence Transformers)
418
+
419
+ First install the Sentence Transformers library:
420
+
421
+ ```bash
422
+ pip install -U sentence-transformers
423
+ ```
424
+
425
+ Then you can load this model and run inference.
426
+ ```python
427
+ from sentence_transformers import SentenceTransformer
428
+
429
+ # Download from the 🤗 Hub
430
+ model = SentenceTransformer("plaguss/bge-base-argilla-sdk-matryoshka")
431
+ # Run inference
432
+ sentences = [
433
+ 'hide: footer\n\nrg.Argilla\n\nTo interact with the Argilla server from python you can use the Argilla class. The Argilla client is used to create, get, update, and delete all Argilla resources, such as workspaces, users, datasets, and records.\n\nUsage Examples\n\nConnecting to an Argilla server\n\nTo connect to an Argilla server, instantiate the Argilla class and pass the api_url of the server and the api_key to authenticate.\n\n```python\nimport argilla_sdk as rg',
434
+ 'Can the Argilla class be employed to streamline dataset administration tasks in my Argilla server setup?',
435
+ 'The Argilla flowers were blooming beautifully in the garden.',
436
+ ]
437
+ embeddings = model.encode(sentences)
438
+ print(embeddings.shape)
439
+ # [3, 768]
440
+
441
+ # Get the similarity scores for the embeddings
442
+ similarities = model.similarity(embeddings, embeddings)
443
+ print(similarities.shape)
444
+ # [3, 3]
445
+ ```
446
+
447
+ <!--
448
+ ### Direct Usage (Transformers)
449
+
450
+ <details><summary>Click to see the direct usage in Transformers</summary>
451
+
452
+ </details>
453
+ -->
454
+
455
+ <!--
456
+ ### Downstream Usage (Sentence Transformers)
457
+
458
+ You can finetune this model on your own dataset.
459
+
460
+ <details><summary>Click to expand</summary>
461
+
462
+ </details>
463
+ -->
464
+
465
+ <!--
466
+ ### Out-of-Scope Use
467
+
468
+ *List how the model may foreseeably be misused and address what users ought not to do with the model.*
469
+ -->
470
+
471
+ ## Evaluation
472
+
473
+ ### Metrics
474
+
475
+ #### Information Retrieval
476
+ * Dataset: `dim_768`
477
+ * Evaluated with [<code>InformationRetrievalEvaluator</code>](https://sbert.net/docs/package_reference/sentence_transformer/evaluation.html#sentence_transformers.evaluation.InformationRetrievalEvaluator)
478
+
479
+ | Metric | Value |
480
+ |:--------------------|:-----------|
481
+ | cosine_accuracy@1 | 0.1327 |
482
+ | cosine_accuracy@3 | 0.2857 |
483
+ | cosine_accuracy@5 | 0.3878 |
484
+ | cosine_accuracy@10 | 0.5204 |
485
+ | cosine_precision@1 | 0.1327 |
486
+ | cosine_precision@3 | 0.0952 |
487
+ | cosine_precision@5 | 0.0776 |
488
+ | cosine_precision@10 | 0.052 |
489
+ | cosine_recall@1 | 0.1327 |
490
+ | cosine_recall@3 | 0.2857 |
491
+ | cosine_recall@5 | 0.3878 |
492
+ | cosine_recall@10 | 0.5204 |
493
+ | cosine_ndcg@10 | 0.3086 |
494
+ | cosine_mrr@10 | 0.2432 |
495
+ | **cosine_map@100** | **0.2604** |
496
+
497
+ #### Information Retrieval
498
+ * Dataset: `dim_512`
499
+ * Evaluated with [<code>InformationRetrievalEvaluator</code>](https://sbert.net/docs/package_reference/sentence_transformer/evaluation.html#sentence_transformers.evaluation.InformationRetrievalEvaluator)
500
+
501
+ | Metric | Value |
502
+ |:--------------------|:-----------|
503
+ | cosine_accuracy@1 | 0.102 |
504
+ | cosine_accuracy@3 | 0.2755 |
505
+ | cosine_accuracy@5 | 0.3878 |
506
+ | cosine_accuracy@10 | 0.5102 |
507
+ | cosine_precision@1 | 0.102 |
508
+ | cosine_precision@3 | 0.0918 |
509
+ | cosine_precision@5 | 0.0776 |
510
+ | cosine_precision@10 | 0.051 |
511
+ | cosine_recall@1 | 0.102 |
512
+ | cosine_recall@3 | 0.2755 |
513
+ | cosine_recall@5 | 0.3878 |
514
+ | cosine_recall@10 | 0.5102 |
515
+ | cosine_ndcg@10 | 0.2942 |
516
+ | cosine_mrr@10 | 0.2264 |
517
+ | **cosine_map@100** | **0.2426** |
518
+
519
+ #### Information Retrieval
520
+ * Dataset: `dim_256`
521
+ * Evaluated with [<code>InformationRetrievalEvaluator</code>](https://sbert.net/docs/package_reference/sentence_transformer/evaluation.html#sentence_transformers.evaluation.InformationRetrievalEvaluator)
522
+
523
+ | Metric | Value |
524
+ |:--------------------|:-----------|
525
+ | cosine_accuracy@1 | 0.1224 |
526
+ | cosine_accuracy@3 | 0.2755 |
527
+ | cosine_accuracy@5 | 0.3878 |
528
+ | cosine_accuracy@10 | 0.5 |
529
+ | cosine_precision@1 | 0.1224 |
530
+ | cosine_precision@3 | 0.0918 |
531
+ | cosine_precision@5 | 0.0776 |
532
+ | cosine_precision@10 | 0.05 |
533
+ | cosine_recall@1 | 0.1224 |
534
+ | cosine_recall@3 | 0.2755 |
535
+ | cosine_recall@5 | 0.3878 |
536
+ | cosine_recall@10 | 0.5 |
537
+ | cosine_ndcg@10 | 0.2931 |
538
+ | cosine_mrr@10 | 0.2291 |
539
+ | **cosine_map@100** | **0.2445** |
540
+
541
+ #### Information Retrieval
542
+ * Dataset: `dim_128`
543
+ * Evaluated with [<code>InformationRetrievalEvaluator</code>](https://sbert.net/docs/package_reference/sentence_transformer/evaluation.html#sentence_transformers.evaluation.InformationRetrievalEvaluator)
544
+
545
+ | Metric | Value |
546
+ |:--------------------|:-----------|
547
+ | cosine_accuracy@1 | 0.0918 |
548
+ | cosine_accuracy@3 | 0.2551 |
549
+ | cosine_accuracy@5 | 0.3163 |
550
+ | cosine_accuracy@10 | 0.4694 |
551
+ | cosine_precision@1 | 0.0918 |
552
+ | cosine_precision@3 | 0.085 |
553
+ | cosine_precision@5 | 0.0633 |
554
+ | cosine_precision@10 | 0.0469 |
555
+ | cosine_recall@1 | 0.0918 |
556
+ | cosine_recall@3 | 0.2551 |
557
+ | cosine_recall@5 | 0.3163 |
558
+ | cosine_recall@10 | 0.4694 |
559
+ | cosine_ndcg@10 | 0.2629 |
560
+ | cosine_mrr@10 | 0.1992 |
561
+ | **cosine_map@100** | **0.2165** |
562
+
563
+ #### Information Retrieval
564
+ * Dataset: `dim_64`
565
+ * Evaluated with [<code>InformationRetrievalEvaluator</code>](https://sbert.net/docs/package_reference/sentence_transformer/evaluation.html#sentence_transformers.evaluation.InformationRetrievalEvaluator)
566
+
567
+ | Metric | Value |
568
+ |:--------------------|:-----------|
569
+ | cosine_accuracy@1 | 0.0816 |
570
+ | cosine_accuracy@3 | 0.2551 |
571
+ | cosine_accuracy@5 | 0.3163 |
572
+ | cosine_accuracy@10 | 0.4796 |
573
+ | cosine_precision@1 | 0.0816 |
574
+ | cosine_precision@3 | 0.085 |
575
+ | cosine_precision@5 | 0.0633 |
576
+ | cosine_precision@10 | 0.048 |
577
+ | cosine_recall@1 | 0.0816 |
578
+ | cosine_recall@3 | 0.2551 |
579
+ | cosine_recall@5 | 0.3163 |
580
+ | cosine_recall@10 | 0.4796 |
581
+ | cosine_ndcg@10 | 0.2611 |
582
+ | cosine_mrr@10 | 0.194 |
583
+ | **cosine_map@100** | **0.2059** |
584
+
585
+ <!--
586
+ ## Bias, Risks and Limitations
587
+
588
+ *What are the known or foreseeable issues stemming from this model? You could also flag here known failure cases or weaknesses of the model.*
589
+ -->
590
+
591
+ <!--
592
+ ### Recommendations
593
+
594
+ *What are recommendations with respect to the foreseeable issues? For example, filtering explicit content.*
595
+ -->
596
+
597
+ ## Training Details
598
+
599
+ ### Training Dataset
600
+
601
+ #### Unnamed Dataset
602
+
603
+
604
+ * Size: 882 training samples
605
+ * Columns: <code>anchor</code>, <code>positive</code>, and <code>negative</code>
606
+ * Approximate statistics based on the first 1000 samples:
607
+ | | anchor | positive | negative |
608
+ |:--------|:-----------------------------------------------------------------------------------|:----------------------------------------------------------------------------------|:-----------------------------------------------------------------------------------|
609
+ | type | string | string | string |
610
+ | details | <ul><li>min: 6 tokens</li><li>mean: 90.85 tokens</li><li>max: 198 tokens</li></ul> | <ul><li>min: 8 tokens</li><li>mean: 25.44 tokens</li><li>max: 91 tokens</li></ul> | <ul><li>min: 10 tokens</li><li>mean: 22.33 tokens</li><li>max: 61 tokens</li></ul> |
611
+ * Samples:
612
+ | anchor | positive | negative |
613
+ |:------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|:------------------------------------------------------------------------------------------------------------------------------------------------------------------------|:--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
614
+ | <code>``<br>!!! note "Update the metadata"<br> ThemetadataofRecordobject is a python dictionary. So to update the metadata of a record, you can iterate over the records and update the metadata by key or usingmetadata.update`. After that, you should update the records in the dataset.</code> | <code>Can I use Argilla to annotate the metadata of Record objects and update them in the dataset?</code> | <code>The beautiful scenery of the Argilla valley in Italy is perfect for a relaxing summer vacation.</code> |
615
+ | <code>git checkout [branch-name]<br>git rebase [default-branch]<br>```<br><br>If everything is right, we need to commit and push the changes to your fork. For that, run the following commands:<br><br>```sh<br><br>Add the changes to the staging area<br><br>git add filename<br><br>Commit the changes by writing a proper message<br><br>git commit -m "commit-message"<br><br>Push the changes to your fork</code> | <code>Can I commit Argilla's annotation changes and push them to a forked project repository after rebasing from the default branch?</code> | <code>The beautiful beach in Argilla, Spain, is a popular spot for surfers to catch a wave and enjoy the sunny weather.</code> |
616
+ | <code>Accessing Record Attributes<br><br>The Record object has suggestions, responses, metadata, and vectors attributes that can be accessed directly whilst iterating over records in a dataset.<br><br>python<br>for record in dataset.records(<br> with_suggestions=True,<br> with_responses=True,<br> with_metadata=True,<br> with_vectors=True<br> ):<br> print(record.suggestions)<br> print(record.responses)<br> print(record.metadata)<br> print(record.vectors)</code> | <code>Is it possible to retrieve the suggestions, responses, metadata, and vectors of a Record object at the same time when iterating over a dataset in Argilla?</code> | <code>The new hiking trail offered breathtaking suggestions for scenic views, responses to environmental concerns, and metadata about the surrounding ecosystem, but it lacked vectors for navigation.</code> |
617
+ * Loss: [<code>MatryoshkaLoss</code>](https://sbert.net/docs/package_reference/sentence_transformer/losses.html#matryoshkaloss) with these parameters:
618
+ ```json
619
+ {
620
+ "loss": "TripletLoss",
621
+ "matryoshka_dims": [
622
+ 768,
623
+ 512,
624
+ 256,
625
+ 128,
626
+ 64
627
+ ],
628
+ "matryoshka_weights": [
629
+ 1,
630
+ 1,
631
+ 1,
632
+ 1,
633
+ 1
634
+ ],
635
+ "n_dims_per_step": -1
636
+ }
637
+ ```
638
+
639
+ ### Training Hyperparameters
640
+ #### Non-Default Hyperparameters
641
+
642
+ - `eval_strategy`: epoch
643
+ - `per_device_eval_batch_size`: 4
644
+ - `gradient_accumulation_steps`: 4
645
+ - `learning_rate`: 2e-05
646
+ - `lr_scheduler_type`: cosine
647
+ - `warmup_ratio`: 0.1
648
+ - `load_best_model_at_end`: True
649
+
650
+ #### All Hyperparameters
651
+ <details><summary>Click to expand</summary>
652
+
653
+ - `overwrite_output_dir`: False
654
+ - `do_predict`: False
655
+ - `eval_strategy`: epoch
656
+ - `prediction_loss_only`: True
657
+ - `per_device_train_batch_size`: 8
658
+ - `per_device_eval_batch_size`: 4
659
+ - `per_gpu_train_batch_size`: None
660
+ - `per_gpu_eval_batch_size`: None
661
+ - `gradient_accumulation_steps`: 4
662
+ - `eval_accumulation_steps`: None
663
+ - `learning_rate`: 2e-05
664
+ - `weight_decay`: 0.0
665
+ - `adam_beta1`: 0.9
666
+ - `adam_beta2`: 0.999
667
+ - `adam_epsilon`: 1e-08
668
+ - `max_grad_norm`: 1.0
669
+ - `num_train_epochs`: 3
670
+ - `max_steps`: -1
671
+ - `lr_scheduler_type`: cosine
672
+ - `lr_scheduler_kwargs`: {}
673
+ - `warmup_ratio`: 0.1
674
+ - `warmup_steps`: 0
675
+ - `log_level`: passive
676
+ - `log_level_replica`: warning
677
+ - `log_on_each_node`: True
678
+ - `logging_nan_inf_filter`: True
679
+ - `save_safetensors`: True
680
+ - `save_on_each_node`: False
681
+ - `save_only_model`: False
682
+ - `restore_callback_states_from_checkpoint`: False
683
+ - `no_cuda`: False
684
+ - `use_cpu`: False
685
+ - `use_mps_device`: False
686
+ - `seed`: 42
687
+ - `data_seed`: None
688
+ - `jit_mode_eval`: False
689
+ - `use_ipex`: False
690
+ - `bf16`: False
691
+ - `fp16`: False
692
+ - `fp16_opt_level`: O1
693
+ - `half_precision_backend`: auto
694
+ - `bf16_full_eval`: False
695
+ - `fp16_full_eval`: False
696
+ - `tf32`: None
697
+ - `local_rank`: 0
698
+ - `ddp_backend`: None
699
+ - `tpu_num_cores`: None
700
+ - `tpu_metrics_debug`: False
701
+ - `debug`: []
702
+ - `dataloader_drop_last`: False
703
+ - `dataloader_num_workers`: 0
704
+ - `dataloader_prefetch_factor`: None
705
+ - `past_index`: -1
706
+ - `disable_tqdm`: False
707
+ - `remove_unused_columns`: True
708
+ - `label_names`: None
709
+ - `load_best_model_at_end`: True
710
+ - `ignore_data_skip`: False
711
+ - `fsdp`: []
712
+ - `fsdp_min_num_params`: 0
713
+ - `fsdp_config`: {'min_num_params': 0, 'xla': False, 'xla_fsdp_v2': False, 'xla_fsdp_grad_ckpt': False}
714
+ - `fsdp_transformer_layer_cls_to_wrap`: None
715
+ - `accelerator_config`: {'split_batches': False, 'dispatch_batches': None, 'even_batches': True, 'use_seedable_sampler': True, 'non_blocking': False, 'gradient_accumulation_kwargs': None}
716
+ - `deepspeed`: None
717
+ - `label_smoothing_factor`: 0.0
718
+ - `optim`: adamw_torch
719
+ - `optim_args`: None
720
+ - `adafactor`: False
721
+ - `group_by_length`: False
722
+ - `length_column_name`: length
723
+ - `ddp_find_unused_parameters`: None
724
+ - `ddp_bucket_cap_mb`: None
725
+ - `ddp_broadcast_buffers`: False
726
+ - `dataloader_pin_memory`: True
727
+ - `dataloader_persistent_workers`: False
728
+ - `skip_memory_metrics`: True
729
+ - `use_legacy_prediction_loop`: False
730
+ - `push_to_hub`: False
731
+ - `resume_from_checkpoint`: None
732
+ - `hub_model_id`: None
733
+ - `hub_strategy`: every_save
734
+ - `hub_private_repo`: False
735
+ - `hub_always_push`: False
736
+ - `gradient_checkpointing`: False
737
+ - `gradient_checkpointing_kwargs`: None
738
+ - `include_inputs_for_metrics`: False
739
+ - `eval_do_concat_batches`: True
740
+ - `fp16_backend`: auto
741
+ - `push_to_hub_model_id`: None
742
+ - `push_to_hub_organization`: None
743
+ - `mp_parameters`:
744
+ - `auto_find_batch_size`: False
745
+ - `full_determinism`: False
746
+ - `torchdynamo`: None
747
+ - `ray_scope`: last
748
+ - `ddp_timeout`: 1800
749
+ - `torch_compile`: False
750
+ - `torch_compile_backend`: None
751
+ - `torch_compile_mode`: None
752
+ - `dispatch_batches`: None
753
+ - `split_batches`: None
754
+ - `include_tokens_per_second`: False
755
+ - `include_num_input_tokens_seen`: False
756
+ - `neftune_noise_alpha`: None
757
+ - `optim_target_modules`: None
758
+ - `batch_eval_metrics`: False
759
+ - `batch_sampler`: batch_sampler
760
+ - `multi_dataset_batch_sampler`: proportional
761
+
762
+ </details>
763
+
764
+ ### Training Logs
765
+ | Epoch | Step | Training Loss | dim_128_cosine_map@100 | dim_256_cosine_map@100 | dim_512_cosine_map@100 | dim_64_cosine_map@100 | dim_768_cosine_map@100 |
766
+ |:---------:|:------:|:-------------:|:----------------------:|:----------------------:|:----------------------:|:---------------------:|:----------------------:|
767
+ | 0.1802 | 5 | 21.701 | - | - | - | - | - |
768
+ | 0.3604 | 10 | 21.7449 | - | - | - | - | - |
769
+ | 0.5405 | 15 | 21.7453 | - | - | - | - | - |
770
+ | 0.7207 | 20 | 21.7168 | - | - | - | - | - |
771
+ | 0.9009 | 25 | 21.6945 | - | - | - | - | - |
772
+ | **0.973** | **27** | **-** | **0.2165** | **0.2445** | **0.2426** | **0.2059** | **0.2604** |
773
+ | 1.0811 | 30 | 21.7248 | - | - | - | - | - |
774
+ | 1.2613 | 35 | 21.7322 | - | - | - | - | - |
775
+ | 1.4414 | 40 | 21.7367 | - | - | - | - | - |
776
+ | 1.6216 | 45 | 21.6821 | - | - | - | - | - |
777
+ | 1.8018 | 50 | 21.8392 | - | - | - | - | - |
778
+ | 1.9820 | 55 | 21.6441 | 0.2165 | 0.2445 | 0.2426 | 0.2059 | 0.2604 |
779
+ | 2.1622 | 60 | 21.8154 | - | - | - | - | - |
780
+ | 2.3423 | 65 | 21.7098 | - | - | - | - | - |
781
+ | 2.5225 | 70 | 21.6447 | - | - | - | - | - |
782
+ | 2.7027 | 75 | 21.6033 | - | - | - | - | - |
783
+ | 2.8829 | 80 | 21.8271 | - | - | - | - | - |
784
+ | 2.9189 | 81 | - | 0.2165 | 0.2445 | 0.2426 | 0.2059 | 0.2604 |
785
+
786
+ * The bold row denotes the saved checkpoint.
787
+
788
+ ### Framework Versions
789
+ - Python: 3.11.8
790
+ - Sentence Transformers: 3.0.1
791
+ - Transformers: 4.41.2
792
+ - PyTorch: 2.1.2
793
+ - Accelerate: 0.31.0
794
+ - Datasets: 2.19.2
795
+ - Tokenizers: 0.19.1
796
+
797
+ ## Citation
798
+
799
+ ### BibTeX
800
+
801
+ #### Sentence Transformers
802
+ ```bibtex
803
+ @inproceedings{reimers-2019-sentence-bert,
804
+ title = "Sentence-BERT: Sentence Embeddings using Siamese BERT-Networks",
805
+ author = "Reimers, Nils and Gurevych, Iryna",
806
+ booktitle = "Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing",
807
+ month = "11",
808
+ year = "2019",
809
+ publisher = "Association for Computational Linguistics",
810
+ url = "https://arxiv.org/abs/1908.10084",
811
+ }
812
+ ```
813
+
814
+ #### MatryoshkaLoss
815
+ ```bibtex
816
+ @misc{kusupati2024matryoshka,
817
+ title={Matryoshka Representation Learning},
818
+ author={Aditya Kusupati and Gantavya Bhatt and Aniket Rege and Matthew Wallingford and Aditya Sinha and Vivek Ramanujan and William Howard-Snyder and Kaifeng Chen and Sham Kakade and Prateek Jain and Ali Farhadi},
819
+ year={2024},
820
+ eprint={2205.13147},
821
+ archivePrefix={arXiv},
822
+ primaryClass={cs.LG}
823
+ }
824
+ ```
825
+
826
+ #### TripletLoss
827
+ ```bibtex
828
+ @misc{hermans2017defense,
829
+ title={In Defense of the Triplet Loss for Person Re-Identification},
830
+ author={Alexander Hermans and Lucas Beyer and Bastian Leibe},
831
+ year={2017},
832
+ eprint={1703.07737},
833
+ archivePrefix={arXiv},
834
+ primaryClass={cs.CV}
835
+ }
836
+ ```
837
+
838
+ <!--
839
+ ## Glossary
840
+
841
+ *Clearly define terms in order to be accessible across audiences.*
842
+ -->
843
+
844
+ <!--
845
+ ## Model Card Authors
846
+
847
+ *Lists the people who create the model card, providing recognition and accountability for the detailed work that goes into its construction.*
848
+ -->
849
+
850
+ <!--
851
+ ## Model Card Contact
852
+
853
+ *Provides a way for people who have updates to the Model Card, suggestions, or questions, to contact the Model Card authors.*
854
+ -->
config.json ADDED
@@ -0,0 +1,32 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "_name_or_path": "BAAI/bge-base-en-v1.5",
3
+ "architectures": [
4
+ "BertModel"
5
+ ],
6
+ "attention_probs_dropout_prob": 0.1,
7
+ "classifier_dropout": null,
8
+ "gradient_checkpointing": false,
9
+ "hidden_act": "gelu",
10
+ "hidden_dropout_prob": 0.1,
11
+ "hidden_size": 768,
12
+ "id2label": {
13
+ "0": "LABEL_0"
14
+ },
15
+ "initializer_range": 0.02,
16
+ "intermediate_size": 3072,
17
+ "label2id": {
18
+ "LABEL_0": 0
19
+ },
20
+ "layer_norm_eps": 1e-12,
21
+ "max_position_embeddings": 512,
22
+ "model_type": "bert",
23
+ "num_attention_heads": 12,
24
+ "num_hidden_layers": 12,
25
+ "pad_token_id": 0,
26
+ "position_embedding_type": "absolute",
27
+ "torch_dtype": "float32",
28
+ "transformers_version": "4.41.2",
29
+ "type_vocab_size": 2,
30
+ "use_cache": true,
31
+ "vocab_size": 30522
32
+ }
config_sentence_transformers.json ADDED
@@ -0,0 +1,10 @@
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "__version__": {
3
+ "sentence_transformers": "3.0.1",
4
+ "transformers": "4.41.2",
5
+ "pytorch": "2.1.2"
6
+ },
7
+ "prompts": {},
8
+ "default_prompt_name": null,
9
+ "similarity_fn_name": null
10
+ }
model.safetensors ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:0d4db737f56aaea90796b5a8d219de0eee958295a575c611f6b417ad340151da
3
+ size 437951328
modules.json ADDED
@@ -0,0 +1,20 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ [
2
+ {
3
+ "idx": 0,
4
+ "name": "0",
5
+ "path": "",
6
+ "type": "sentence_transformers.models.Transformer"
7
+ },
8
+ {
9
+ "idx": 1,
10
+ "name": "1",
11
+ "path": "1_Pooling",
12
+ "type": "sentence_transformers.models.Pooling"
13
+ },
14
+ {
15
+ "idx": 2,
16
+ "name": "2",
17
+ "path": "2_Normalize",
18
+ "type": "sentence_transformers.models.Normalize"
19
+ }
20
+ ]
sentence_bert_config.json ADDED
@@ -0,0 +1,4 @@
 
 
 
 
 
1
+ {
2
+ "max_seq_length": 512,
3
+ "do_lower_case": true
4
+ }
special_tokens_map.json ADDED
@@ -0,0 +1,37 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "cls_token": {
3
+ "content": "[CLS]",
4
+ "lstrip": false,
5
+ "normalized": false,
6
+ "rstrip": false,
7
+ "single_word": false
8
+ },
9
+ "mask_token": {
10
+ "content": "[MASK]",
11
+ "lstrip": false,
12
+ "normalized": false,
13
+ "rstrip": false,
14
+ "single_word": false
15
+ },
16
+ "pad_token": {
17
+ "content": "[PAD]",
18
+ "lstrip": false,
19
+ "normalized": false,
20
+ "rstrip": false,
21
+ "single_word": false
22
+ },
23
+ "sep_token": {
24
+ "content": "[SEP]",
25
+ "lstrip": false,
26
+ "normalized": false,
27
+ "rstrip": false,
28
+ "single_word": false
29
+ },
30
+ "unk_token": {
31
+ "content": "[UNK]",
32
+ "lstrip": false,
33
+ "normalized": false,
34
+ "rstrip": false,
35
+ "single_word": false
36
+ }
37
+ }
tokenizer.json ADDED
The diff for this file is too large to render. See raw diff
 
tokenizer_config.json ADDED
@@ -0,0 +1,57 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "added_tokens_decoder": {
3
+ "0": {
4
+ "content": "[PAD]",
5
+ "lstrip": false,
6
+ "normalized": false,
7
+ "rstrip": false,
8
+ "single_word": false,
9
+ "special": true
10
+ },
11
+ "100": {
12
+ "content": "[UNK]",
13
+ "lstrip": false,
14
+ "normalized": false,
15
+ "rstrip": false,
16
+ "single_word": false,
17
+ "special": true
18
+ },
19
+ "101": {
20
+ "content": "[CLS]",
21
+ "lstrip": false,
22
+ "normalized": false,
23
+ "rstrip": false,
24
+ "single_word": false,
25
+ "special": true
26
+ },
27
+ "102": {
28
+ "content": "[SEP]",
29
+ "lstrip": false,
30
+ "normalized": false,
31
+ "rstrip": false,
32
+ "single_word": false,
33
+ "special": true
34
+ },
35
+ "103": {
36
+ "content": "[MASK]",
37
+ "lstrip": false,
38
+ "normalized": false,
39
+ "rstrip": false,
40
+ "single_word": false,
41
+ "special": true
42
+ }
43
+ },
44
+ "clean_up_tokenization_spaces": true,
45
+ "cls_token": "[CLS]",
46
+ "do_basic_tokenize": true,
47
+ "do_lower_case": true,
48
+ "mask_token": "[MASK]",
49
+ "model_max_length": 512,
50
+ "never_split": null,
51
+ "pad_token": "[PAD]",
52
+ "sep_token": "[SEP]",
53
+ "strip_accents": null,
54
+ "tokenize_chinese_chars": true,
55
+ "tokenizer_class": "BertTokenizer",
56
+ "unk_token": "[UNK]"
57
+ }
vocab.txt ADDED
The diff for this file is too large to render. See raw diff