icefall-asr-zipformer-wenetspeech-20230615
/
logs
/modified_beam_search
/log-decode-epoch-9-avg-1-modified_beam_search-beam-size-4-blank-penalty-2.0-use-averaged-model-2023-06-15-13-09-27
2023-06-15 13:09:27,557 INFO [decode.py:639] Decoding started | |
2023-06-15 13:09:27,557 INFO [decode.py:645] Device: cuda:0 | |
2023-06-15 13:09:29,227 INFO [lexicon.py:168] Loading pre-compiled data/lang_char/Linv.pt | |
2023-06-15 13:09:29,465 INFO [decode.py:656] {'best_train_loss': inf, 'best_valid_loss': inf, 'best_train_epoch': -1, 'best_valid_epoch': -1, 'batch_idx_train': 0, 'log_interval': 50, 'reset_interval': 200, 'valid_interval': 3000, 'feature_dim': 80, 'subsampling_factor': 4, 'warm_step': 2000, 'env_info': {'k2-version': '1.24.1', 'k2-build-type': 'Release', 'k2-with-cuda': True, 'k2-git-sha1': 'c51a0b9684442a88ee37f3ce0af686a04b66855b', 'k2-git-date': 'Mon May 1 21:38:03 2023', 'lhotse-version': '1.14.0.dev+git.0f812851.dirty', 'torch-version': '1.10.0+cu102', 'torch-cuda-available': True, 'torch-cuda-version': '10.2', 'python-version': '3.8', 'icefall-git-branch': 'zipformer_wenetspeech', 'icefall-git-sha1': '28d3f6d-dirty', 'icefall-git-date': 'Thu Jun 15 10:30:34 2023', 'icefall-path': '/star-kw/kangwei/code/icefall_wenetspeech', 'k2-path': '/ceph-hw/kangwei/code/k2_release/k2/k2/python/k2/__init__.py', 'lhotse-path': '/ceph-hw/kangwei/dev_tools/anaconda3/envs/rnnt2/lib/python3.8/site-packages/lhotse-1.14.0.dev0+git.0f812851.dirty-py3.8.egg/lhotse/__init__.py', 'hostname': 'de-74279-k2-train-10-0221105906-5745685d6b-t8zzx', 'IP address': '10.177.57.19'}, 'epoch': 9, 'iter': 0, 'avg': 1, 'use_averaged_model': True, 'exp_dir': PosixPath('zipformer/exp_L_context_2'), 'lang_dir': PosixPath('data/lang_char'), 'decoding_method': 'modified_beam_search', 'beam_size': 4, 'beam': 20.0, 'ngram_lm_scale': 0.01, 'max_contexts': 8, 'max_states': 64, 'context_size': 2, 'max_sym_per_frame': 1, 'num_paths': 200, 'nbest_scale': 0.5, 'blank_penalty': 2.0, 'num_encoder_layers': '2,2,3,4,3,2', 'downsampling_factor': '1,2,4,8,4,2', 'feedforward_dim': '512,768,1024,1536,1024,768', 'num_heads': '4,4,4,8,4,4', 'encoder_dim': '192,256,384,512,384,256', 'query_head_dim': '32', 'value_head_dim': '12', 'pos_head_dim': '4', 'pos_dim': 48, 'encoder_unmasked_dim': '192,192,256,256,256,192', 'cnn_module_kernel': '31,31,15,15,15,31', 'decoder_dim': 512, 'joiner_dim': 512, 'causal': False, 'chunk_size': '16,32,64,-1', 'left_context_frames': '64,128,256,-1', 'manifest_dir': PosixPath('data/fbank'), 'max_duration': 1000, 'bucketing_sampler': True, 'num_buckets': 30, 'concatenate_cuts': False, 'duration_factor': 1.0, 'gap': 1.0, 'on_the_fly_feats': False, 'shuffle': True, 'return_cuts': True, 'num_workers': 2, 'enable_spec_aug': True, 'spec_aug_time_warp_factor': 80, 'enable_musan': True, 'training_subset': 'L', 'res_dir': PosixPath('zipformer/exp_L_context_2/modified_beam_search'), 'suffix': 'epoch-9-avg-1-modified_beam_search-beam-size-4-blank-penalty-2.0-use-averaged-model', 'blank_id': 0, 'vocab_size': 5537} | |
2023-06-15 13:09:29,465 INFO [decode.py:658] About to create model | |
2023-06-15 13:09:30,113 INFO [decode.py:725] Calculating the averaged model over epoch range from 8 (excluded) to 9 | |
2023-06-15 13:09:41,130 INFO [decode.py:756] Number of model parameters: 75879898 | |
2023-06-15 13:09:41,130 INFO [asr_datamodule.py:398] About to get dev cuts | |
2023-06-15 13:09:41,146 INFO [asr_datamodule.py:336] About to create dev dataset | |
2023-06-15 13:09:41,698 INFO [asr_datamodule.py:354] About to create dev dataloader | |
2023-06-15 13:09:41,699 INFO [asr_datamodule.py:403] About to get TEST_NET cuts | |
2023-06-15 13:09:41,709 INFO [asr_datamodule.py:367] About to create test dataset | |
2023-06-15 13:09:41,760 WARNING [decode.py:765] Exclude cut with ID TEST_NET_Y0000000004_0ub4ZzdHzBc_S00023 from decoding, num_frames : 8. | |
2023-06-15 13:09:42,275 INFO [asr_datamodule.py:408] About to get TEST_MEETING cuts | |
2023-06-15 13:09:42,277 INFO [asr_datamodule.py:367] About to create test dataset | |
2023-06-15 13:09:52,288 INFO [decode.py:536] batch 0/?, cuts processed until now is 130 | |
2023-06-15 13:12:28,315 INFO [decode.py:536] batch 20/?, cuts processed until now is 3192 | |
2023-06-15 13:15:04,576 INFO [decode.py:536] batch 40/?, cuts processed until now is 6421 | |
2023-06-15 13:17:33,455 INFO [decode.py:536] batch 60/?, cuts processed until now is 10176 | |
2023-06-15 13:17:33,731 INFO [zipformer.py:1728] name=None, attn_weights_entropy = tensor([1.8087, 2.6136, 2.2464, 3.2312], device='cuda:0') | |
2023-06-15 13:18:17,709 INFO [zipformer.py:1728] name=None, attn_weights_entropy = tensor([1.9856, 2.6912, 2.1527, 2.7710, 2.6848, 1.9719, 2.9482, 2.6265], | |
device='cuda:0') | |
2023-06-15 13:19:31,870 INFO [decode.py:536] batch 80/?, cuts processed until now is 13727 | |
2023-06-15 13:19:39,249 INFO [decode.py:552] The transcripts are stored in zipformer/exp_L_context_2/modified_beam_search/recogs-DEV-beam_size_4_blank_penalty_2.0-epoch-9-avg-1-modified_beam_search-beam-size-4-blank-penalty-2.0-use-averaged-model.txt | |
2023-06-15 13:19:39,624 INFO [utils.py:562] [DEV-beam_size_4_blank_penalty_2.0] %WER 7.50% [24795 / 330498, 2624 ins, 10605 del, 11566 sub ] | |
2023-06-15 13:19:40,642 INFO [decode.py:565] Wrote detailed error stats to zipformer/exp_L_context_2/modified_beam_search/errs-DEV-beam_size_4_blank_penalty_2.0-epoch-9-avg-1-modified_beam_search-beam-size-4-blank-penalty-2.0-use-averaged-model.txt | |
2023-06-15 13:19:40,647 INFO [decode.py:581] | |
For DEV, WER of different settings are: | |
beam_size_4_blank_penalty_2.0 7.5 best for DEV | |
2023-06-15 13:19:40,899 WARNING [decode.py:765] Exclude cut with ID TEST_NET_Y0000000004_0ub4ZzdHzBc_S00023 from decoding, num_frames : 8. | |
2023-06-15 13:19:50,107 INFO [decode.py:536] batch 0/?, cuts processed until now is 146 | |
2023-06-15 13:22:09,436 INFO [decode.py:536] batch 20/?, cuts processed until now is 4116 | |
2023-06-15 13:24:35,138 INFO [decode.py:536] batch 40/?, cuts processed until now is 8601 | |
2023-06-15 13:26:55,366 INFO [decode.py:536] batch 60/?, cuts processed until now is 14082 | |
2023-06-15 13:26:55,691 INFO [zipformer.py:1728] name=None, attn_weights_entropy = tensor([2.8898, 3.6484, 3.3869, 4.7282], device='cuda:0') | |
2023-06-15 13:29:17,771 INFO [decode.py:536] batch 80/?, cuts processed until now is 18750 | |
2023-06-15 13:31:05,058 INFO [decode.py:536] batch 100/?, cuts processed until now is 24487 | |
2023-06-15 13:31:23,010 INFO [decode.py:552] The transcripts are stored in zipformer/exp_L_context_2/modified_beam_search/recogs-TEST_NET-beam_size_4_blank_penalty_2.0-epoch-9-avg-1-modified_beam_search-beam-size-4-blank-penalty-2.0-use-averaged-model.txt | |
2023-06-15 13:31:23,523 INFO [utils.py:562] [TEST_NET-beam_size_4_blank_penalty_2.0] %WER 7.71% [32038 / 415746, 3471 ins, 8161 del, 20406 sub ] | |
2023-06-15 13:31:24,857 INFO [decode.py:565] Wrote detailed error stats to zipformer/exp_L_context_2/modified_beam_search/errs-TEST_NET-beam_size_4_blank_penalty_2.0-epoch-9-avg-1-modified_beam_search-beam-size-4-blank-penalty-2.0-use-averaged-model.txt | |
2023-06-15 13:31:24,860 INFO [decode.py:581] | |
For TEST_NET, WER of different settings are: | |
beam_size_4_blank_penalty_2.0 7.71 best for TEST_NET | |
2023-06-15 13:31:34,272 INFO [decode.py:536] batch 0/?, cuts processed until now is 93 | |
2023-06-15 13:34:07,575 INFO [decode.py:536] batch 20/?, cuts processed until now is 2345 | |
2023-06-15 13:35:30,700 INFO [zipformer.py:1728] name=None, attn_weights_entropy = tensor([4.5995, 4.1181, 4.4951, 3.3808], device='cuda:0') | |
2023-06-15 13:36:39,703 INFO [decode.py:536] batch 40/?, cuts processed until now is 4929 | |
2023-06-15 13:38:28,709 INFO [zipformer.py:1728] name=None, attn_weights_entropy = tensor([2.1314, 3.3682, 2.4949, 4.0491], device='cuda:0') | |
2023-06-15 13:38:47,390 INFO [decode.py:536] batch 60/?, cuts processed until now is 7955 | |
2023-06-15 13:39:17,120 INFO [decode.py:552] The transcripts are stored in zipformer/exp_L_context_2/modified_beam_search/recogs-TEST_MEETING-beam_size_4_blank_penalty_2.0-epoch-9-avg-1-modified_beam_search-beam-size-4-blank-penalty-2.0-use-averaged-model.txt | |
2023-06-15 13:39:17,372 INFO [utils.py:562] [TEST_MEETING-beam_size_4_blank_penalty_2.0] %WER 12.77% [28142 / 220385, 2870 ins, 13541 del, 11731 sub ] | |
2023-06-15 13:39:18,059 INFO [decode.py:565] Wrote detailed error stats to zipformer/exp_L_context_2/modified_beam_search/errs-TEST_MEETING-beam_size_4_blank_penalty_2.0-epoch-9-avg-1-modified_beam_search-beam-size-4-blank-penalty-2.0-use-averaged-model.txt | |
2023-06-15 13:39:18,062 INFO [decode.py:581] | |
For TEST_MEETING, WER of different settings are: | |
beam_size_4_blank_penalty_2.0 12.77 best for TEST_MEETING | |
2023-06-15 13:39:18,062 INFO [decode.py:801] Done! | |