Initial commit
Browse files- README.md +37 -0
- a2c-PandaReachDense-v3.zip +3 -0
- a2c-PandaReachDense-v3/_stable_baselines3_version +1 -0
- a2c-PandaReachDense-v3/data +112 -0
- a2c-PandaReachDense-v3/policy.optimizer.pth +3 -0
- a2c-PandaReachDense-v3/policy.pth +3 -0
- a2c-PandaReachDense-v3/pytorch_variables.pth +3 -0
- a2c-PandaReachDense-v3/system_info.txt +8 -0
- config.json +1 -0
- replay.mp4 +0 -0
- results.json +1 -0
- vec_normalize.pkl +3 -0
README.md
ADDED
@@ -0,0 +1,37 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
---
|
2 |
+
library_name: stable-baselines3
|
3 |
+
tags:
|
4 |
+
- PandaReachDense-v3
|
5 |
+
- deep-reinforcement-learning
|
6 |
+
- reinforcement-learning
|
7 |
+
- stable-baselines3
|
8 |
+
model-index:
|
9 |
+
- name: A2C
|
10 |
+
results:
|
11 |
+
- task:
|
12 |
+
type: reinforcement-learning
|
13 |
+
name: reinforcement-learning
|
14 |
+
dataset:
|
15 |
+
name: PandaReachDense-v3
|
16 |
+
type: PandaReachDense-v3
|
17 |
+
metrics:
|
18 |
+
- type: mean_reward
|
19 |
+
value: -0.14 +/- 0.07
|
20 |
+
name: mean_reward
|
21 |
+
verified: false
|
22 |
+
---
|
23 |
+
|
24 |
+
# **A2C** Agent playing **PandaReachDense-v3**
|
25 |
+
This is a trained model of a **A2C** agent playing **PandaReachDense-v3**
|
26 |
+
using the [stable-baselines3 library](https://github.com/DLR-RM/stable-baselines3).
|
27 |
+
|
28 |
+
## Usage (with Stable-baselines3)
|
29 |
+
TODO: Add your code
|
30 |
+
|
31 |
+
|
32 |
+
```python
|
33 |
+
from stable_baselines3 import ...
|
34 |
+
from huggingface_sb3 import load_from_hub
|
35 |
+
|
36 |
+
...
|
37 |
+
```
|
a2c-PandaReachDense-v3.zip
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:9421dfb7751fba92495d84c320eed9ee3d129e1c6fea9103a5c52d2dc06ce5e7
|
3 |
+
size 144013
|
a2c-PandaReachDense-v3/_stable_baselines3_version
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
2.3.2
|
a2c-PandaReachDense-v3/data
ADDED
@@ -0,0 +1,112 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"policy_class": {
|
3 |
+
":type:": "<class 'abc.ABCMeta'>",
|
4 |
+
":serialized:": "gAWVRQAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMG011bHRpSW5wdXRBY3RvckNyaXRpY1BvbGljeZSTlC4=",
|
5 |
+
"__module__": "stable_baselines3.common.policies",
|
6 |
+
"__doc__": "\n MultiInputActorClass policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space (Tuple)\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Uses the CombinedExtractor\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ",
|
7 |
+
"__init__": "<function MultiInputActorCriticPolicy.__init__ at 0x132623520>",
|
8 |
+
"__abstractmethods__": "frozenset()",
|
9 |
+
"_abc_impl": "<_abc._abc_data object at 0x132616bc0>"
|
10 |
+
},
|
11 |
+
"verbose": 1,
|
12 |
+
"policy_kwargs": {
|
13 |
+
":type:": "<class 'dict'>",
|
14 |
+
":serialized:": "gAWVgQAAAAAAAAB9lCiMD29wdGltaXplcl9jbGFzc5SME3RvcmNoLm9wdGltLnJtc3Byb3CUjAdSTVNwcm9wlJOUjBBvcHRpbWl6ZXJfa3dhcmdzlH2UKIwFYWxwaGGURz/vrhR64UeujANlcHOURz7k+LWI42jxjAx3ZWlnaHRfZGVjYXmUSwB1dS4=",
|
15 |
+
"optimizer_class": "<class 'torch.optim.rmsprop.RMSprop'>",
|
16 |
+
"optimizer_kwargs": {
|
17 |
+
"alpha": 0.99,
|
18 |
+
"eps": 1e-05,
|
19 |
+
"weight_decay": 0
|
20 |
+
}
|
21 |
+
},
|
22 |
+
"num_timesteps": 1000000,
|
23 |
+
"_total_timesteps": 1000000,
|
24 |
+
"_num_timesteps_at_start": 0,
|
25 |
+
"seed": null,
|
26 |
+
"action_noise": null,
|
27 |
+
"start_time": 1729453985077280000,
|
28 |
+
"learning_rate": 0.0007,
|
29 |
+
"tensorboard_log": "./tensorboard_logs/",
|
30 |
+
"_last_obs": {
|
31 |
+
":type:": "<class 'collections.OrderedDict'>",
|
32 |
+
":serialized:": "gAWV/AwAAAAAAACMC2NvbGxlY3Rpb25zlIwLT3JkZXJlZERpY3SUk5QpUpQojA1hY2hpZXZlZF9nb2FslIwTbnVtcHkuX2NvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYAAwAAAAAAAOL8YL1OS/s+8dhHvkfqrT6VyPu6DuDxPuEVF785jAe/J6++PkfqrT6VyPu6DuDxPkfqrT6VyPu6DuDxPnwvir21vQS/xNBIvnvccb9dHsi/3yuvv3wvir21vQS/xNBIvukFeD8ZI7q/rM1DPy0Zxr+7ouO+FIAtP+oZx7+F7vU+yDspP0fqrT6VyPu6DuDxPkfqrT6VyPu6DuDxPtgeJT+/sLi/dFgkwHjzFL/TPfo+s4y7Pir6nT9oyL0/doawP91bPb/pBxLAd3r6vuEVF785jAe/J6++PnjzFL/TPfo+s4y7PkfqrT6VyPu6DuDxPnwvir21vQS/xNBIvnjzFL/TPfo+s4y7PkfqrT6VyPu6DuDxPkfqrT6VyPu6DuDxPrPsAb9XdQi/OH+6PrrKMD58cbu/NF+mv0fqrT6VyPu6DuDxPkfqrT6VyPu6DuDxPkfqrT6VyPu6DuDxPnwvir21vQS/xNBIvkfqrT6VyPu6DuDxPuL8YL1OS/s+8dhHvs4QND+O/fG+Hro5P+L8YL1OS/s+8dhHvnwvir21vQS/xNBIvuL8YL1OS/s+8dhHvkfqrT6VyPu6DuDxPoYnLj8xUum/RKciwAczzT+q37s/Bkhbv+L8YL1OS/s+8dhHvuL8YL1OS/s+8dhHvnwvir21vQS/xNBIvkfqrT6VyPu6DuDxPlmrjr65Bcc/VdeaP5lSST41iv4+9Zgyvq9OzT8nAYQ/q4lYv0fqrT6VyPu6DuDxPu1nHb/ORNe+klG4PgDpeL/a5Xo/5Tqvv+L8YL1OS/s+8dhHvkfqrT6VyPu6DuDxPu526T/kvA3AnksFwEfqrT6VyPu6DuDxPgPdnr1yqtG9eyM0vjrQer9LlXA/P3Guv0fqrT6VyPu6DuDxPuJ8cr/vWsU/NzOvv0fqrT6VyPu6DuDxPkNxwL8+dcc/xq00P0fqrT6VyPu6DuDxPpUIrD9Iqb4/LAJdP8jAEcAiD9E/8/K2P9fREcAtOyPAo7TJP30SNT8s0AE/9qQ5P5SMBW51bXB5lIwFZHR5cGWUk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGJLQEsDhpSMAUOUdJRSlIwMZGVzaXJlZF9nb2FslGgHKJYAAwAAAAAAADmuGr+AeZg/Bjepv8ilZD/8Lca/Q5QZvvpdm7/PtHy/k1UJPzzYsr6yEdC/JaCmvzaLhb8/G/y+4oLGvwmKhL9qPqC+OdE8v3M8pr5sPaq/zLOFv5i4fL8e+li/UZ0rvidiVD9O4My/sla5PsMwbL8MHrK9Re6MP2D1p7/TnUA+8ZPFP5dAnr83D5g/M8k+P7YmyL9TTuW+wj5av8pmHj/0xDy/1UDEv+1EFL8nQjY/rAe0PzX+uD+pQbM/J4u8P04zwD6tMdK/eVYBP7g/sr/QZ0+/QmKwP2qfSL53pl4/FYxmP4gGsb+Mi6M/B2tQv1d5hD4gXmi/p4Iyv7k+br+phZ8/6VamP63qvb/SZum9f77LvpGhcr+73BU/gGA1PjDkpL+WNcy/JB2dPsJ6Ez/SaLa/1UP3vjilHT3XxpM/TbUUPs2+ir82KDi+luxpP3DdeT64a6m/eZ4Uv/DrlL/yCNu+Gdkfvp/CNj/LoZm9ls6Yvz/skr9Fw20+ozqBvvgqkz8WUEy/r77CP0EK171EFY4+NB4Kv6Bnrb83bXy/R0EVvoJ/+r7jZwU+B0ZGvybP2r4QeA8/nq9WPnMwNT9BUG2/VvzAv5ootD/cDco/VQfDvgN3r7/PsME/Ua2wv+rdvz5a/4g+C6E1v1Ngm73vnXu/0IV/v+MVej9xzBg/PLMrPy/Nvj1n7Gk/U7zTP08+GD9nNq0/Yesrv7zzlT9GWIs+6BhHv9QOsz6Bgyq+OKQTv1CTuL+ViIK+iqPEPyWPFD7l7wQ/4PO1v1nzLrxB7fE+PcKXvz5WN7/eYW2/B98yP1CXyj/9GbO/yhCavyzWfb9/z1M/nicIvy+4mr9wB8W8LIxVvuxi2L5Ftn0+mHGWvxs8Pj74FX0/M9tUv0fBYb7H6UA/qnnCv841dr+G7Ym+F0SKP6Mms79Z7Io/eApeP9kSvL/r1Zs/0yQNP7JN1T96dJQ/Zm1ZPxRJwL+Gphw/l8SiP7cDW7+8UZG/qcfTP6uJJz+bhJU/xMV2P5RoDktASwOGlGgSdJRSlIwLb2JzZXJ2YXRpb26UaAcolgAGAAAAAAAA4vxgvU5L+z7x2Ee+5Lrov5AV0T+xt7S/R+qtPpXI+7oO4PE+G/ruPgg4VLs/1cY+4RUXvzmMB78nr74+KqZNv6Sk0b/4c2Y/R+qtPpXI+7oO4PE+G/ruPgg4VLs/1cY+R+qtPpXI+7oO4PE+G/ruPgg4VLs/1cY+fC+KvbW9BL/E0Ei+LHDhv9751r/fMLG/e9xxv10eyL/fK6+/yKQ7v3Zbeb+/rHO/fC+KvbW9BL/E0Ei+LHDhv9751r/fMLG/6QV4Pxkjur+szUM/cfsePyEodb/jLIQ/LRnGv7ui474UgC0/oY05v8akgr7gc8Y/6hnHv4Xu9T7IOyk/4IFOv2VlQL8qt7o/R+qtPpXI+7oO4PE+G/ruPgg4VLs/1cY+R+qtPpXI+7oO4PE+G/ruPgg4VLs/1cY+2B4lP7+wuL90WCTA7LEqPQ+fXz/AFte/ePMUv9M9+j6zjLs+6WI+vzs60j8mKWM/KvqdP2jIvT92hrA/T5GKP5v3XD9uKr8/3Vs9v+kHEsB3evq+VxPEP1jGLL+sm7O+4RUXvzmMB78nr74+KqZNv6Sk0b/4c2Y/ePMUv9M9+j6zjLs+6WI+vzs60j8mKWM/R+qtPpXI+7oO4PE+G/ruPgg4VLs/1cY+fC+KvbW9BL/E0Ei+LHDhv9751r/fMLG/ePMUv9M9+j6zjLs+6WI+vzs60j8mKWM/R+qtPpXI+7oO4PE+G/ruPgg4VLs/1cY+R+qtPpXI+7oO4PE+G/ruPgg4VLs/1cY+s+wBv1d1CL84f7o+YKN5v4E+0r/rtFU/usowPnxxu780X6a/zg7SP47MQb+XPby/R+qtPpXI+7oO4PE+G/ruPgg4VLs/1cY+R+qtPpXI+7oO4PE+G/ruPgg4VLs/1cY+R+qtPpXI+7oO4PE+G/ruPgg4VLs/1cY+fC+KvbW9BL/E0Ei+LHDhv9751r/fMLG/R+qtPpXI+7oO4PE+G/ruPgg4VLs/1cY+4vxgvU5L+z7x2Ee+5Lrov5AV0T+xt7S/zhA0P4798b4eujk/6PXPP8IRyr/YOJI/4vxgvU5L+z7x2Ee+5Lrov5AV0T+xt7S/fC+KvbW9BL/E0Ei+LHDhv9751r/fMLG/4vxgvU5L+z7x2Ee+5Lrov5AV0T+xt7S/R+qtPpXI+7oO4PE+G/ruPgg4VLs/1cY+hicuPzFS6b9EpyLA7P3jvJFaAb5ON9S/BzPNP6rfuz8GSFu/A1jKParYQj/zbNK/4vxgvU5L+z7x2Ee+5Lrov5AV0T+xt7S/4vxgvU5L+z7x2Ee+5Lrov5AV0T+xt7S/fC+KvbW9BL/E0Ei+LHDhv9751r/fMLG/R+qtPpXI+7oO4PE+G/ruPgg4VLs/1cY+WauOvrkFxz9V15o/mi0JPUOgjz9xtew/mVJJPjWK/j71mDK+PzTvvt380z+4YKy/r07NPycBhD+riVi/E6BjPpcy5btuNMy/R+qtPpXI+7oO4PE+G/ruPgg4VLs/1cY+7Wcdv85E176SUbg+mDlav/6WF78bJF0/AOl4v9rlej/lOq+/2rB7v42Mn70Wqne/4vxgvU5L+z7x2Ee+5Lrov5AV0T+xt7S/R+qtPpXI+7oO4PE+G/ruPgg4VLs/1cY+7nbpP+S8DcCeSwXABCmTvGHXYL/e19q/R+qtPpXI+7oO4PE+G/ruPgg4VLs/1cY+A92evXKq0b17IzS+rGjRvyImYb2hTq2/OtB6v0uVcD8/ca6/5Zd+v/jS3b00hnS/R+qtPpXI+7oO4PE+G/ruPgg4VLs/1cY+4nxyv+9axT83M6+/geBZv6B1hD/UmHO/R+qtPpXI+7oO4PE+G/ruPgg4VLs/1cY+Q3HAvz51xz/GrTQ/BABev26XiT9f3dA/R+qtPpXI+7oO4PE+G/ruPgg4VLs/1cY+lQisP0ipvj8sAl0/JJxHP4AhWj8fNSc+yMARwCIP0T/z8rY/uA9jPRNs3z/Gids/19ERwC07I8CjtMk/mIADvua3lL/BMNU/fRI1PyzQAT/2pDk/+uLKP3RHyD+9Ko8/lGgOS0BLBoaUaBJ0lFKUdS4=",
|
33 |
+
"achieved_goal": "[[-5.4928668e-02 4.9080890e-01 -1.9516350e-01]\n [ 3.3967802e-01 -1.9209558e-03 4.7241253e-01]\n [-5.9017760e-01 -5.2948338e-01 3.7243006e-01]\n [ 3.3967802e-01 -1.9209558e-03 4.7241253e-01]\n [ 3.3967802e-01 -1.9209558e-03 4.7241253e-01]\n [-6.7473382e-02 -5.1851970e-01 -1.9610888e-01]\n [-9.4477051e-01 -1.5634266e+00 -1.3685263e+00]\n [-6.7473382e-02 -5.1851970e-01 -1.9610888e-01]\n [ 9.6884018e-01 -1.4541961e+00 7.6485705e-01]\n [-1.5476433e+00 -4.4460091e-01 6.7773557e-01]\n [-1.5554783e+00 4.8033538e-01 6.6106844e-01]\n [ 3.3967802e-01 -1.9209558e-03 4.7241253e-01]\n [ 3.3967802e-01 -1.9209558e-03 4.7241253e-01]\n [ 6.4500189e-01 -1.4428939e+00 -2.5678988e+00]\n [-5.8184004e-01 4.8875293e-01 3.6630782e-01]\n [ 1.2341969e+00 1.4826784e+00 1.3791034e+00]\n [-7.3968297e-01 -2.2817328e+00 -4.8921558e-01]\n [-5.9017760e-01 -5.2948338e-01 3.7243006e-01]\n [-5.8184004e-01 4.8875293e-01 3.6630782e-01]\n [ 3.3967802e-01 -1.9209558e-03 4.7241253e-01]\n [-6.7473382e-02 -5.1851970e-01 -1.9610888e-01]\n [-5.8184004e-01 4.8875293e-01 3.6630782e-01]\n [ 3.3967802e-01 -1.9209558e-03 4.7241253e-01]\n [ 3.3967802e-01 -1.9209558e-03 4.7241253e-01]\n [-5.0751799e-01 -5.3304046e-01 3.6425185e-01]\n [ 1.7264834e-01 -1.4644008e+00 -1.2997804e+00]\n [ 3.3967802e-01 -1.9209558e-03 4.7241253e-01]\n [ 3.3967802e-01 -1.9209558e-03 4.7241253e-01]\n [ 3.3967802e-01 -1.9209558e-03 4.7241253e-01]\n [-6.7473382e-02 -5.1851970e-01 -1.9610888e-01]\n [ 3.3967802e-01 -1.9209558e-03 4.7241253e-01]\n [-5.4928668e-02 4.9080890e-01 -1.9516350e-01]\n [ 7.0338142e-01 -4.7263759e-01 7.2549617e-01]\n [-5.4928668e-02 4.9080890e-01 -1.9516350e-01]\n [-6.7473382e-02 -5.1851970e-01 -1.9610888e-01]\n [-5.4928668e-02 4.9080890e-01 -1.9516350e-01]\n [ 3.3967802e-01 -1.9209558e-03 4.7241253e-01]\n [ 6.8029058e-01 -1.8228208e+00 -2.5414591e+00]\n [ 1.6031197e+00 1.4677632e+00 -8.5656774e-01]\n [-5.4928668e-02 4.9080890e-01 -1.9516350e-01]\n [-5.4928668e-02 4.9080890e-01 -1.9516350e-01]\n [-6.7473382e-02 -5.1851970e-01 -1.9610888e-01]\n [ 3.3967802e-01 -1.9209558e-03 4.7241253e-01]\n [-2.7865103e-01 1.5548621e+00 1.2096964e+00]\n [ 1.9660415e-01 4.9714819e-01 -1.7441161e-01]\n [ 1.6039637e+00 1.0312852e+00 -8.4585065e-01]\n [ 3.3967802e-01 -1.9209558e-03 4.7241253e-01]\n [-6.1486703e-01 -4.2044681e-01 3.5999733e-01]\n [-9.7230530e-01 9.8006976e-01 -1.3689848e+00]\n [-5.4928668e-02 4.9080890e-01 -1.9516350e-01]\n [ 3.3967802e-01 -1.9209558e-03 4.7241253e-01]\n [ 1.8239419e+00 -2.2146540e+00 -2.0827403e+00]\n [ 3.3967802e-01 -1.9209558e-03 4.7241253e-01]\n [-7.7569984e-02 -1.0237588e-01 -1.7591660e-01]\n [-9.7973979e-01 9.3977803e-01 -1.3628310e+00]\n [ 3.3967802e-01 -1.9209558e-03 4.7241253e-01]\n [-9.4721806e-01 1.5418376e+00 -1.3687505e+00]\n [ 3.3967802e-01 -1.9209558e-03 4.7241253e-01]\n [-1.5034565e+00 1.5582654e+00 7.0577657e-01]\n [ 3.3967802e-01 -1.9209558e-03 4.7241253e-01]\n [ 1.3440119e+00 1.4895411e+00 8.6331439e-01]\n [-2.2773914e+00 1.6332743e+00 1.4292892e+00]\n [-2.2784326e+00 -2.5504868e+00 1.5758251e+00]\n [ 7.0731336e-01 5.0708270e-01 7.2517335e-01]]",
|
34 |
+
"desired_goal": "[[-0.6042209 1.1912079 -1.3219917 ]\n [ 0.8931546 -1.5482783 -0.14997964]\n [-1.2138054 -0.9871339 0.536462 ]\n [-0.349306 -1.62554 -1.3017622 ]\n [-1.0433109 -0.49239537 -1.5508692 ]\n [-1.0354625 -0.31297618 -0.7375675 ]\n [-0.32467994 -1.3299994 -1.0445495 ]\n [-0.9871917 -0.8475665 -0.1675923 ]\n [ 0.8296227 -1.6005952 0.36198956]\n [-0.92261904 -0.08697137 1.1010214 ]\n [-1.3121758 0.18810205 1.5435773 ]\n [-1.2363461 1.1879643 0.74525756]\n [-1.5636814 -0.4478632 -0.8525201 ]\n [ 0.61875594 -0.73738027 -1.5332285 ]\n [-0.5791767 0.7119469 1.4064841 ]\n [ 1.4452578 1.4004413 1.4729966 ]\n [ 0.37539142 -1.642141 0.5052257 ]\n [-1.3925695 -0.8101778 1.3779986 ]\n [-0.19592062 0.86972755 0.900575 ]\n [-1.3830118 1.2776961 -0.8141331 ]\n [ 0.25873825 -0.90768623 -0.6973061 ]\n [-0.9306446 1.2462665 1.2995273 ]\n [-1.4837242 -0.11396565 -0.39793774]\n [-0.9477778 0.5853993 0.17712593]\n [-1.2882137 -1.5953853 0.30686295]\n [ 0.5760919 -1.4250739 -0.4829394 ]\n [ 0.03848764 1.1545056 0.14522286]\n [-1.0839478 -0.1798409 0.91376626]\n [ 0.24400878 -1.3235998 -0.5805431 ]\n [-1.1634502 -0.42780262 -0.1561016 ]\n [ 0.7139072 -0.07501563 -1.1938045 ]\n [-1.1478347 0.2321902 -0.2524005 ]\n [ 1.1497488 -0.798097 1.5214442 ]\n [-0.10500003 0.277506 -0.53952336]\n [-1.3547249 -0.9860415 -0.14575683]\n [-0.48925406 0.13027911 -0.77450603]\n [-0.42736167 0.56042576 0.2096543 ]\n [ 0.7077705 -0.9270058 -1.5077007 ]\n [ 1.4074891 1.578548 -0.3809153 ]\n [-1.3708194 1.5132083 -1.3802892 ]\n [ 0.37473994 0.26757318 -0.7094886 ]\n [-0.07586732 -0.9828786 -0.99813557]\n [ 0.97689646 0.5968695 0.67070365]\n [ 0.09316479 0.91376346 1.6541847 ]\n [ 0.59470075 1.3532227 -0.67156035]\n [ 1.1715007 0.27215785 -0.7777238 ]\n [ 0.3497225 -0.16651727 -0.5767245 ]\n [-1.4419956 -0.2549483 1.5362408 ]\n [ 0.1450773 0.5192855 -1.421505 ]\n [-0.01067814 0.47251323 -1.1856152 ]\n [-0.7161597 -0.9272746 0.6987156 ]\n [ 1.5827427 -1.3992306 -1.2036374 ]\n [-0.99154925 0.8273849 -0.5318545 ]\n [-1.2087458 -0.0240514 -0.20854253]\n [-0.4226297 0.24776562 -1.1753416 ]\n [ 0.18577616 0.98861647 -0.8314697 ]\n [-0.22046386 0.75356716 -1.5193379 ]\n [-0.9617585 -0.26939029 1.0802029 ]\n [-1.3996166 1.0853378 0.86734724]\n [-1.4693252 1.2174658 0.55134314]\n [ 1.6664336 1.1598046 0.84932554]\n [-1.5022302 0.61191595 1.2716244 ]\n [-0.85552543 -1.1353068 1.6545306 ]\n [ 0.6544444 1.1681093 0.96395516]]",
|
35 |
+
"observation": "[[-5.4928668e-02 4.9080890e-01 -1.9516350e-01 -1.8182034e+00\n 1.6334705e+00 -1.4118558e+00]\n [ 3.3967802e-01 -1.9209558e-03 4.7241253e-01 4.6675190e-01\n -3.2382030e-03 3.8834569e-01]\n [-5.9017760e-01 -5.2948338e-01 3.7243006e-01 -8.0331671e-01\n -1.6378369e+00 9.0020704e-01]\n [ 3.3967802e-01 -1.9209558e-03 4.7241253e-01 4.6675190e-01\n -3.2382030e-03 3.8834569e-01]\n [ 3.3967802e-01 -1.9209558e-03 4.7241253e-01 4.6675190e-01\n -3.2382030e-03 3.8834569e-01]\n [-6.7473382e-02 -5.1851970e-01 -1.9610888e-01 -1.7612357e+00\n -1.6795003e+00 -1.3843039e+00]\n [-9.4477051e-01 -1.5634266e+00 -1.3685263e+00 -7.3298311e-01\n -9.7405183e-01 -9.5185465e-01]\n [-6.7473382e-02 -5.1851970e-01 -1.9610888e-01 -1.7612357e+00\n -1.6795003e+00 -1.3843039e+00]\n [ 9.6884018e-01 -1.4541961e+00 7.6485705e-01 6.2102419e-01\n -9.5764357e-01 1.0326198e+00]\n [-1.5476433e+00 -4.4460091e-01 6.7773557e-01 -7.2481734e-01\n -2.5516337e-01 1.5504112e+00]\n [-1.5554783e+00 4.8033538e-01 6.6106844e-01 -8.0666924e-01\n -7.5154716e-01 1.4587147e+00]\n [ 3.3967802e-01 -1.9209558e-03 4.7241253e-01 4.6675190e-01\n -3.2382030e-03 3.8834569e-01]\n [ 3.3967802e-01 -1.9209558e-03 4.7241253e-01 4.6675190e-01\n -3.2382030e-03 3.8834569e-01]\n [ 6.4500189e-01 -1.4428939e+00 -2.5678988e+00 4.1673586e-02\n 8.7352079e-01 -1.6803818e+00]\n [-5.8184004e-01 4.8875293e-01 3.6630782e-01 -7.4369675e-01\n 1.6424021e+00 8.8734663e-01]\n [ 1.2341969e+00 1.4826784e+00 1.3791034e+00 1.0825595e+00\n 8.6315316e-01 1.4934824e+00]\n [-7.3968297e-01 -2.2817328e+00 -4.8921558e-01 1.5318402e+00\n -6.7490149e-01 -3.5079706e-01]\n [-5.9017760e-01 -5.2948338e-01 3.7243006e-01 -8.0331671e-01\n -1.6378369e+00 9.0020704e-01]\n [-5.8184004e-01 4.8875293e-01 3.6630782e-01 -7.4369675e-01\n 1.6424021e+00 8.8734663e-01]\n [ 3.3967802e-01 -1.9209558e-03 4.7241253e-01 4.6675190e-01\n -3.2382030e-03 3.8834569e-01]\n [-6.7473382e-02 -5.1851970e-01 -1.9610888e-01 -1.7612357e+00\n -1.6795003e+00 -1.3843039e+00]\n [-5.8184004e-01 4.8875293e-01 3.6630782e-01 -7.4369675e-01\n 1.6424021e+00 8.8734663e-01]\n [ 3.3967802e-01 -1.9209558e-03 4.7241253e-01 4.6675190e-01\n -3.2382030e-03 3.8834569e-01]\n [ 3.3967802e-01 -1.9209558e-03 4.7241253e-01 4.6675190e-01\n -3.2382030e-03 3.8834569e-01]\n [-5.0751799e-01 -5.3304046e-01 3.6425185e-01 -9.7514915e-01\n -1.6425325e+00 8.3479184e-01]\n [ 1.7264834e-01 -1.4644008e+00 -1.2997804e+00 1.6410768e+00\n -7.5702751e-01 -1.4706296e+00]\n [ 3.3967802e-01 -1.9209558e-03 4.7241253e-01 4.6675190e-01\n -3.2382030e-03 3.8834569e-01]\n [ 3.3967802e-01 -1.9209558e-03 4.7241253e-01 4.6675190e-01\n -3.2382030e-03 3.8834569e-01]\n [ 3.3967802e-01 -1.9209558e-03 4.7241253e-01 4.6675190e-01\n -3.2382030e-03 3.8834569e-01]\n [-6.7473382e-02 -5.1851970e-01 -1.9610888e-01 -1.7612357e+00\n -1.6795003e+00 -1.3843039e+00]\n [ 3.3967802e-01 -1.9209558e-03 4.7241253e-01 4.6675190e-01\n -3.2382030e-03 3.8834569e-01]\n [-5.4928668e-02 4.9080890e-01 -1.9516350e-01 -1.8182034e+00\n 1.6334705e+00 -1.4118558e+00]\n [ 7.0338142e-01 -4.7263759e-01 7.2549617e-01 1.6246920e+00\n -1.5786669e+00 1.1423597e+00]\n [-5.4928668e-02 4.9080890e-01 -1.9516350e-01 -1.8182034e+00\n 1.6334705e+00 -1.4118558e+00]\n [-6.7473382e-02 -5.1851970e-01 -1.9610888e-01 -1.7612357e+00\n -1.6795003e+00 -1.3843039e+00]\n [-5.4928668e-02 4.9080890e-01 -1.9516350e-01 -1.8182034e+00\n 1.6334705e+00 -1.4118558e+00]\n [ 3.3967802e-01 -1.9209558e-03 4.7241253e-01 4.6675190e-01\n -3.2382030e-03 3.8834569e-01]\n [ 6.8029058e-01 -1.8228208e+00 -2.5414591e+00 -2.7831040e-02\n -1.2632205e-01 -1.6579378e+00]\n [ 1.6031197e+00 1.4677632e+00 -8.5656774e-01 9.8800682e-02\n 7.6111853e-01 -1.6439499e+00]\n [-5.4928668e-02 4.9080890e-01 -1.9516350e-01 -1.8182034e+00\n 1.6334705e+00 -1.4118558e+00]\n [-5.4928668e-02 4.9080890e-01 -1.9516350e-01 -1.8182034e+00\n 1.6334705e+00 -1.4118558e+00]\n [-6.7473382e-02 -5.1851970e-01 -1.9610888e-01 -1.7612357e+00\n -1.6795003e+00 -1.3843039e+00]\n [ 3.3967802e-01 -1.9209558e-03 4.7241253e-01 4.6675190e-01\n -3.2382030e-03 3.8834569e-01]\n [-2.7865103e-01 1.5548621e+00 1.2096964e+00 3.3490755e-02\n 1.1220783e+00 1.8492872e+00]\n [ 1.9660415e-01 4.9714819e-01 -1.7441161e-01 -4.6719548e-01\n 1.6561543e+00 -1.3467016e+00]\n [ 1.6039637e+00 1.0312852e+00 -8.4585065e-01 2.2229032e-01\n -6.9945562e-03 -1.5953500e+00]\n [ 3.3967802e-01 -1.9209558e-03 4.7241253e-01 4.6675190e-01\n -3.2382030e-03 3.8834569e-01]\n [-6.1486703e-01 -4.2044681e-01 3.5999733e-01 -8.5244131e-01\n -5.9214771e-01 8.6383218e-01]\n [-9.7230530e-01 9.8006976e-01 -1.3689848e+00 -9.8316729e-01\n -7.7904798e-02 -9.6743906e-01]\n [-5.4928668e-02 4.9080890e-01 -1.9516350e-01 -1.8182034e+00\n 1.6334705e+00 -1.4118558e+00]\n [ 3.3967802e-01 -1.9209558e-03 4.7241253e-01 4.6675190e-01\n -3.2382030e-03 3.8834569e-01]\n [ 1.8239419e+00 -2.2146540e+00 -2.0827403e+00 -1.7963894e-02\n -8.7828642e-01 -1.7097127e+00]\n [ 3.3967802e-01 -1.9209558e-03 4.7241253e-01 4.6675190e-01\n -3.2382030e-03 3.8834569e-01]\n [-7.7569984e-02 -1.0237588e-01 -1.7591660e-01 -1.6360068e+00\n -5.4968007e-02 -1.3539621e+00]\n [-9.7973979e-01 9.3977803e-01 -1.3628310e+00 -9.9450523e-01\n -1.0831255e-01 -9.5517278e-01]\n [ 3.3967802e-01 -1.9209558e-03 4.7241253e-01 4.6675190e-01\n -3.2382030e-03 3.8834569e-01]\n [-9.4721806e-01 1.5418376e+00 -1.3687505e+00 -8.5108191e-01\n 1.0348396e+00 -9.5155072e-01]\n [ 3.3967802e-01 -1.9209558e-03 4.7241253e-01 4.6675190e-01\n -3.2382030e-03 3.8834569e-01]\n [-1.5034565e+00 1.5582654e+00 7.0577657e-01 -8.6718774e-01\n 1.0749338e+00 1.6317557e+00]\n [ 3.3967802e-01 -1.9209558e-03 4.7241253e-01 4.6675190e-01\n -3.2382030e-03 3.8834569e-01]\n [ 1.3440119e+00 1.4895411e+00 8.6331439e-01 7.7972627e-01\n 8.5207367e-01 1.6328858e-01]\n [-2.2773914e+00 1.6332743e+00 1.4292892e+00 5.5434912e-02\n 1.7454857e+00 1.7151420e+00]\n [-2.2784326e+00 -2.5504868e+00 1.5758251e+00 -1.2842023e-01\n -1.1618621e+00 1.6655504e+00]\n [ 7.0731336e-01 5.0708270e-01 7.2517335e-01 1.5850518e+00\n 1.5646806e+00 1.1184918e+00]]"
|
36 |
+
},
|
37 |
+
"_last_episode_starts": {
|
38 |
+
":type:": "<class 'numpy.ndarray'>",
|
39 |
+
":serialized:": "gAWVtAAAAAAAAACME251bXB5Ll9jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWQAAAAAAAAAAAAQABAQAAAAAAAAEBAAAAAAAAAQAAAQEAAAEBAQABAAAAAAABAAAAAAABAAAAAQAAAAEAAQAAAQABAAEAAAAAlIwFbnVtcHmUjAVkdHlwZZSTlIwCYjGUiYiHlFKUKEsDjAF8lE5OTkr/////Sv////9LAHSUYktAhZSMAUOUdJRSlC4="
|
40 |
+
},
|
41 |
+
"_last_original_obs": {
|
42 |
+
":type:": "<class 'collections.OrderedDict'>",
|
43 |
+
":serialized:": "gAWV/AwAAAAAAACMC2NvbGxlY3Rpb25zlIwLT3JkZXJlZERpY3SUk5QpUpQojA1hY2hpZXZlZF9nb2FslIwTbnVtcHkuX2NvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYAAwAAAAAAAOpyHT0BahqsQyNKPupyHT0BahqsQyNKPupyHT0BahqsQyNKPupyHT0BahqsQyNKPupyHT0BahqsQyNKPupyHT0BahqsQyNKPupyHT0BahqsQyNKPupyHT0BahqsQyNKPupyHT0BahqsQyNKPupyHT0BahqsQyNKPupyHT0BahqsQyNKPupyHT0BahqsQyNKPupyHT0BahqsQyNKPupyHT0BahqsQyNKPupyHT0BahqsQyNKPupyHT0BahqsQyNKPupyHT0BahqsQyNKPupyHT0BahqsQyNKPupyHT0BahqsQyNKPupyHT0BahqsQyNKPupyHT0BahqsQyNKPupyHT0BahqsQyNKPupyHT0BahqsQyNKPupyHT0BahqsQyNKPupyHT0BahqsQyNKPupyHT0BahqsQyNKPupyHT0BahqsQyNKPupyHT0BahqsQyNKPupyHT0BahqsQyNKPupyHT0BahqsQyNKPupyHT0BahqsQyNKPupyHT0BahqsQyNKPupyHT0BahqsQyNKPupyHT0BahqsQyNKPupyHT0BahqsQyNKPupyHT0BahqsQyNKPupyHT0BahqsQyNKPupyHT0BahqsQyNKPupyHT0BahqsQyNKPupyHT0BahqsQyNKPupyHT0BahqsQyNKPupyHT0BahqsQyNKPupyHT0BahqsQyNKPupyHT0BahqsQyNKPupyHT0BahqsQyNKPupyHT0BahqsQyNKPupyHT0BahqsQyNKPupyHT0BahqsQyNKPupyHT0BahqsQyNKPupyHT0BahqsQyNKPupyHT0BahqsQyNKPupyHT0BahqsQyNKPupyHT0BahqsQyNKPupyHT0BahqsQyNKPupyHT0BahqsQyNKPupyHT0BahqsQyNKPupyHT0BahqsQyNKPupyHT0BahqsQyNKPupyHT0BahqsQyNKPupyHT0BahqsQyNKPupyHT0BahqsQyNKPupyHT0BahqsQyNKPupyHT0BahqsQyNKPupyHT0BahqsQyNKPpSMBW51bXB5lIwFZHR5cGWUk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGJLQEsDhpSMAUOUdJRSlIwMZGVzaXJlZF9nb2FslGgHKJYAAwAAAAAAAE0e1rxdMR29p//GPXDf1b25OYu9nlyZPv26AT7mtGG9hYJVPsQSD75sKOU9+VOEPhlKc7uNCQY+LpNuPrNNij2PCxo91PENPqrZGbxkiEI94BuGPv4uqz1goAM+6CLiPRx/vj3xgie82oSpPed9nLztFdg9edsiPg7HYD2Tnci8pA8KPLLDGD4hSpm9fusAPp+j272Cls29zv+JPdkqED2aIt49zJoOPU+VAz4HSte9C31RPksiGL68a4G9/VaaPfl9Yj3YTki921+CPjXOvb2bsQO+Y2w3PRSliz2AweK9PHqePUdoCr4Mt/k8kNI6Pih+0D17evi8/on2PYeFnj2kgoI9epaJPnRHoz2Q85E9onc0Pvm62D0LhAq+5I9xPmM92LyD9ZA9Bom1Peg4Fz5Pxha8eZRdPiU7zTxPxOa9Fi1lPiYzvj2m/kA9QWw8PuDOtr1QT6i8D7oJPvTW571iVXs93vIIPgv8pL2RrHo9jq5MPv+z7710Sbq9dKTZPQKmBb5hwwQ+LQN6PhDGtj0SDM09OlFtPr/kxb0K5Z29AHo+PTCTtD2BxH49Y7XJPT3VBD3LrOi97SI6PQ5jKDyth6E8ZYxSPnX04z0bctc9aChEPiQUIzye9ea9n1pvPXBNBL7iI7C8JZWNPn7sEb1eLRk+/1KAPmM2vj2WEo296MUDPmIQij0EfxQ+gf9qPl83ET6gQxW+CbIxPrZp8z2ZrQ+9oYcLPmKECj6yweo77tedPN+DEz7EQmK97DIqPjQijr1I6gw9Y6aOPngazT0jcwy9hnlHPhnm6LyX3w2+L1yFPqDuUj08wrk9uKfWPd8vCD63dxk+CIWgPQY18LzZbFS9sKo+Pv7RWD3AV08606wtPhCsm73+LBK7yXYHPnfW8b2Rr0A94TciPpbk1jvcZLs9TSl7PiUVFr5UOA0+SXqGPmfT0j2+/cI9kQo3Ppavxr2ha8k80bk8PunfpTxwQQM+eVpAPaT9ijxYyxI+nVqUPrOBI70ml/49/5wDPpRoDktASwOGlGgSdJRSlIwLb2JzZXJ2YXRpb26UaAcolgAGAAAAAAAA6nIdPQFqGqxDI0o+AAAAAAAAAIAAAAAA6nIdPQFqGqxDI0o+AAAAAAAAAIAAAAAA6nIdPQFqGqxDI0o+AAAAAAAAAIAAAAAA6nIdPQFqGqxDI0o+AAAAAAAAAIAAAAAA6nIdPQFqGqxDI0o+AAAAAAAAAIAAAAAA6nIdPQFqGqxDI0o+AAAAAAAAAIAAAAAA6nIdPQFqGqxDI0o+AAAAAAAAAIAAAAAA6nIdPQFqGqxDI0o+AAAAAAAAAIAAAAAA6nIdPQFqGqxDI0o+AAAAAAAAAIAAAAAA6nIdPQFqGqxDI0o+AAAAAAAAAIAAAAAA6nIdPQFqGqxDI0o+AAAAAAAAAIAAAAAA6nIdPQFqGqxDI0o+AAAAAAAAAIAAAAAA6nIdPQFqGqxDI0o+AAAAAAAAAIAAAAAA6nIdPQFqGqxDI0o+AAAAAAAAAIAAAAAA6nIdPQFqGqxDI0o+AAAAAAAAAIAAAAAA6nIdPQFqGqxDI0o+AAAAAAAAAIAAAAAA6nIdPQFqGqxDI0o+AAAAAAAAAIAAAAAA6nIdPQFqGqxDI0o+AAAAAAAAAIAAAAAA6nIdPQFqGqxDI0o+AAAAAAAAAIAAAAAA6nIdPQFqGqxDI0o+AAAAAAAAAIAAAAAA6nIdPQFqGqxDI0o+AAAAAAAAAIAAAAAA6nIdPQFqGqxDI0o+AAAAAAAAAIAAAAAA6nIdPQFqGqxDI0o+AAAAAAAAAIAAAAAA6nIdPQFqGqxDI0o+AAAAAAAAAIAAAAAA6nIdPQFqGqxDI0o+AAAAAAAAAIAAAAAA6nIdPQFqGqxDI0o+AAAAAAAAAIAAAAAA6nIdPQFqGqxDI0o+AAAAAAAAAIAAAAAA6nIdPQFqGqxDI0o+AAAAAAAAAIAAAAAA6nIdPQFqGqxDI0o+AAAAAAAAAIAAAAAA6nIdPQFqGqxDI0o+AAAAAAAAAIAAAAAA6nIdPQFqGqxDI0o+AAAAAAAAAIAAAAAA6nIdPQFqGqxDI0o+AAAAAAAAAIAAAAAA6nIdPQFqGqxDI0o+AAAAAAAAAIAAAAAA6nIdPQFqGqxDI0o+AAAAAAAAAIAAAAAA6nIdPQFqGqxDI0o+AAAAAAAAAIAAAAAA6nIdPQFqGqxDI0o+AAAAAAAAAIAAAAAA6nIdPQFqGqxDI0o+AAAAAAAAAIAAAAAA6nIdPQFqGqxDI0o+AAAAAAAAAIAAAAAA6nIdPQFqGqxDI0o+AAAAAAAAAIAAAAAA6nIdPQFqGqxDI0o+AAAAAAAAAIAAAAAA6nIdPQFqGqxDI0o+AAAAAAAAAIAAAAAA6nIdPQFqGqxDI0o+AAAAAAAAAIAAAAAA6nIdPQFqGqxDI0o+AAAAAAAAAIAAAAAA6nIdPQFqGqxDI0o+AAAAAAAAAIAAAAAA6nIdPQFqGqxDI0o+AAAAAAAAAIAAAAAA6nIdPQFqGqxDI0o+AAAAAAAAAIAAAAAA6nIdPQFqGqxDI0o+AAAAAAAAAIAAAAAA6nIdPQFqGqxDI0o+AAAAAAAAAIAAAAAA6nIdPQFqGqxDI0o+AAAAAAAAAIAAAAAA6nIdPQFqGqxDI0o+AAAAAAAAAIAAAAAA6nIdPQFqGqxDI0o+AAAAAAAAAIAAAAAA6nIdPQFqGqxDI0o+AAAAAAAAAIAAAAAA6nIdPQFqGqxDI0o+AAAAAAAAAIAAAAAA6nIdPQFqGqxDI0o+AAAAAAAAAIAAAAAA6nIdPQFqGqxDI0o+AAAAAAAAAIAAAAAA6nIdPQFqGqxDI0o+AAAAAAAAAIAAAAAA6nIdPQFqGqxDI0o+AAAAAAAAAIAAAAAA6nIdPQFqGqxDI0o+AAAAAAAAAIAAAAAA6nIdPQFqGqxDI0o+AAAAAAAAAIAAAAAA6nIdPQFqGqxDI0o+AAAAAAAAAIAAAAAA6nIdPQFqGqxDI0o+AAAAAAAAAIAAAAAA6nIdPQFqGqxDI0o+AAAAAAAAAIAAAAAA6nIdPQFqGqxDI0o+AAAAAAAAAIAAAAAA6nIdPQFqGqxDI0o+AAAAAAAAAIAAAAAAlGgOS0BLBoaUaBJ0lFKUdS4=",
|
44 |
+
"achieved_goal": "[[ 3.8439669e-02 -2.1943560e-12 1.9740014e-01]\n [ 3.8439669e-02 -2.1943560e-12 1.9740014e-01]\n [ 3.8439669e-02 -2.1943560e-12 1.9740014e-01]\n [ 3.8439669e-02 -2.1943560e-12 1.9740014e-01]\n [ 3.8439669e-02 -2.1943560e-12 1.9740014e-01]\n [ 3.8439669e-02 -2.1943560e-12 1.9740014e-01]\n [ 3.8439669e-02 -2.1943560e-12 1.9740014e-01]\n [ 3.8439669e-02 -2.1943560e-12 1.9740014e-01]\n [ 3.8439669e-02 -2.1943560e-12 1.9740014e-01]\n [ 3.8439669e-02 -2.1943560e-12 1.9740014e-01]\n [ 3.8439669e-02 -2.1943560e-12 1.9740014e-01]\n [ 3.8439669e-02 -2.1943560e-12 1.9740014e-01]\n [ 3.8439669e-02 -2.1943560e-12 1.9740014e-01]\n [ 3.8439669e-02 -2.1943560e-12 1.9740014e-01]\n [ 3.8439669e-02 -2.1943560e-12 1.9740014e-01]\n [ 3.8439669e-02 -2.1943560e-12 1.9740014e-01]\n [ 3.8439669e-02 -2.1943560e-12 1.9740014e-01]\n [ 3.8439669e-02 -2.1943560e-12 1.9740014e-01]\n [ 3.8439669e-02 -2.1943560e-12 1.9740014e-01]\n [ 3.8439669e-02 -2.1943560e-12 1.9740014e-01]\n [ 3.8439669e-02 -2.1943560e-12 1.9740014e-01]\n [ 3.8439669e-02 -2.1943560e-12 1.9740014e-01]\n [ 3.8439669e-02 -2.1943560e-12 1.9740014e-01]\n [ 3.8439669e-02 -2.1943560e-12 1.9740014e-01]\n [ 3.8439669e-02 -2.1943560e-12 1.9740014e-01]\n [ 3.8439669e-02 -2.1943560e-12 1.9740014e-01]\n [ 3.8439669e-02 -2.1943560e-12 1.9740014e-01]\n [ 3.8439669e-02 -2.1943560e-12 1.9740014e-01]\n [ 3.8439669e-02 -2.1943560e-12 1.9740014e-01]\n [ 3.8439669e-02 -2.1943560e-12 1.9740014e-01]\n [ 3.8439669e-02 -2.1943560e-12 1.9740014e-01]\n [ 3.8439669e-02 -2.1943560e-12 1.9740014e-01]\n [ 3.8439669e-02 -2.1943560e-12 1.9740014e-01]\n [ 3.8439669e-02 -2.1943560e-12 1.9740014e-01]\n [ 3.8439669e-02 -2.1943560e-12 1.9740014e-01]\n [ 3.8439669e-02 -2.1943560e-12 1.9740014e-01]\n [ 3.8439669e-02 -2.1943560e-12 1.9740014e-01]\n [ 3.8439669e-02 -2.1943560e-12 1.9740014e-01]\n [ 3.8439669e-02 -2.1943560e-12 1.9740014e-01]\n [ 3.8439669e-02 -2.1943560e-12 1.9740014e-01]\n [ 3.8439669e-02 -2.1943560e-12 1.9740014e-01]\n [ 3.8439669e-02 -2.1943560e-12 1.9740014e-01]\n [ 3.8439669e-02 -2.1943560e-12 1.9740014e-01]\n [ 3.8439669e-02 -2.1943560e-12 1.9740014e-01]\n [ 3.8439669e-02 -2.1943560e-12 1.9740014e-01]\n [ 3.8439669e-02 -2.1943560e-12 1.9740014e-01]\n [ 3.8439669e-02 -2.1943560e-12 1.9740014e-01]\n [ 3.8439669e-02 -2.1943560e-12 1.9740014e-01]\n [ 3.8439669e-02 -2.1943560e-12 1.9740014e-01]\n [ 3.8439669e-02 -2.1943560e-12 1.9740014e-01]\n [ 3.8439669e-02 -2.1943560e-12 1.9740014e-01]\n [ 3.8439669e-02 -2.1943560e-12 1.9740014e-01]\n [ 3.8439669e-02 -2.1943560e-12 1.9740014e-01]\n [ 3.8439669e-02 -2.1943560e-12 1.9740014e-01]\n [ 3.8439669e-02 -2.1943560e-12 1.9740014e-01]\n [ 3.8439669e-02 -2.1943560e-12 1.9740014e-01]\n [ 3.8439669e-02 -2.1943560e-12 1.9740014e-01]\n [ 3.8439669e-02 -2.1943560e-12 1.9740014e-01]\n [ 3.8439669e-02 -2.1943560e-12 1.9740014e-01]\n [ 3.8439669e-02 -2.1943560e-12 1.9740014e-01]\n [ 3.8439669e-02 -2.1943560e-12 1.9740014e-01]\n [ 3.8439669e-02 -2.1943560e-12 1.9740014e-01]\n [ 3.8439669e-02 -2.1943560e-12 1.9740014e-01]\n [ 3.8439669e-02 -2.1943560e-12 1.9740014e-01]]",
|
45 |
+
"desired_goal": "[[-0.0261375 -0.03837715 0.09716731]\n [-0.10443008 -0.06798119 0.29953474]\n [ 0.12668987 -0.05510416 0.2085057 ]\n [-0.13972002 0.1118935 0.25845316]\n [-0.0037123 0.13089581 0.23298332]\n [ 0.06753101 0.03760868 0.13861781]\n [-0.00939027 0.04749335 0.26193142]\n [ 0.08358572 0.12854147 0.11041814]\n [ 0.09301588 -0.01022409 0.08277293]\n [-0.019103 0.10551057 0.15904035]\n [ 0.05487733 -0.0244892 0.00842658]\n [ 0.14918402 -0.07484842 0.12589833]\n [-0.10724568 -0.10038473 0.06738244]\n [ 0.03519711 0.10846443 0.03481559]\n [ 0.12849925 -0.10512166 0.20457856]\n [-0.14856832 -0.06319377 0.07536123]\n [ 0.05529592 -0.04890332 0.25463757]\n [-0.09267846 -0.1286072 0.0447811 ]\n [ 0.06818596 -0.11072063 0.07738158]\n [-0.13516341 0.03048279 0.18244386]\n [ 0.10180312 -0.03033184 0.12038039]\n [ 0.07740312 0.06372574 0.26872617]\n [ 0.07972613 0.07126534 0.17623761]\n [ 0.10582537 -0.13526933 0.23590046]\n [-0.02639646 0.07078078 0.08864026]\n [ 0.14767802 -0.00920255 0.21638669]\n [ 0.02505262 -0.11267912 0.2238048 ]\n [ 0.092871 0.04711785 0.1840067 ]\n [-0.08926177 -0.02054563 0.13449882]\n [-0.11320296 0.06136072 0.13373896]\n [-0.08055886 0.06119973 0.19988462]\n [-0.11704253 -0.09096041 0.1062707 ]\n [-0.13051608 0.12965156 0.24415274]\n [ 0.08924496 0.10012068 0.23175517]\n [-0.0966277 -0.07709701 0.04650307]\n [ 0.08817136 0.06219912 0.0984905 ]\n [ 0.03242992 -0.11361083 0.04544346]\n [ 0.01027752 0.01971802 0.20561369]\n [ 0.11130611 0.10519811 0.19156039]\n [ 0.00995353 -0.11277317 0.05843603]\n [-0.12920165 -0.02150149 0.2765285 ]\n [-0.03562593 0.14958712 0.2506332 ]\n [ 0.09287717 -0.06888311 0.12868464]\n [ 0.06741406 0.14501578 0.2294903 ]\n [ 0.14181279 -0.14576578 0.17353071]\n [ 0.11885397 -0.03507767 0.13625957]\n [ 0.13527063 0.0071642 0.019268 ]\n [ 0.14405774 -0.05523945 0.16620988]\n [-0.06940117 0.03440312 0.27861318]\n [ 0.10014814 -0.03428949 0.19479951]\n [-0.02843003 -0.13854824 0.26046893]\n [ 0.0514971 0.0907025 0.10481209]\n [ 0.13299511 0.14987074 0.07837874]\n [-0.02932216 -0.05186162 0.186198 ]\n [ 0.05293464 0.00079095 0.16960458]\n [-0.07601178 -0.00223046 0.13228907]\n [-0.11808484 0.04704243 0.15841629]\n [ 0.00655801 0.09150097 0.24527474]\n [-0.14656503 0.13791019 0.2626517 ]\n [ 0.10294228 0.09521054 0.17875125]\n [-0.09701459 0.02458745 0.18430258]\n [ 0.02024837 0.12817931 0.04696128]\n [ 0.01696665 0.14335382 0.28975382]\n [-0.03991861 0.12431173 0.12852858]]",
|
46 |
+
"observation": "[[ 3.8439669e-02 -2.1943560e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]\n [ 3.8439669e-02 -2.1943560e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]\n [ 3.8439669e-02 -2.1943560e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]\n [ 3.8439669e-02 -2.1943560e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]\n [ 3.8439669e-02 -2.1943560e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]\n [ 3.8439669e-02 -2.1943560e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]\n [ 3.8439669e-02 -2.1943560e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]\n [ 3.8439669e-02 -2.1943560e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]\n [ 3.8439669e-02 -2.1943560e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]\n [ 3.8439669e-02 -2.1943560e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]\n [ 3.8439669e-02 -2.1943560e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]\n [ 3.8439669e-02 -2.1943560e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]\n [ 3.8439669e-02 -2.1943560e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]\n [ 3.8439669e-02 -2.1943560e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]\n [ 3.8439669e-02 -2.1943560e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]\n [ 3.8439669e-02 -2.1943560e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]\n [ 3.8439669e-02 -2.1943560e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]\n [ 3.8439669e-02 -2.1943560e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]\n [ 3.8439669e-02 -2.1943560e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]\n [ 3.8439669e-02 -2.1943560e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]\n [ 3.8439669e-02 -2.1943560e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]\n [ 3.8439669e-02 -2.1943560e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]\n [ 3.8439669e-02 -2.1943560e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]\n [ 3.8439669e-02 -2.1943560e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]\n [ 3.8439669e-02 -2.1943560e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]\n [ 3.8439669e-02 -2.1943560e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]\n [ 3.8439669e-02 -2.1943560e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]\n [ 3.8439669e-02 -2.1943560e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]\n [ 3.8439669e-02 -2.1943560e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]\n [ 3.8439669e-02 -2.1943560e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]\n [ 3.8439669e-02 -2.1943560e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]\n [ 3.8439669e-02 -2.1943560e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]\n [ 3.8439669e-02 -2.1943560e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]\n [ 3.8439669e-02 -2.1943560e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]\n [ 3.8439669e-02 -2.1943560e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]\n [ 3.8439669e-02 -2.1943560e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]\n [ 3.8439669e-02 -2.1943560e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]\n [ 3.8439669e-02 -2.1943560e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]\n [ 3.8439669e-02 -2.1943560e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]\n [ 3.8439669e-02 -2.1943560e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]\n [ 3.8439669e-02 -2.1943560e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]\n [ 3.8439669e-02 -2.1943560e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]\n [ 3.8439669e-02 -2.1943560e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]\n [ 3.8439669e-02 -2.1943560e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]\n [ 3.8439669e-02 -2.1943560e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]\n [ 3.8439669e-02 -2.1943560e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]\n [ 3.8439669e-02 -2.1943560e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]\n [ 3.8439669e-02 -2.1943560e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]\n [ 3.8439669e-02 -2.1943560e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]\n [ 3.8439669e-02 -2.1943560e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]\n [ 3.8439669e-02 -2.1943560e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]\n [ 3.8439669e-02 -2.1943560e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]\n [ 3.8439669e-02 -2.1943560e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]\n [ 3.8439669e-02 -2.1943560e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]\n [ 3.8439669e-02 -2.1943560e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]\n [ 3.8439669e-02 -2.1943560e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]\n [ 3.8439669e-02 -2.1943560e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]\n [ 3.8439669e-02 -2.1943560e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]\n [ 3.8439669e-02 -2.1943560e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]\n [ 3.8439669e-02 -2.1943560e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]\n [ 3.8439669e-02 -2.1943560e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]\n [ 3.8439669e-02 -2.1943560e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]\n [ 3.8439669e-02 -2.1943560e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]\n [ 3.8439669e-02 -2.1943560e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]]"
|
47 |
+
},
|
48 |
+
"_episode_num": 0,
|
49 |
+
"use_sde": false,
|
50 |
+
"sde_sample_freq": -1,
|
51 |
+
"_current_progress_remaining": 0.0,
|
52 |
+
"_stats_window_size": 100,
|
53 |
+
"ep_info_buffer": {
|
54 |
+
":type:": "<class 'collections.deque'>",
|
55 |
+
":serialized:": "gAWV4AsAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpRHv83vOQhfShKMAWyUSwOMAXSUR0CEuo7HyVfNdX2UKGgGR7/RegL7XQMQaAdLA2gIR0CEulqgyuZDdX2UKGgGR7/WPRiPQv6CaAdLBWgIR0CEufD63y7PdX2UKGgGR7/OU1yeZof0aAdLA2gIR0CEuYWepXIVdX2UKGgGR7+39FWn0kGBaAdLAmgIR0CEuVFF2FFldX2UKGgGR7/KaqCHymQ9aAdLA2gIR0CEuESW7e2vdX2UKGgGR7+8y0rsjVx0aAdLAmgIR0CEt9jm0VrRdX2UKGgGR7/W3n6l+EytaAdLBGgIR0CEtwGOdXkpdX2UKGgGR7/MiUPhAGB4aAdLA2gIR0CEw+Q4CIUKdX2UKGgGR7/I9tdiUgSwaAdLA2gIR0CEw6y5Zr57dX2UKGgGR7+/HAAQxvehaAdLAmgIR0CEw0ENe+mFdX2UKGgGR7+VBMSK3uuzaAdLAWgIR0CEwZPrOZ9edX2UKGgGR7+/5LytmtheaAdLAmgIR0CEwV7MPjGUdX2UKGgGR7/R2Qnx8UmEaAdLA2gIR0CEwSjJMg2ZdX2UKGgGR7/RTB68g6ltaAdLBGgIR0CEwPLrX18LdX2UKGgGR7/HdJJ5E+gUaAdLA2gIR0CEwIhMajvedX2UKGgGR7+1RHf/FR51aAdLAmgIR0CEwB24d6sydX2UKGgGR7/L3N9ph4MXaAdLA2gIR0CEv+h6By0bdX2UKGgGR7/JJXhfjS5RaAdLA2gIR0CEv0kka/ATdX2UKGgGR7+87tAs052haAdLAmgIR0CEvjxYJVsDdX2UKGgGR7/QSk0rK/21aAdLA2gIR0CEvCI9kjHGdX2UKGgGR7/epV0cOskqaAdLBGgIR0CEu4GYa5wwdX2UKGgGR7/H3yqdYnv2aAdLA2gIR0CEuxch1TzedX2UKGgGR7/JLGrCFbmmaAdLA2gIR0CEug1uR9w4dX2UKGgGR7/Myv9tMwlCaAdLA2gIR0CEuWyFfzBidX2UKGgGR7/MZR8+iaiLaAdLA2gIR0CEuTfP5YYBdX2UKGgGR7/S4Ajps41haAdLA2gIR0CEuMwTufEodX2UKGgGR7+46YE4ecQRaAdLAmgIR0CEt/Pa+N96dX2UKGgGR7/UHxBmf5DaaAdLA2gIR0CEtx4FA3UAdX2UKGgGR7+zCoCMglniaAdLAmgIR0CEtugOjIq9dX2UKGgGR7+9zhgmZ3LWaAdLAmgIR0CEtqu/UONHdX2UKGgGR7+5qWTot+TeaAdLAmgIR0CEwvKdQO4HdX2UKGgGR7/TLt/nW8RMaAdLA2gIR0CEwoZgG8mKdX2UKGgGR7/Sz2vjfek6aAdLA2gIR0CEwlGLDQ7cdX2UKGgGR7/SdU83dbgTaAdLA2gIR0CEwhwSamXPdX2UKGgGR7+9bt7a7EpBaAdLAmgIR0CEwQ63iJfqdX2UKGgGR7/MbGWD6FdtaAdLA2gIR0CEv2UW2w3YdX2UKGgGR7/AZ2IO6NEPaAdLAmgIR0CEvvomois5dX2UKGgGR7/HhJAdGRV7aAdLA2gIR0CEveqm0mdBdX2UKGgGR7/WzRx95QgtaAdLA2gIR0CEvDxe9i+ddX2UKGgGR7+8Wac7QswtaAdLAmgIR0CEvAde6ZpjdX2UKGgGR7/EF6AvtdAxaAdLAmgIR0CEuzD1oQFtdX2UKGgGR7/LDkU9IPK/aAdLA2gIR0CEusc8TzundX2UKGgGR7+yRNh3JPqLaAdLAmgIR0CEupLQokRjdX2UKGgGR7+514gRsdkraAdLAmgIR0CEuidXko4NdX2UKGgGR7/HjjJdSl3yaAdLA2gIR0CEuVEfkmx/dX2UKGgGR7+yXBxgiNbUaAdLAmgIR0CEuOYpDu0DdX2UKGgGR7/CGFBY3eenaAdLA2gIR0CEuLBQemvXdX2UKGgGR7+02hqTKT0QaAdLAmgIR0CEuHsZ5zHTdX2UKGgGR7/O8KXv6TGHaAdLA2gIR0CEuA/TLGJfdX2UKGgGR7/SA5Jbt7a7aAdLA2gIR0CEt9oSteUqdX2UKGgGR7+9ChN/OMVDaAdLAmgIR0CEt6QwsXizdX2UKGgGR7++Q9zOoo/iaAdLAmgIR0CExITA31jBdX2UKGgGR7+45NoJzDGcaAdLAmgIR0CExE0O3DvWdX2UKGgGR7/ICxu89Oh1aAdLA2gIR0CExBeQ+2VndX2UKGgGR7/T+iJwbVBlaAdLA2gIR0CEw3c+JP69dX2UKGgGR7/JcoH9m6GyaAdLA2gIR0CEwwwqRU3odX2UKGgGR7/C5EMLF4s3aAdLAmgIR0CEwZQCSzPbdX2UKGgGR7/NNHH3lCC0aAdLA2gIR0CEwPOmixmkdX2UKGgGR7+ws+V1Oj7AaAdLAmgIR0CEwL6dDpkgdX2UKGgGR7/SNW2gFotdaAdLA2gIR0CEwFN1QqI8dX2UKGgGR7/XRTS9du50aAdLBGgIR0CEwB+LFXJYdX2UKGgGR7/GmgJ1JUYLaAdLA2gIR0CEv3/jsD4hdX2UKGgGR7/MjBVMmF8HaAdLA2gIR0CEvxTIeYD1dX2UKGgGR7/J5RCQcPvsaAdLA2gIR0CEvqa86FM7dX2UKGgGR7/IahHskY4yaAdLA2gIR0CEvnCtzS1FdX2UKGgGR7/R3nZCfHxSaAdLA2gIR0CEvgYR/ViGdX2UKGgGR7/VW5Yoy9EkaAdLA2gIR0CEvdDOTq0MdX2UKGgGR7/T9VFQVKwqaAdLA2gIR0CEvZuE25xzdX2UKGgGR7/X4LkS26TXaAdLBGgIR0CEvWSmqHXVdX2UKGgGR7/FpaA4GUwBaAdLA2gIR0CEvS+pOvdNdX2UKGgGR7+oxrSE12q2aAdLAWgIR0CEvFkZrHlwdX2UKGgGR7+z40uUUwi8aAdLAmgIR0CEvCO4oZyddX2UKGgGR7/M9AX2ugYhaAdLA2gIR0CEu+5paibldX2UKGgGR7/TSYgJTl1baAdLA2gIR0CEu07OE/SqdX2UKGgGR7/DS8an752yaAdLAmgIR0CEuq9kjHGTdX2UKGgGR7/KPjGT9sJqaAdLA2gIR0CEukTlkpZwdX2UKGgGR7/BQzk6tDD1aAdLAmgIR0CEuW4Qz1sddX2UKGgGR7/DKf4AS39aaAdLAmgIR0CEuJYNiH6/dX2UKGgGR7+9IbwSamXPaAdLAmgIR0CEt02dd3SsdX2UKGgGR7+iaJAMUh3aaAdLAWgIR0CExJ9tuUD/dX2UKGgGR7/RAVO9FnZkaAdLA2gIR0CExDPNVzZIdX2UKGgGR7/aT101ZTybaAdLBGgIR0CEw/8QZn+RdX2UKGgGR7/SXGOuJUHZaAdLA2gIR0CEwocFQl8gdX2UKGgGR7/PehPCVKPGaAdLA2gIR0CEwlHMlkYodX2UKGgGR7/DznRsuWa+aAdLA2gIR0CEwNqKP4mDdX2UKGgGR7/VcTJyQxN7aAdLA2gIR0CEwDrSE12rdX2UKGgGR7+2pYLb5/LDaAdLAmgIR0CEwAX3xnWbdX2UKGgGR79qkyk9ECvHaAdLAWgIR0CEv2VafSQYdX2UKGgGR7/TZaV2Rq46aAdLA2gIR0CEvy4xUNrkdX2UKGgGR7+llbu+h4+saAdLAWgIR0CEvvdB0ITodX2UKGgGR7/Bjvuw5eZ5aAdLAmgIR0CEvou8scyWdX2UKGgGR7/YFvhqCYkWaAdLBGgIR0CEvUiwjdHldX2UKGgGR7/MFaB7NSqEaAdLA2gIR0CEvAg7HQyAdX2UKGgGR7/Cq5LAYYR/aAdLAmgIR0CEuzNTLns+dX2UKGgGR7/UAH3UQTVUaAdLA2gIR0CEulzwtrbhdX2UKGgGR7+5r/KhcqvvaAdLAmgIR0CEufGcWj46dX2UKGgGR7+3NeMQ2/BWaAdLAmgIR0CEuVCFbmlqdX2UKGgGR7+oAlv60pmVaAdLAWgIR0CEuOSh8IAwdX2UKGgGR7/BOzposZpBaAdLAmgIR0CEuHnnMdLhdWUu"
|
56 |
+
},
|
57 |
+
"ep_success_buffer": {
|
58 |
+
":type:": "<class 'collections.deque'>",
|
59 |
+
":serialized:": "gAWVhgAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIhlLg=="
|
60 |
+
},
|
61 |
+
"_n_updates": 3125,
|
62 |
+
"n_steps": 5,
|
63 |
+
"gamma": 0.99,
|
64 |
+
"gae_lambda": 1.0,
|
65 |
+
"ent_coef": 0.0,
|
66 |
+
"vf_coef": 0.5,
|
67 |
+
"max_grad_norm": 0.5,
|
68 |
+
"rollout_buffer_class": {
|
69 |
+
":type:": "<class 'abc.ABCMeta'>",
|
70 |
+
":serialized:": "gAWVOgAAAAAAAACMIHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5idWZmZXJzlIwRRGljdFJvbGxvdXRCdWZmZXKUk5Qu",
|
71 |
+
"__module__": "stable_baselines3.common.buffers",
|
72 |
+
"__annotations__": "{'observation_space': <class 'gymnasium.spaces.dict.Dict'>, 'obs_shape': typing.Dict[str, typing.Tuple[int, ...]], 'observations': typing.Dict[str, numpy.ndarray]}",
|
73 |
+
"__doc__": "\n Dict Rollout buffer used in on-policy algorithms like A2C/PPO.\n Extends the RolloutBuffer to use dictionary observations\n\n It corresponds to ``buffer_size`` transitions collected\n using the current policy.\n This experience will be discarded after the policy update.\n In order to use PPO objective, we also store the current value of each state\n and the log probability of each taken action.\n\n The term rollout here refers to the model-free notion and should not\n be used with the concept of rollout used in model-based RL or planning.\n Hence, it is only involved in policy and value function training but not action selection.\n\n :param buffer_size: Max number of element in the buffer\n :param observation_space: Observation space\n :param action_space: Action space\n :param device: PyTorch device\n :param gae_lambda: Factor for trade-off of bias vs variance for Generalized Advantage Estimator\n Equivalent to Monte-Carlo advantage estimate when set to 1.\n :param gamma: Discount factor\n :param n_envs: Number of parallel environments\n ",
|
74 |
+
"__init__": "<function DictRolloutBuffer.__init__ at 0x1323cbeb0>",
|
75 |
+
"reset": "<function DictRolloutBuffer.reset at 0x1323cbf40>",
|
76 |
+
"add": "<function DictRolloutBuffer.add at 0x1323d8040>",
|
77 |
+
"get": "<function DictRolloutBuffer.get at 0x1323d80d0>",
|
78 |
+
"_get_samples": "<function DictRolloutBuffer._get_samples at 0x1323d8160>",
|
79 |
+
"__abstractmethods__": "frozenset()",
|
80 |
+
"_abc_impl": "<_abc._abc_data object at 0x13237dd80>"
|
81 |
+
},
|
82 |
+
"rollout_buffer_kwargs": {},
|
83 |
+
"normalize_advantage": false,
|
84 |
+
"observation_space": {
|
85 |
+
":type:": "<class 'gymnasium.spaces.dict.Dict'>",
|
86 |
+
":serialized:": "gAWVsQMAAAAAAACMFWd5bW5hc2l1bS5zcGFjZXMuZGljdJSMBERpY3SUk5QpgZR9lCiMBnNwYWNlc5SMC2NvbGxlY3Rpb25zlIwLT3JkZXJlZERpY3SUk5QpUpQojA1hY2hpZXZlZF9nb2FslIwUZ3ltbmFzaXVtLnNwYWNlcy5ib3iUjANCb3iUk5QpgZR9lCiMBWR0eXBllIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYowNYm91bmRlZF9iZWxvd5SME251bXB5Ll9jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWAwAAAAAAAAABAQGUaBOMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLA4WUjAFDlHSUUpSMDWJvdW5kZWRfYWJvdmWUaBwolgMAAAAAAAAAAQEBlGggSwOFlGgkdJRSlIwGX3NoYXBllEsDhZSMA2xvd5RoHCiWDAAAAAAAAAAAACDBAAAgwQAAIMGUaBZLA4WUaCR0lFKUjARoaWdolGgcKJYMAAAAAAAAAAAAIEEAACBBAAAgQZRoFksDhZRoJHSUUpSMCGxvd19yZXBylIwFLTEwLjCUjAloaWdoX3JlcHKUjAQxMC4wlIwKX25wX3JhbmRvbZROdWKMDGRlc2lyZWRfZ29hbJRoDSmBlH2UKGgQaBZoGWgcKJYDAAAAAAAAAAEBAZRoIEsDhZRoJHSUUpRoJ2gcKJYDAAAAAAAAAAEBAZRoIEsDhZRoJHSUUpRoLEsDhZRoLmgcKJYMAAAAAAAAAAAAIMEAACDBAAAgwZRoFksDhZRoJHSUUpRoM2gcKJYMAAAAAAAAAAAAIEEAACBBAAAgQZRoFksDhZRoJHSUUpRoOIwFLTEwLjCUaDqMBDEwLjCUaDxOdWKMC29ic2VydmF0aW9ulGgNKYGUfZQoaBBoFmgZaBwolgYAAAAAAAAAAQEBAQEBlGggSwaFlGgkdJRSlGgnaBwolgYAAAAAAAAAAQEBAQEBlGggSwaFlGgkdJRSlGgsSwaFlGguaBwolhgAAAAAAAAAAAAgwQAAIMEAACDBAAAgwQAAIMEAACDBlGgWSwaFlGgkdJRSlGgzaBwolhgAAAAAAAAAAAAgQQAAIEEAACBBAAAgQQAAIEEAACBBlGgWSwaFlGgkdJRSlGg4jAUtMTAuMJRoOowEMTAuMJRoPE51YnVoLE5oEE5oPE51Yi4=",
|
87 |
+
"spaces": "OrderedDict([('achieved_goal', Box(-10.0, 10.0, (3,), float32)), ('desired_goal', Box(-10.0, 10.0, (3,), float32)), ('observation', Box(-10.0, 10.0, (6,), float32))])",
|
88 |
+
"_shape": null,
|
89 |
+
"dtype": null,
|
90 |
+
"_np_random": null
|
91 |
+
},
|
92 |
+
"action_space": {
|
93 |
+
":type:": "<class 'gymnasium.spaces.box.Box'>",
|
94 |
+
":serialized:": "gAWVngEAAAAAAACMFGd5bW5hc2l1bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lIwFZHR5cGWUk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMDWJvdW5kZWRfYmVsb3eUjBNudW1weS5fY29yZS5udW1lcmljlIwLX2Zyb21idWZmZXKUk5QolgMAAAAAAAAAAQEBlGgIjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSwOFlIwBQ5R0lFKUjA1ib3VuZGVkX2Fib3ZllGgRKJYDAAAAAAAAAAEBAZRoFUsDhZRoGXSUUpSMBl9zaGFwZZRLA4WUjANsb3eUaBEolgwAAAAAAAAAAACAvwAAgL8AAIC/lGgLSwOFlGgZdJRSlIwEaGlnaJRoESiWDAAAAAAAAAAAAIA/AACAPwAAgD+UaAtLA4WUaBl0lFKUjAhsb3dfcmVwcpSMBC0xLjCUjAloaWdoX3JlcHKUjAMxLjCUjApfbnBfcmFuZG9tlE51Yi4=",
|
95 |
+
"dtype": "float32",
|
96 |
+
"bounded_below": "[ True True True]",
|
97 |
+
"bounded_above": "[ True True True]",
|
98 |
+
"_shape": [
|
99 |
+
3
|
100 |
+
],
|
101 |
+
"low": "[-1. -1. -1.]",
|
102 |
+
"high": "[1. 1. 1.]",
|
103 |
+
"low_repr": "-1.0",
|
104 |
+
"high_repr": "1.0",
|
105 |
+
"_np_random": null
|
106 |
+
},
|
107 |
+
"n_envs": 64,
|
108 |
+
"lr_schedule": {
|
109 |
+
":type:": "<class 'function'>",
|
110 |
+
":serialized:": "gAWVPQQAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLA0sTQwx0AIgAfACDAYMBUwCUToWUjAVmbG9hdJSFlIwScHJvZ3Jlc3NfcmVtYWluaW5nlIWUjJ8vVXNlcnMvcGF0cmlja2thbGttYW4vTGlicmFyeS9DYWNoZXMvcHlwb2V0cnkvdmlydHVhbGVudnMvYTJjLXBhbmRhcmVhY2hkZW5zZS12My02QUdNRVJLTS1weTMuMTAvbGliL3B5dGhvbjMuMTAvc2l0ZS1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUjAg8bGFtYmRhPpRLYUMCDACUjA52YWx1ZV9zY2hlZHVsZZSFlCl0lFKUfZQojAtfX3BhY2thZ2VfX5SMGHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbpSMCF9fbmFtZV9flIwec3RhYmxlX2Jhc2VsaW5lczMuY29tbW9uLnV0aWxzlIwIX19maWxlX1+UjJ8vVXNlcnMvcGF0cmlja2thbGttYW4vTGlicmFyeS9DYWNoZXMvcHlwb2V0cnkvdmlydHVhbGVudnMvYTJjLXBhbmRhcmVhY2hkZW5zZS12My02QUdNRVJLTS1weTMuMTAvbGliL3B5dGhvbjMuMTAvc2l0ZS1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUdU5OaACMEF9tYWtlX2VtcHR5X2NlbGyUk5QpUpSFlHSUUpRoAIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaCF9lH2UKGgYjAg8bGFtYmRhPpSMDF9fcXVhbG5hbWVfX5SMIWdldF9zY2hlZHVsZV9mbi48bG9jYWxzPi48bGFtYmRhPpSMD19fYW5ub3RhdGlvbnNfX5R9lIwOX19rd2RlZmF1bHRzX1+UTowMX19kZWZhdWx0c19flE6MCl9fbW9kdWxlX1+UaBmMB19fZG9jX1+UTowLX19jbG9zdXJlX1+UaACMCl9tYWtlX2NlbGyUk5RoAihoByhLAUsASwBLAUsBSxNDBIgAUwCUaAkpjAFflIWUaA6MBGZ1bmOUS4VDAgQBlIwDdmFslIWUKXSUUpRoFU5OaB0pUpSFlHSUUpRoI2g+fZR9lChoGIwEZnVuY5RoJ4wZY29uc3RhbnRfZm4uPGxvY2Fscz4uZnVuY5RoKX2UaCtOaCxOaC1oGWguTmgvaDFHP0bwBo24useFlFKUhZSMF19jbG91ZHBpY2tsZV9zdWJtb2R1bGVzlF2UjAtfX2dsb2JhbHNfX5R9lHWGlIZSMIWUUpSFlGhHXZRoSX2UdYaUhlIwLg=="
|
111 |
+
}
|
112 |
+
}
|
a2c-PandaReachDense-v3/policy.optimizer.pth
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:284109ef1f1b882d9047c268d0860df54f8e7e839f81cda127939ea7264cfb69
|
3 |
+
size 48200
|
a2c-PandaReachDense-v3/policy.pth
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:59a6351360fbe03fbbb26625f9709dc9c25241f28cd0172a3fd9a2f0883e073c
|
3 |
+
size 46319
|
a2c-PandaReachDense-v3/pytorch_variables.pth
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:ebdad4b9cfe9cd22a3abadb5623bf7bb1f6eb2e408740245eb3f2044b0adc018
|
3 |
+
size 864
|
a2c-PandaReachDense-v3/system_info.txt
ADDED
@@ -0,0 +1,8 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
- OS: macOS-15.0.1-arm64-arm-64bit Darwin Kernel Version 24.0.0: Tue Sep 24 23:35:10 PDT 2024; root:xnu-11215.1.12~1/RELEASE_ARM64_T6031
|
2 |
+
- Python: 3.10.12
|
3 |
+
- Stable-Baselines3: 2.3.2
|
4 |
+
- PyTorch: 2.5.0
|
5 |
+
- GPU Enabled: False
|
6 |
+
- Numpy: 2.1.2
|
7 |
+
- Cloudpickle: 3.1.0
|
8 |
+
- Gymnasium: 0.28.1
|
config.json
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
{"policy_class": {":type:": "<class 'abc.ABCMeta'>", ":serialized:": "gAWVRQAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMG011bHRpSW5wdXRBY3RvckNyaXRpY1BvbGljeZSTlC4=", "__module__": "stable_baselines3.common.policies", "__doc__": "\n MultiInputActorClass policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space (Tuple)\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Uses the CombinedExtractor\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ", "__init__": "<function MultiInputActorCriticPolicy.__init__ at 0x132623520>", "__abstractmethods__": "frozenset()", "_abc_impl": "<_abc._abc_data object at 0x132616bc0>"}, "verbose": 1, "policy_kwargs": {":type:": "<class 'dict'>", ":serialized:": "gAWVgQAAAAAAAAB9lCiMD29wdGltaXplcl9jbGFzc5SME3RvcmNoLm9wdGltLnJtc3Byb3CUjAdSTVNwcm9wlJOUjBBvcHRpbWl6ZXJfa3dhcmdzlH2UKIwFYWxwaGGURz/vrhR64UeujANlcHOURz7k+LWI42jxjAx3ZWlnaHRfZGVjYXmUSwB1dS4=", "optimizer_class": "<class 'torch.optim.rmsprop.RMSprop'>", "optimizer_kwargs": {"alpha": 0.99, "eps": 1e-05, "weight_decay": 0}}, "num_timesteps": 1000000, "_total_timesteps": 1000000, "_num_timesteps_at_start": 0, "seed": null, "action_noise": null, "start_time": 1729453985077280000, "learning_rate": 0.0007, "tensorboard_log": "./tensorboard_logs/", "_last_obs": {":type:": "<class 'collections.OrderedDict'>", ":serialized:": "gAWV/AwAAAAAAACMC2NvbGxlY3Rpb25zlIwLT3JkZXJlZERpY3SUk5QpUpQojA1hY2hpZXZlZF9nb2FslIwTbnVtcHkuX2NvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYAAwAAAAAAAOL8YL1OS/s+8dhHvkfqrT6VyPu6DuDxPuEVF785jAe/J6++PkfqrT6VyPu6DuDxPkfqrT6VyPu6DuDxPnwvir21vQS/xNBIvnvccb9dHsi/3yuvv3wvir21vQS/xNBIvukFeD8ZI7q/rM1DPy0Zxr+7ouO+FIAtP+oZx7+F7vU+yDspP0fqrT6VyPu6DuDxPkfqrT6VyPu6DuDxPtgeJT+/sLi/dFgkwHjzFL/TPfo+s4y7Pir6nT9oyL0/doawP91bPb/pBxLAd3r6vuEVF785jAe/J6++PnjzFL/TPfo+s4y7PkfqrT6VyPu6DuDxPnwvir21vQS/xNBIvnjzFL/TPfo+s4y7PkfqrT6VyPu6DuDxPkfqrT6VyPu6DuDxPrPsAb9XdQi/OH+6PrrKMD58cbu/NF+mv0fqrT6VyPu6DuDxPkfqrT6VyPu6DuDxPkfqrT6VyPu6DuDxPnwvir21vQS/xNBIvkfqrT6VyPu6DuDxPuL8YL1OS/s+8dhHvs4QND+O/fG+Hro5P+L8YL1OS/s+8dhHvnwvir21vQS/xNBIvuL8YL1OS/s+8dhHvkfqrT6VyPu6DuDxPoYnLj8xUum/RKciwAczzT+q37s/Bkhbv+L8YL1OS/s+8dhHvuL8YL1OS/s+8dhHvnwvir21vQS/xNBIvkfqrT6VyPu6DuDxPlmrjr65Bcc/VdeaP5lSST41iv4+9Zgyvq9OzT8nAYQ/q4lYv0fqrT6VyPu6DuDxPu1nHb/ORNe+klG4PgDpeL/a5Xo/5Tqvv+L8YL1OS/s+8dhHvkfqrT6VyPu6DuDxPu526T/kvA3AnksFwEfqrT6VyPu6DuDxPgPdnr1yqtG9eyM0vjrQer9LlXA/P3Guv0fqrT6VyPu6DuDxPuJ8cr/vWsU/NzOvv0fqrT6VyPu6DuDxPkNxwL8+dcc/xq00P0fqrT6VyPu6DuDxPpUIrD9Iqb4/LAJdP8jAEcAiD9E/8/K2P9fREcAtOyPAo7TJP30SNT8s0AE/9qQ5P5SMBW51bXB5lIwFZHR5cGWUk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGJLQEsDhpSMAUOUdJRSlIwMZGVzaXJlZF9nb2FslGgHKJYAAwAAAAAAADmuGr+AeZg/Bjepv8ilZD/8Lca/Q5QZvvpdm7/PtHy/k1UJPzzYsr6yEdC/JaCmvzaLhb8/G/y+4oLGvwmKhL9qPqC+OdE8v3M8pr5sPaq/zLOFv5i4fL8e+li/UZ0rvidiVD9O4My/sla5PsMwbL8MHrK9Re6MP2D1p7/TnUA+8ZPFP5dAnr83D5g/M8k+P7YmyL9TTuW+wj5av8pmHj/0xDy/1UDEv+1EFL8nQjY/rAe0PzX+uD+pQbM/J4u8P04zwD6tMdK/eVYBP7g/sr/QZ0+/QmKwP2qfSL53pl4/FYxmP4gGsb+Mi6M/B2tQv1d5hD4gXmi/p4Iyv7k+br+phZ8/6VamP63qvb/SZum9f77LvpGhcr+73BU/gGA1PjDkpL+WNcy/JB2dPsJ6Ez/SaLa/1UP3vjilHT3XxpM/TbUUPs2+ir82KDi+luxpP3DdeT64a6m/eZ4Uv/DrlL/yCNu+Gdkfvp/CNj/LoZm9ls6Yvz/skr9Fw20+ozqBvvgqkz8WUEy/r77CP0EK171EFY4+NB4Kv6Bnrb83bXy/R0EVvoJ/+r7jZwU+B0ZGvybP2r4QeA8/nq9WPnMwNT9BUG2/VvzAv5ootD/cDco/VQfDvgN3r7/PsME/Ua2wv+rdvz5a/4g+C6E1v1Ngm73vnXu/0IV/v+MVej9xzBg/PLMrPy/Nvj1n7Gk/U7zTP08+GD9nNq0/Yesrv7zzlT9GWIs+6BhHv9QOsz6Bgyq+OKQTv1CTuL+ViIK+iqPEPyWPFD7l7wQ/4PO1v1nzLrxB7fE+PcKXvz5WN7/eYW2/B98yP1CXyj/9GbO/yhCavyzWfb9/z1M/nicIvy+4mr9wB8W8LIxVvuxi2L5Ftn0+mHGWvxs8Pj74FX0/M9tUv0fBYb7H6UA/qnnCv841dr+G7Ym+F0SKP6Mms79Z7Io/eApeP9kSvL/r1Zs/0yQNP7JN1T96dJQ/Zm1ZPxRJwL+Gphw/l8SiP7cDW7+8UZG/qcfTP6uJJz+bhJU/xMV2P5RoDktASwOGlGgSdJRSlIwLb2JzZXJ2YXRpb26UaAcolgAGAAAAAAAA4vxgvU5L+z7x2Ee+5Lrov5AV0T+xt7S/R+qtPpXI+7oO4PE+G/ruPgg4VLs/1cY+4RUXvzmMB78nr74+KqZNv6Sk0b/4c2Y/R+qtPpXI+7oO4PE+G/ruPgg4VLs/1cY+R+qtPpXI+7oO4PE+G/ruPgg4VLs/1cY+fC+KvbW9BL/E0Ei+LHDhv9751r/fMLG/e9xxv10eyL/fK6+/yKQ7v3Zbeb+/rHO/fC+KvbW9BL/E0Ei+LHDhv9751r/fMLG/6QV4Pxkjur+szUM/cfsePyEodb/jLIQ/LRnGv7ui474UgC0/oY05v8akgr7gc8Y/6hnHv4Xu9T7IOyk/4IFOv2VlQL8qt7o/R+qtPpXI+7oO4PE+G/ruPgg4VLs/1cY+R+qtPpXI+7oO4PE+G/ruPgg4VLs/1cY+2B4lP7+wuL90WCTA7LEqPQ+fXz/AFte/ePMUv9M9+j6zjLs+6WI+vzs60j8mKWM/KvqdP2jIvT92hrA/T5GKP5v3XD9uKr8/3Vs9v+kHEsB3evq+VxPEP1jGLL+sm7O+4RUXvzmMB78nr74+KqZNv6Sk0b/4c2Y/ePMUv9M9+j6zjLs+6WI+vzs60j8mKWM/R+qtPpXI+7oO4PE+G/ruPgg4VLs/1cY+fC+KvbW9BL/E0Ei+LHDhv9751r/fMLG/ePMUv9M9+j6zjLs+6WI+vzs60j8mKWM/R+qtPpXI+7oO4PE+G/ruPgg4VLs/1cY+R+qtPpXI+7oO4PE+G/ruPgg4VLs/1cY+s+wBv1d1CL84f7o+YKN5v4E+0r/rtFU/usowPnxxu780X6a/zg7SP47MQb+XPby/R+qtPpXI+7oO4PE+G/ruPgg4VLs/1cY+R+qtPpXI+7oO4PE+G/ruPgg4VLs/1cY+R+qtPpXI+7oO4PE+G/ruPgg4VLs/1cY+fC+KvbW9BL/E0Ei+LHDhv9751r/fMLG/R+qtPpXI+7oO4PE+G/ruPgg4VLs/1cY+4vxgvU5L+z7x2Ee+5Lrov5AV0T+xt7S/zhA0P4798b4eujk/6PXPP8IRyr/YOJI/4vxgvU5L+z7x2Ee+5Lrov5AV0T+xt7S/fC+KvbW9BL/E0Ei+LHDhv9751r/fMLG/4vxgvU5L+z7x2Ee+5Lrov5AV0T+xt7S/R+qtPpXI+7oO4PE+G/ruPgg4VLs/1cY+hicuPzFS6b9EpyLA7P3jvJFaAb5ON9S/BzPNP6rfuz8GSFu/A1jKParYQj/zbNK/4vxgvU5L+z7x2Ee+5Lrov5AV0T+xt7S/4vxgvU5L+z7x2Ee+5Lrov5AV0T+xt7S/fC+KvbW9BL/E0Ei+LHDhv9751r/fMLG/R+qtPpXI+7oO4PE+G/ruPgg4VLs/1cY+WauOvrkFxz9V15o/mi0JPUOgjz9xtew/mVJJPjWK/j71mDK+PzTvvt380z+4YKy/r07NPycBhD+riVi/E6BjPpcy5btuNMy/R+qtPpXI+7oO4PE+G/ruPgg4VLs/1cY+7Wcdv85E176SUbg+mDlav/6WF78bJF0/AOl4v9rlej/lOq+/2rB7v42Mn70Wqne/4vxgvU5L+z7x2Ee+5Lrov5AV0T+xt7S/R+qtPpXI+7oO4PE+G/ruPgg4VLs/1cY+7nbpP+S8DcCeSwXABCmTvGHXYL/e19q/R+qtPpXI+7oO4PE+G/ruPgg4VLs/1cY+A92evXKq0b17IzS+rGjRvyImYb2hTq2/OtB6v0uVcD8/ca6/5Zd+v/jS3b00hnS/R+qtPpXI+7oO4PE+G/ruPgg4VLs/1cY+4nxyv+9axT83M6+/geBZv6B1hD/UmHO/R+qtPpXI+7oO4PE+G/ruPgg4VLs/1cY+Q3HAvz51xz/GrTQ/BABev26XiT9f3dA/R+qtPpXI+7oO4PE+G/ruPgg4VLs/1cY+lQisP0ipvj8sAl0/JJxHP4AhWj8fNSc+yMARwCIP0T/z8rY/uA9jPRNs3z/Gids/19ERwC07I8CjtMk/mIADvua3lL/BMNU/fRI1PyzQAT/2pDk/+uLKP3RHyD+9Ko8/lGgOS0BLBoaUaBJ0lFKUdS4=", "achieved_goal": "[[-5.4928668e-02 4.9080890e-01 -1.9516350e-01]\n [ 3.3967802e-01 -1.9209558e-03 4.7241253e-01]\n [-5.9017760e-01 -5.2948338e-01 3.7243006e-01]\n [ 3.3967802e-01 -1.9209558e-03 4.7241253e-01]\n [ 3.3967802e-01 -1.9209558e-03 4.7241253e-01]\n [-6.7473382e-02 -5.1851970e-01 -1.9610888e-01]\n [-9.4477051e-01 -1.5634266e+00 -1.3685263e+00]\n [-6.7473382e-02 -5.1851970e-01 -1.9610888e-01]\n [ 9.6884018e-01 -1.4541961e+00 7.6485705e-01]\n [-1.5476433e+00 -4.4460091e-01 6.7773557e-01]\n [-1.5554783e+00 4.8033538e-01 6.6106844e-01]\n [ 3.3967802e-01 -1.9209558e-03 4.7241253e-01]\n [ 3.3967802e-01 -1.9209558e-03 4.7241253e-01]\n [ 6.4500189e-01 -1.4428939e+00 -2.5678988e+00]\n [-5.8184004e-01 4.8875293e-01 3.6630782e-01]\n [ 1.2341969e+00 1.4826784e+00 1.3791034e+00]\n [-7.3968297e-01 -2.2817328e+00 -4.8921558e-01]\n [-5.9017760e-01 -5.2948338e-01 3.7243006e-01]\n [-5.8184004e-01 4.8875293e-01 3.6630782e-01]\n [ 3.3967802e-01 -1.9209558e-03 4.7241253e-01]\n [-6.7473382e-02 -5.1851970e-01 -1.9610888e-01]\n [-5.8184004e-01 4.8875293e-01 3.6630782e-01]\n [ 3.3967802e-01 -1.9209558e-03 4.7241253e-01]\n [ 3.3967802e-01 -1.9209558e-03 4.7241253e-01]\n [-5.0751799e-01 -5.3304046e-01 3.6425185e-01]\n [ 1.7264834e-01 -1.4644008e+00 -1.2997804e+00]\n [ 3.3967802e-01 -1.9209558e-03 4.7241253e-01]\n [ 3.3967802e-01 -1.9209558e-03 4.7241253e-01]\n [ 3.3967802e-01 -1.9209558e-03 4.7241253e-01]\n [-6.7473382e-02 -5.1851970e-01 -1.9610888e-01]\n [ 3.3967802e-01 -1.9209558e-03 4.7241253e-01]\n [-5.4928668e-02 4.9080890e-01 -1.9516350e-01]\n [ 7.0338142e-01 -4.7263759e-01 7.2549617e-01]\n [-5.4928668e-02 4.9080890e-01 -1.9516350e-01]\n [-6.7473382e-02 -5.1851970e-01 -1.9610888e-01]\n [-5.4928668e-02 4.9080890e-01 -1.9516350e-01]\n [ 3.3967802e-01 -1.9209558e-03 4.7241253e-01]\n [ 6.8029058e-01 -1.8228208e+00 -2.5414591e+00]\n [ 1.6031197e+00 1.4677632e+00 -8.5656774e-01]\n [-5.4928668e-02 4.9080890e-01 -1.9516350e-01]\n [-5.4928668e-02 4.9080890e-01 -1.9516350e-01]\n [-6.7473382e-02 -5.1851970e-01 -1.9610888e-01]\n [ 3.3967802e-01 -1.9209558e-03 4.7241253e-01]\n [-2.7865103e-01 1.5548621e+00 1.2096964e+00]\n [ 1.9660415e-01 4.9714819e-01 -1.7441161e-01]\n [ 1.6039637e+00 1.0312852e+00 -8.4585065e-01]\n [ 3.3967802e-01 -1.9209558e-03 4.7241253e-01]\n [-6.1486703e-01 -4.2044681e-01 3.5999733e-01]\n [-9.7230530e-01 9.8006976e-01 -1.3689848e+00]\n [-5.4928668e-02 4.9080890e-01 -1.9516350e-01]\n [ 3.3967802e-01 -1.9209558e-03 4.7241253e-01]\n [ 1.8239419e+00 -2.2146540e+00 -2.0827403e+00]\n [ 3.3967802e-01 -1.9209558e-03 4.7241253e-01]\n [-7.7569984e-02 -1.0237588e-01 -1.7591660e-01]\n [-9.7973979e-01 9.3977803e-01 -1.3628310e+00]\n [ 3.3967802e-01 -1.9209558e-03 4.7241253e-01]\n [-9.4721806e-01 1.5418376e+00 -1.3687505e+00]\n [ 3.3967802e-01 -1.9209558e-03 4.7241253e-01]\n [-1.5034565e+00 1.5582654e+00 7.0577657e-01]\n [ 3.3967802e-01 -1.9209558e-03 4.7241253e-01]\n [ 1.3440119e+00 1.4895411e+00 8.6331439e-01]\n [-2.2773914e+00 1.6332743e+00 1.4292892e+00]\n [-2.2784326e+00 -2.5504868e+00 1.5758251e+00]\n [ 7.0731336e-01 5.0708270e-01 7.2517335e-01]]", "desired_goal": "[[-0.6042209 1.1912079 -1.3219917 ]\n [ 0.8931546 -1.5482783 -0.14997964]\n [-1.2138054 -0.9871339 0.536462 ]\n [-0.349306 -1.62554 -1.3017622 ]\n [-1.0433109 -0.49239537 -1.5508692 ]\n [-1.0354625 -0.31297618 -0.7375675 ]\n [-0.32467994 -1.3299994 -1.0445495 ]\n [-0.9871917 -0.8475665 -0.1675923 ]\n [ 0.8296227 -1.6005952 0.36198956]\n [-0.92261904 -0.08697137 1.1010214 ]\n [-1.3121758 0.18810205 1.5435773 ]\n [-1.2363461 1.1879643 0.74525756]\n [-1.5636814 -0.4478632 -0.8525201 ]\n [ 0.61875594 -0.73738027 -1.5332285 ]\n [-0.5791767 0.7119469 1.4064841 ]\n [ 1.4452578 1.4004413 1.4729966 ]\n [ 0.37539142 -1.642141 0.5052257 ]\n [-1.3925695 -0.8101778 1.3779986 ]\n [-0.19592062 0.86972755 0.900575 ]\n [-1.3830118 1.2776961 -0.8141331 ]\n [ 0.25873825 -0.90768623 -0.6973061 ]\n [-0.9306446 1.2462665 1.2995273 ]\n [-1.4837242 -0.11396565 -0.39793774]\n [-0.9477778 0.5853993 0.17712593]\n [-1.2882137 -1.5953853 0.30686295]\n [ 0.5760919 -1.4250739 -0.4829394 ]\n [ 0.03848764 1.1545056 0.14522286]\n [-1.0839478 -0.1798409 0.91376626]\n [ 0.24400878 -1.3235998 -0.5805431 ]\n [-1.1634502 -0.42780262 -0.1561016 ]\n [ 0.7139072 -0.07501563 -1.1938045 ]\n [-1.1478347 0.2321902 -0.2524005 ]\n [ 1.1497488 -0.798097 1.5214442 ]\n [-0.10500003 0.277506 -0.53952336]\n [-1.3547249 -0.9860415 -0.14575683]\n [-0.48925406 0.13027911 -0.77450603]\n [-0.42736167 0.56042576 0.2096543 ]\n [ 0.7077705 -0.9270058 -1.5077007 ]\n [ 1.4074891 1.578548 -0.3809153 ]\n [-1.3708194 1.5132083 -1.3802892 ]\n [ 0.37473994 0.26757318 -0.7094886 ]\n [-0.07586732 -0.9828786 -0.99813557]\n [ 0.97689646 0.5968695 0.67070365]\n [ 0.09316479 0.91376346 1.6541847 ]\n [ 0.59470075 1.3532227 -0.67156035]\n [ 1.1715007 0.27215785 -0.7777238 ]\n [ 0.3497225 -0.16651727 -0.5767245 ]\n [-1.4419956 -0.2549483 1.5362408 ]\n [ 0.1450773 0.5192855 -1.421505 ]\n [-0.01067814 0.47251323 -1.1856152 ]\n [-0.7161597 -0.9272746 0.6987156 ]\n [ 1.5827427 -1.3992306 -1.2036374 ]\n [-0.99154925 0.8273849 -0.5318545 ]\n [-1.2087458 -0.0240514 -0.20854253]\n [-0.4226297 0.24776562 -1.1753416 ]\n [ 0.18577616 0.98861647 -0.8314697 ]\n [-0.22046386 0.75356716 -1.5193379 ]\n [-0.9617585 -0.26939029 1.0802029 ]\n [-1.3996166 1.0853378 0.86734724]\n [-1.4693252 1.2174658 0.55134314]\n [ 1.6664336 1.1598046 0.84932554]\n [-1.5022302 0.61191595 1.2716244 ]\n [-0.85552543 -1.1353068 1.6545306 ]\n [ 0.6544444 1.1681093 0.96395516]]", "observation": "[[-5.4928668e-02 4.9080890e-01 -1.9516350e-01 -1.8182034e+00\n 1.6334705e+00 -1.4118558e+00]\n [ 3.3967802e-01 -1.9209558e-03 4.7241253e-01 4.6675190e-01\n -3.2382030e-03 3.8834569e-01]\n [-5.9017760e-01 -5.2948338e-01 3.7243006e-01 -8.0331671e-01\n -1.6378369e+00 9.0020704e-01]\n [ 3.3967802e-01 -1.9209558e-03 4.7241253e-01 4.6675190e-01\n -3.2382030e-03 3.8834569e-01]\n [ 3.3967802e-01 -1.9209558e-03 4.7241253e-01 4.6675190e-01\n -3.2382030e-03 3.8834569e-01]\n [-6.7473382e-02 -5.1851970e-01 -1.9610888e-01 -1.7612357e+00\n -1.6795003e+00 -1.3843039e+00]\n [-9.4477051e-01 -1.5634266e+00 -1.3685263e+00 -7.3298311e-01\n -9.7405183e-01 -9.5185465e-01]\n [-6.7473382e-02 -5.1851970e-01 -1.9610888e-01 -1.7612357e+00\n -1.6795003e+00 -1.3843039e+00]\n [ 9.6884018e-01 -1.4541961e+00 7.6485705e-01 6.2102419e-01\n -9.5764357e-01 1.0326198e+00]\n [-1.5476433e+00 -4.4460091e-01 6.7773557e-01 -7.2481734e-01\n -2.5516337e-01 1.5504112e+00]\n [-1.5554783e+00 4.8033538e-01 6.6106844e-01 -8.0666924e-01\n -7.5154716e-01 1.4587147e+00]\n [ 3.3967802e-01 -1.9209558e-03 4.7241253e-01 4.6675190e-01\n -3.2382030e-03 3.8834569e-01]\n [ 3.3967802e-01 -1.9209558e-03 4.7241253e-01 4.6675190e-01\n -3.2382030e-03 3.8834569e-01]\n [ 6.4500189e-01 -1.4428939e+00 -2.5678988e+00 4.1673586e-02\n 8.7352079e-01 -1.6803818e+00]\n [-5.8184004e-01 4.8875293e-01 3.6630782e-01 -7.4369675e-01\n 1.6424021e+00 8.8734663e-01]\n [ 1.2341969e+00 1.4826784e+00 1.3791034e+00 1.0825595e+00\n 8.6315316e-01 1.4934824e+00]\n [-7.3968297e-01 -2.2817328e+00 -4.8921558e-01 1.5318402e+00\n -6.7490149e-01 -3.5079706e-01]\n [-5.9017760e-01 -5.2948338e-01 3.7243006e-01 -8.0331671e-01\n -1.6378369e+00 9.0020704e-01]\n [-5.8184004e-01 4.8875293e-01 3.6630782e-01 -7.4369675e-01\n 1.6424021e+00 8.8734663e-01]\n [ 3.3967802e-01 -1.9209558e-03 4.7241253e-01 4.6675190e-01\n -3.2382030e-03 3.8834569e-01]\n [-6.7473382e-02 -5.1851970e-01 -1.9610888e-01 -1.7612357e+00\n -1.6795003e+00 -1.3843039e+00]\n [-5.8184004e-01 4.8875293e-01 3.6630782e-01 -7.4369675e-01\n 1.6424021e+00 8.8734663e-01]\n [ 3.3967802e-01 -1.9209558e-03 4.7241253e-01 4.6675190e-01\n -3.2382030e-03 3.8834569e-01]\n [ 3.3967802e-01 -1.9209558e-03 4.7241253e-01 4.6675190e-01\n -3.2382030e-03 3.8834569e-01]\n [-5.0751799e-01 -5.3304046e-01 3.6425185e-01 -9.7514915e-01\n -1.6425325e+00 8.3479184e-01]\n [ 1.7264834e-01 -1.4644008e+00 -1.2997804e+00 1.6410768e+00\n -7.5702751e-01 -1.4706296e+00]\n [ 3.3967802e-01 -1.9209558e-03 4.7241253e-01 4.6675190e-01\n -3.2382030e-03 3.8834569e-01]\n [ 3.3967802e-01 -1.9209558e-03 4.7241253e-01 4.6675190e-01\n -3.2382030e-03 3.8834569e-01]\n [ 3.3967802e-01 -1.9209558e-03 4.7241253e-01 4.6675190e-01\n -3.2382030e-03 3.8834569e-01]\n [-6.7473382e-02 -5.1851970e-01 -1.9610888e-01 -1.7612357e+00\n -1.6795003e+00 -1.3843039e+00]\n [ 3.3967802e-01 -1.9209558e-03 4.7241253e-01 4.6675190e-01\n -3.2382030e-03 3.8834569e-01]\n [-5.4928668e-02 4.9080890e-01 -1.9516350e-01 -1.8182034e+00\n 1.6334705e+00 -1.4118558e+00]\n [ 7.0338142e-01 -4.7263759e-01 7.2549617e-01 1.6246920e+00\n -1.5786669e+00 1.1423597e+00]\n [-5.4928668e-02 4.9080890e-01 -1.9516350e-01 -1.8182034e+00\n 1.6334705e+00 -1.4118558e+00]\n [-6.7473382e-02 -5.1851970e-01 -1.9610888e-01 -1.7612357e+00\n -1.6795003e+00 -1.3843039e+00]\n [-5.4928668e-02 4.9080890e-01 -1.9516350e-01 -1.8182034e+00\n 1.6334705e+00 -1.4118558e+00]\n [ 3.3967802e-01 -1.9209558e-03 4.7241253e-01 4.6675190e-01\n -3.2382030e-03 3.8834569e-01]\n [ 6.8029058e-01 -1.8228208e+00 -2.5414591e+00 -2.7831040e-02\n -1.2632205e-01 -1.6579378e+00]\n [ 1.6031197e+00 1.4677632e+00 -8.5656774e-01 9.8800682e-02\n 7.6111853e-01 -1.6439499e+00]\n [-5.4928668e-02 4.9080890e-01 -1.9516350e-01 -1.8182034e+00\n 1.6334705e+00 -1.4118558e+00]\n [-5.4928668e-02 4.9080890e-01 -1.9516350e-01 -1.8182034e+00\n 1.6334705e+00 -1.4118558e+00]\n [-6.7473382e-02 -5.1851970e-01 -1.9610888e-01 -1.7612357e+00\n -1.6795003e+00 -1.3843039e+00]\n [ 3.3967802e-01 -1.9209558e-03 4.7241253e-01 4.6675190e-01\n -3.2382030e-03 3.8834569e-01]\n [-2.7865103e-01 1.5548621e+00 1.2096964e+00 3.3490755e-02\n 1.1220783e+00 1.8492872e+00]\n [ 1.9660415e-01 4.9714819e-01 -1.7441161e-01 -4.6719548e-01\n 1.6561543e+00 -1.3467016e+00]\n [ 1.6039637e+00 1.0312852e+00 -8.4585065e-01 2.2229032e-01\n -6.9945562e-03 -1.5953500e+00]\n [ 3.3967802e-01 -1.9209558e-03 4.7241253e-01 4.6675190e-01\n -3.2382030e-03 3.8834569e-01]\n [-6.1486703e-01 -4.2044681e-01 3.5999733e-01 -8.5244131e-01\n -5.9214771e-01 8.6383218e-01]\n [-9.7230530e-01 9.8006976e-01 -1.3689848e+00 -9.8316729e-01\n -7.7904798e-02 -9.6743906e-01]\n [-5.4928668e-02 4.9080890e-01 -1.9516350e-01 -1.8182034e+00\n 1.6334705e+00 -1.4118558e+00]\n [ 3.3967802e-01 -1.9209558e-03 4.7241253e-01 4.6675190e-01\n -3.2382030e-03 3.8834569e-01]\n [ 1.8239419e+00 -2.2146540e+00 -2.0827403e+00 -1.7963894e-02\n -8.7828642e-01 -1.7097127e+00]\n [ 3.3967802e-01 -1.9209558e-03 4.7241253e-01 4.6675190e-01\n -3.2382030e-03 3.8834569e-01]\n [-7.7569984e-02 -1.0237588e-01 -1.7591660e-01 -1.6360068e+00\n -5.4968007e-02 -1.3539621e+00]\n [-9.7973979e-01 9.3977803e-01 -1.3628310e+00 -9.9450523e-01\n -1.0831255e-01 -9.5517278e-01]\n [ 3.3967802e-01 -1.9209558e-03 4.7241253e-01 4.6675190e-01\n -3.2382030e-03 3.8834569e-01]\n [-9.4721806e-01 1.5418376e+00 -1.3687505e+00 -8.5108191e-01\n 1.0348396e+00 -9.5155072e-01]\n [ 3.3967802e-01 -1.9209558e-03 4.7241253e-01 4.6675190e-01\n -3.2382030e-03 3.8834569e-01]\n [-1.5034565e+00 1.5582654e+00 7.0577657e-01 -8.6718774e-01\n 1.0749338e+00 1.6317557e+00]\n [ 3.3967802e-01 -1.9209558e-03 4.7241253e-01 4.6675190e-01\n -3.2382030e-03 3.8834569e-01]\n [ 1.3440119e+00 1.4895411e+00 8.6331439e-01 7.7972627e-01\n 8.5207367e-01 1.6328858e-01]\n [-2.2773914e+00 1.6332743e+00 1.4292892e+00 5.5434912e-02\n 1.7454857e+00 1.7151420e+00]\n [-2.2784326e+00 -2.5504868e+00 1.5758251e+00 -1.2842023e-01\n -1.1618621e+00 1.6655504e+00]\n [ 7.0731336e-01 5.0708270e-01 7.2517335e-01 1.5850518e+00\n 1.5646806e+00 1.1184918e+00]]"}, "_last_episode_starts": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVtAAAAAAAAACME251bXB5Ll9jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWQAAAAAAAAAAAAQABAQAAAAAAAAEBAAAAAAAAAQAAAQEAAAEBAQABAAAAAAABAAAAAAABAAAAAQAAAAEAAQAAAQABAAEAAAAAlIwFbnVtcHmUjAVkdHlwZZSTlIwCYjGUiYiHlFKUKEsDjAF8lE5OTkr/////Sv////9LAHSUYktAhZSMAUOUdJRSlC4="}, "_last_original_obs": {":type:": "<class 'collections.OrderedDict'>", ":serialized:": "gAWV/AwAAAAAAACMC2NvbGxlY3Rpb25zlIwLT3JkZXJlZERpY3SUk5QpUpQojA1hY2hpZXZlZF9nb2FslIwTbnVtcHkuX2NvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYAAwAAAAAAAOpyHT0BahqsQyNKPupyHT0BahqsQyNKPupyHT0BahqsQyNKPupyHT0BahqsQyNKPupyHT0BahqsQyNKPupyHT0BahqsQyNKPupyHT0BahqsQyNKPupyHT0BahqsQyNKPupyHT0BahqsQyNKPupyHT0BahqsQyNKPupyHT0BahqsQyNKPupyHT0BahqsQyNKPupyHT0BahqsQyNKPupyHT0BahqsQyNKPupyHT0BahqsQyNKPupyHT0BahqsQyNKPupyHT0BahqsQyNKPupyHT0BahqsQyNKPupyHT0BahqsQyNKPupyHT0BahqsQyNKPupyHT0BahqsQyNKPupyHT0BahqsQyNKPupyHT0BahqsQyNKPupyHT0BahqsQyNKPupyHT0BahqsQyNKPupyHT0BahqsQyNKPupyHT0BahqsQyNKPupyHT0BahqsQyNKPupyHT0BahqsQyNKPupyHT0BahqsQyNKPupyHT0BahqsQyNKPupyHT0BahqsQyNKPupyHT0BahqsQyNKPupyHT0BahqsQyNKPupyHT0BahqsQyNKPupyHT0BahqsQyNKPupyHT0BahqsQyNKPupyHT0BahqsQyNKPupyHT0BahqsQyNKPupyHT0BahqsQyNKPupyHT0BahqsQyNKPupyHT0BahqsQyNKPupyHT0BahqsQyNKPupyHT0BahqsQyNKPupyHT0BahqsQyNKPupyHT0BahqsQyNKPupyHT0BahqsQyNKPupyHT0BahqsQyNKPupyHT0BahqsQyNKPupyHT0BahqsQyNKPupyHT0BahqsQyNKPupyHT0BahqsQyNKPupyHT0BahqsQyNKPupyHT0BahqsQyNKPupyHT0BahqsQyNKPupyHT0BahqsQyNKPupyHT0BahqsQyNKPupyHT0BahqsQyNKPupyHT0BahqsQyNKPupyHT0BahqsQyNKPupyHT0BahqsQyNKPupyHT0BahqsQyNKPupyHT0BahqsQyNKPupyHT0BahqsQyNKPpSMBW51bXB5lIwFZHR5cGWUk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGJLQEsDhpSMAUOUdJRSlIwMZGVzaXJlZF9nb2FslGgHKJYAAwAAAAAAAE0e1rxdMR29p//GPXDf1b25OYu9nlyZPv26AT7mtGG9hYJVPsQSD75sKOU9+VOEPhlKc7uNCQY+LpNuPrNNij2PCxo91PENPqrZGbxkiEI94BuGPv4uqz1goAM+6CLiPRx/vj3xgie82oSpPed9nLztFdg9edsiPg7HYD2Tnci8pA8KPLLDGD4hSpm9fusAPp+j272Cls29zv+JPdkqED2aIt49zJoOPU+VAz4HSte9C31RPksiGL68a4G9/VaaPfl9Yj3YTki921+CPjXOvb2bsQO+Y2w3PRSliz2AweK9PHqePUdoCr4Mt/k8kNI6Pih+0D17evi8/on2PYeFnj2kgoI9epaJPnRHoz2Q85E9onc0Pvm62D0LhAq+5I9xPmM92LyD9ZA9Bom1Peg4Fz5Pxha8eZRdPiU7zTxPxOa9Fi1lPiYzvj2m/kA9QWw8PuDOtr1QT6i8D7oJPvTW571iVXs93vIIPgv8pL2RrHo9jq5MPv+z7710Sbq9dKTZPQKmBb5hwwQ+LQN6PhDGtj0SDM09OlFtPr/kxb0K5Z29AHo+PTCTtD2BxH49Y7XJPT3VBD3LrOi97SI6PQ5jKDyth6E8ZYxSPnX04z0bctc9aChEPiQUIzye9ea9n1pvPXBNBL7iI7C8JZWNPn7sEb1eLRk+/1KAPmM2vj2WEo296MUDPmIQij0EfxQ+gf9qPl83ET6gQxW+CbIxPrZp8z2ZrQ+9oYcLPmKECj6yweo77tedPN+DEz7EQmK97DIqPjQijr1I6gw9Y6aOPngazT0jcwy9hnlHPhnm6LyX3w2+L1yFPqDuUj08wrk9uKfWPd8vCD63dxk+CIWgPQY18LzZbFS9sKo+Pv7RWD3AV08606wtPhCsm73+LBK7yXYHPnfW8b2Rr0A94TciPpbk1jvcZLs9TSl7PiUVFr5UOA0+SXqGPmfT0j2+/cI9kQo3Ppavxr2ha8k80bk8PunfpTxwQQM+eVpAPaT9ijxYyxI+nVqUPrOBI70ml/49/5wDPpRoDktASwOGlGgSdJRSlIwLb2JzZXJ2YXRpb26UaAcolgAGAAAAAAAA6nIdPQFqGqxDI0o+AAAAAAAAAIAAAAAA6nIdPQFqGqxDI0o+AAAAAAAAAIAAAAAA6nIdPQFqGqxDI0o+AAAAAAAAAIAAAAAA6nIdPQFqGqxDI0o+AAAAAAAAAIAAAAAA6nIdPQFqGqxDI0o+AAAAAAAAAIAAAAAA6nIdPQFqGqxDI0o+AAAAAAAAAIAAAAAA6nIdPQFqGqxDI0o+AAAAAAAAAIAAAAAA6nIdPQFqGqxDI0o+AAAAAAAAAIAAAAAA6nIdPQFqGqxDI0o+AAAAAAAAAIAAAAAA6nIdPQFqGqxDI0o+AAAAAAAAAIAAAAAA6nIdPQFqGqxDI0o+AAAAAAAAAIAAAAAA6nIdPQFqGqxDI0o+AAAAAAAAAIAAAAAA6nIdPQFqGqxDI0o+AAAAAAAAAIAAAAAA6nIdPQFqGqxDI0o+AAAAAAAAAIAAAAAA6nIdPQFqGqxDI0o+AAAAAAAAAIAAAAAA6nIdPQFqGqxDI0o+AAAAAAAAAIAAAAAA6nIdPQFqGqxDI0o+AAAAAAAAAIAAAAAA6nIdPQFqGqxDI0o+AAAAAAAAAIAAAAAA6nIdPQFqGqxDI0o+AAAAAAAAAIAAAAAA6nIdPQFqGqxDI0o+AAAAAAAAAIAAAAAA6nIdPQFqGqxDI0o+AAAAAAAAAIAAAAAA6nIdPQFqGqxDI0o+AAAAAAAAAIAAAAAA6nIdPQFqGqxDI0o+AAAAAAAAAIAAAAAA6nIdPQFqGqxDI0o+AAAAAAAAAIAAAAAA6nIdPQFqGqxDI0o+AAAAAAAAAIAAAAAA6nIdPQFqGqxDI0o+AAAAAAAAAIAAAAAA6nIdPQFqGqxDI0o+AAAAAAAAAIAAAAAA6nIdPQFqGqxDI0o+AAAAAAAAAIAAAAAA6nIdPQFqGqxDI0o+AAAAAAAAAIAAAAAA6nIdPQFqGqxDI0o+AAAAAAAAAIAAAAAA6nIdPQFqGqxDI0o+AAAAAAAAAIAAAAAA6nIdPQFqGqxDI0o+AAAAAAAAAIAAAAAA6nIdPQFqGqxDI0o+AAAAAAAAAIAAAAAA6nIdPQFqGqxDI0o+AAAAAAAAAIAAAAAA6nIdPQFqGqxDI0o+AAAAAAAAAIAAAAAA6nIdPQFqGqxDI0o+AAAAAAAAAIAAAAAA6nIdPQFqGqxDI0o+AAAAAAAAAIAAAAAA6nIdPQFqGqxDI0o+AAAAAAAAAIAAAAAA6nIdPQFqGqxDI0o+AAAAAAAAAIAAAAAA6nIdPQFqGqxDI0o+AAAAAAAAAIAAAAAA6nIdPQFqGqxDI0o+AAAAAAAAAIAAAAAA6nIdPQFqGqxDI0o+AAAAAAAAAIAAAAAA6nIdPQFqGqxDI0o+AAAAAAAAAIAAAAAA6nIdPQFqGqxDI0o+AAAAAAAAAIAAAAAA6nIdPQFqGqxDI0o+AAAAAAAAAIAAAAAA6nIdPQFqGqxDI0o+AAAAAAAAAIAAAAAA6nIdPQFqGqxDI0o+AAAAAAAAAIAAAAAA6nIdPQFqGqxDI0o+AAAAAAAAAIAAAAAA6nIdPQFqGqxDI0o+AAAAAAAAAIAAAAAA6nIdPQFqGqxDI0o+AAAAAAAAAIAAAAAA6nIdPQFqGqxDI0o+AAAAAAAAAIAAAAAA6nIdPQFqGqxDI0o+AAAAAAAAAIAAAAAA6nIdPQFqGqxDI0o+AAAAAAAAAIAAAAAA6nIdPQFqGqxDI0o+AAAAAAAAAIAAAAAA6nIdPQFqGqxDI0o+AAAAAAAAAIAAAAAA6nIdPQFqGqxDI0o+AAAAAAAAAIAAAAAA6nIdPQFqGqxDI0o+AAAAAAAAAIAAAAAA6nIdPQFqGqxDI0o+AAAAAAAAAIAAAAAA6nIdPQFqGqxDI0o+AAAAAAAAAIAAAAAA6nIdPQFqGqxDI0o+AAAAAAAAAIAAAAAA6nIdPQFqGqxDI0o+AAAAAAAAAIAAAAAA6nIdPQFqGqxDI0o+AAAAAAAAAIAAAAAA6nIdPQFqGqxDI0o+AAAAAAAAAIAAAAAA6nIdPQFqGqxDI0o+AAAAAAAAAIAAAAAAlGgOS0BLBoaUaBJ0lFKUdS4=", "achieved_goal": "[[ 3.8439669e-02 -2.1943560e-12 1.9740014e-01]\n [ 3.8439669e-02 -2.1943560e-12 1.9740014e-01]\n [ 3.8439669e-02 -2.1943560e-12 1.9740014e-01]\n [ 3.8439669e-02 -2.1943560e-12 1.9740014e-01]\n [ 3.8439669e-02 -2.1943560e-12 1.9740014e-01]\n [ 3.8439669e-02 -2.1943560e-12 1.9740014e-01]\n [ 3.8439669e-02 -2.1943560e-12 1.9740014e-01]\n [ 3.8439669e-02 -2.1943560e-12 1.9740014e-01]\n [ 3.8439669e-02 -2.1943560e-12 1.9740014e-01]\n [ 3.8439669e-02 -2.1943560e-12 1.9740014e-01]\n [ 3.8439669e-02 -2.1943560e-12 1.9740014e-01]\n [ 3.8439669e-02 -2.1943560e-12 1.9740014e-01]\n [ 3.8439669e-02 -2.1943560e-12 1.9740014e-01]\n [ 3.8439669e-02 -2.1943560e-12 1.9740014e-01]\n [ 3.8439669e-02 -2.1943560e-12 1.9740014e-01]\n [ 3.8439669e-02 -2.1943560e-12 1.9740014e-01]\n [ 3.8439669e-02 -2.1943560e-12 1.9740014e-01]\n [ 3.8439669e-02 -2.1943560e-12 1.9740014e-01]\n [ 3.8439669e-02 -2.1943560e-12 1.9740014e-01]\n [ 3.8439669e-02 -2.1943560e-12 1.9740014e-01]\n [ 3.8439669e-02 -2.1943560e-12 1.9740014e-01]\n [ 3.8439669e-02 -2.1943560e-12 1.9740014e-01]\n [ 3.8439669e-02 -2.1943560e-12 1.9740014e-01]\n [ 3.8439669e-02 -2.1943560e-12 1.9740014e-01]\n [ 3.8439669e-02 -2.1943560e-12 1.9740014e-01]\n [ 3.8439669e-02 -2.1943560e-12 1.9740014e-01]\n [ 3.8439669e-02 -2.1943560e-12 1.9740014e-01]\n [ 3.8439669e-02 -2.1943560e-12 1.9740014e-01]\n [ 3.8439669e-02 -2.1943560e-12 1.9740014e-01]\n [ 3.8439669e-02 -2.1943560e-12 1.9740014e-01]\n [ 3.8439669e-02 -2.1943560e-12 1.9740014e-01]\n [ 3.8439669e-02 -2.1943560e-12 1.9740014e-01]\n [ 3.8439669e-02 -2.1943560e-12 1.9740014e-01]\n [ 3.8439669e-02 -2.1943560e-12 1.9740014e-01]\n [ 3.8439669e-02 -2.1943560e-12 1.9740014e-01]\n [ 3.8439669e-02 -2.1943560e-12 1.9740014e-01]\n [ 3.8439669e-02 -2.1943560e-12 1.9740014e-01]\n [ 3.8439669e-02 -2.1943560e-12 1.9740014e-01]\n [ 3.8439669e-02 -2.1943560e-12 1.9740014e-01]\n [ 3.8439669e-02 -2.1943560e-12 1.9740014e-01]\n [ 3.8439669e-02 -2.1943560e-12 1.9740014e-01]\n [ 3.8439669e-02 -2.1943560e-12 1.9740014e-01]\n [ 3.8439669e-02 -2.1943560e-12 1.9740014e-01]\n [ 3.8439669e-02 -2.1943560e-12 1.9740014e-01]\n [ 3.8439669e-02 -2.1943560e-12 1.9740014e-01]\n [ 3.8439669e-02 -2.1943560e-12 1.9740014e-01]\n [ 3.8439669e-02 -2.1943560e-12 1.9740014e-01]\n [ 3.8439669e-02 -2.1943560e-12 1.9740014e-01]\n [ 3.8439669e-02 -2.1943560e-12 1.9740014e-01]\n [ 3.8439669e-02 -2.1943560e-12 1.9740014e-01]\n [ 3.8439669e-02 -2.1943560e-12 1.9740014e-01]\n [ 3.8439669e-02 -2.1943560e-12 1.9740014e-01]\n [ 3.8439669e-02 -2.1943560e-12 1.9740014e-01]\n [ 3.8439669e-02 -2.1943560e-12 1.9740014e-01]\n [ 3.8439669e-02 -2.1943560e-12 1.9740014e-01]\n [ 3.8439669e-02 -2.1943560e-12 1.9740014e-01]\n [ 3.8439669e-02 -2.1943560e-12 1.9740014e-01]\n [ 3.8439669e-02 -2.1943560e-12 1.9740014e-01]\n [ 3.8439669e-02 -2.1943560e-12 1.9740014e-01]\n [ 3.8439669e-02 -2.1943560e-12 1.9740014e-01]\n [ 3.8439669e-02 -2.1943560e-12 1.9740014e-01]\n [ 3.8439669e-02 -2.1943560e-12 1.9740014e-01]\n [ 3.8439669e-02 -2.1943560e-12 1.9740014e-01]\n [ 3.8439669e-02 -2.1943560e-12 1.9740014e-01]]", "desired_goal": "[[-0.0261375 -0.03837715 0.09716731]\n [-0.10443008 -0.06798119 0.29953474]\n [ 0.12668987 -0.05510416 0.2085057 ]\n [-0.13972002 0.1118935 0.25845316]\n [-0.0037123 0.13089581 0.23298332]\n [ 0.06753101 0.03760868 0.13861781]\n [-0.00939027 0.04749335 0.26193142]\n [ 0.08358572 0.12854147 0.11041814]\n [ 0.09301588 -0.01022409 0.08277293]\n [-0.019103 0.10551057 0.15904035]\n [ 0.05487733 -0.0244892 0.00842658]\n [ 0.14918402 -0.07484842 0.12589833]\n [-0.10724568 -0.10038473 0.06738244]\n [ 0.03519711 0.10846443 0.03481559]\n [ 0.12849925 -0.10512166 0.20457856]\n [-0.14856832 -0.06319377 0.07536123]\n [ 0.05529592 -0.04890332 0.25463757]\n [-0.09267846 -0.1286072 0.0447811 ]\n [ 0.06818596 -0.11072063 0.07738158]\n [-0.13516341 0.03048279 0.18244386]\n [ 0.10180312 -0.03033184 0.12038039]\n [ 0.07740312 0.06372574 0.26872617]\n [ 0.07972613 0.07126534 0.17623761]\n [ 0.10582537 -0.13526933 0.23590046]\n [-0.02639646 0.07078078 0.08864026]\n [ 0.14767802 -0.00920255 0.21638669]\n [ 0.02505262 -0.11267912 0.2238048 ]\n [ 0.092871 0.04711785 0.1840067 ]\n [-0.08926177 -0.02054563 0.13449882]\n [-0.11320296 0.06136072 0.13373896]\n [-0.08055886 0.06119973 0.19988462]\n [-0.11704253 -0.09096041 0.1062707 ]\n [-0.13051608 0.12965156 0.24415274]\n [ 0.08924496 0.10012068 0.23175517]\n [-0.0966277 -0.07709701 0.04650307]\n [ 0.08817136 0.06219912 0.0984905 ]\n [ 0.03242992 -0.11361083 0.04544346]\n [ 0.01027752 0.01971802 0.20561369]\n [ 0.11130611 0.10519811 0.19156039]\n [ 0.00995353 -0.11277317 0.05843603]\n [-0.12920165 -0.02150149 0.2765285 ]\n [-0.03562593 0.14958712 0.2506332 ]\n [ 0.09287717 -0.06888311 0.12868464]\n [ 0.06741406 0.14501578 0.2294903 ]\n [ 0.14181279 -0.14576578 0.17353071]\n [ 0.11885397 -0.03507767 0.13625957]\n [ 0.13527063 0.0071642 0.019268 ]\n [ 0.14405774 -0.05523945 0.16620988]\n [-0.06940117 0.03440312 0.27861318]\n [ 0.10014814 -0.03428949 0.19479951]\n [-0.02843003 -0.13854824 0.26046893]\n [ 0.0514971 0.0907025 0.10481209]\n [ 0.13299511 0.14987074 0.07837874]\n [-0.02932216 -0.05186162 0.186198 ]\n [ 0.05293464 0.00079095 0.16960458]\n [-0.07601178 -0.00223046 0.13228907]\n [-0.11808484 0.04704243 0.15841629]\n [ 0.00655801 0.09150097 0.24527474]\n [-0.14656503 0.13791019 0.2626517 ]\n [ 0.10294228 0.09521054 0.17875125]\n [-0.09701459 0.02458745 0.18430258]\n [ 0.02024837 0.12817931 0.04696128]\n [ 0.01696665 0.14335382 0.28975382]\n [-0.03991861 0.12431173 0.12852858]]", "observation": "[[ 3.8439669e-02 -2.1943560e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]\n [ 3.8439669e-02 -2.1943560e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]\n [ 3.8439669e-02 -2.1943560e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]\n [ 3.8439669e-02 -2.1943560e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]\n [ 3.8439669e-02 -2.1943560e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]\n [ 3.8439669e-02 -2.1943560e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]\n [ 3.8439669e-02 -2.1943560e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]\n [ 3.8439669e-02 -2.1943560e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]\n [ 3.8439669e-02 -2.1943560e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]\n [ 3.8439669e-02 -2.1943560e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]\n [ 3.8439669e-02 -2.1943560e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]\n [ 3.8439669e-02 -2.1943560e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]\n [ 3.8439669e-02 -2.1943560e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]\n [ 3.8439669e-02 -2.1943560e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]\n [ 3.8439669e-02 -2.1943560e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]\n [ 3.8439669e-02 -2.1943560e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]\n [ 3.8439669e-02 -2.1943560e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]\n [ 3.8439669e-02 -2.1943560e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]\n [ 3.8439669e-02 -2.1943560e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]\n [ 3.8439669e-02 -2.1943560e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]\n [ 3.8439669e-02 -2.1943560e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]\n [ 3.8439669e-02 -2.1943560e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]\n [ 3.8439669e-02 -2.1943560e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]\n [ 3.8439669e-02 -2.1943560e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]\n [ 3.8439669e-02 -2.1943560e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]\n [ 3.8439669e-02 -2.1943560e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]\n [ 3.8439669e-02 -2.1943560e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]\n [ 3.8439669e-02 -2.1943560e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]\n [ 3.8439669e-02 -2.1943560e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]\n [ 3.8439669e-02 -2.1943560e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]\n [ 3.8439669e-02 -2.1943560e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]\n [ 3.8439669e-02 -2.1943560e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]\n [ 3.8439669e-02 -2.1943560e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]\n [ 3.8439669e-02 -2.1943560e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]\n [ 3.8439669e-02 -2.1943560e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]\n [ 3.8439669e-02 -2.1943560e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]\n [ 3.8439669e-02 -2.1943560e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]\n [ 3.8439669e-02 -2.1943560e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]\n [ 3.8439669e-02 -2.1943560e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]\n [ 3.8439669e-02 -2.1943560e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]\n [ 3.8439669e-02 -2.1943560e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]\n [ 3.8439669e-02 -2.1943560e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]\n [ 3.8439669e-02 -2.1943560e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]\n [ 3.8439669e-02 -2.1943560e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]\n [ 3.8439669e-02 -2.1943560e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]\n [ 3.8439669e-02 -2.1943560e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]\n [ 3.8439669e-02 -2.1943560e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]\n [ 3.8439669e-02 -2.1943560e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]\n [ 3.8439669e-02 -2.1943560e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]\n [ 3.8439669e-02 -2.1943560e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]\n [ 3.8439669e-02 -2.1943560e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]\n [ 3.8439669e-02 -2.1943560e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]\n [ 3.8439669e-02 -2.1943560e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]\n [ 3.8439669e-02 -2.1943560e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]\n [ 3.8439669e-02 -2.1943560e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]\n [ 3.8439669e-02 -2.1943560e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]\n [ 3.8439669e-02 -2.1943560e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]\n [ 3.8439669e-02 -2.1943560e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]\n [ 3.8439669e-02 -2.1943560e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]\n [ 3.8439669e-02 -2.1943560e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]\n [ 3.8439669e-02 -2.1943560e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]\n [ 3.8439669e-02 -2.1943560e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]\n [ 3.8439669e-02 -2.1943560e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]\n [ 3.8439669e-02 -2.1943560e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]]"}, "_episode_num": 0, "use_sde": false, "sde_sample_freq": -1, "_current_progress_remaining": 0.0, "_stats_window_size": 100, "ep_info_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWV4AsAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpRHv83vOQhfShKMAWyUSwOMAXSUR0CEuo7HyVfNdX2UKGgGR7/RegL7XQMQaAdLA2gIR0CEulqgyuZDdX2UKGgGR7/WPRiPQv6CaAdLBWgIR0CEufD63y7PdX2UKGgGR7/OU1yeZof0aAdLA2gIR0CEuYWepXIVdX2UKGgGR7+39FWn0kGBaAdLAmgIR0CEuVFF2FFldX2UKGgGR7/KaqCHymQ9aAdLA2gIR0CEuESW7e2vdX2UKGgGR7+8y0rsjVx0aAdLAmgIR0CEt9jm0VrRdX2UKGgGR7/W3n6l+EytaAdLBGgIR0CEtwGOdXkpdX2UKGgGR7/MiUPhAGB4aAdLA2gIR0CEw+Q4CIUKdX2UKGgGR7/I9tdiUgSwaAdLA2gIR0CEw6y5Zr57dX2UKGgGR7+/HAAQxvehaAdLAmgIR0CEw0ENe+mFdX2UKGgGR7+VBMSK3uuzaAdLAWgIR0CEwZPrOZ9edX2UKGgGR7+/5LytmtheaAdLAmgIR0CEwV7MPjGUdX2UKGgGR7/R2Qnx8UmEaAdLA2gIR0CEwSjJMg2ZdX2UKGgGR7/RTB68g6ltaAdLBGgIR0CEwPLrX18LdX2UKGgGR7/HdJJ5E+gUaAdLA2gIR0CEwIhMajvedX2UKGgGR7+1RHf/FR51aAdLAmgIR0CEwB24d6sydX2UKGgGR7/L3N9ph4MXaAdLA2gIR0CEv+h6By0bdX2UKGgGR7/JJXhfjS5RaAdLA2gIR0CEv0kka/ATdX2UKGgGR7+87tAs052haAdLAmgIR0CEvjxYJVsDdX2UKGgGR7/QSk0rK/21aAdLA2gIR0CEvCI9kjHGdX2UKGgGR7/epV0cOskqaAdLBGgIR0CEu4GYa5wwdX2UKGgGR7/H3yqdYnv2aAdLA2gIR0CEuxch1TzedX2UKGgGR7/JLGrCFbmmaAdLA2gIR0CEug1uR9w4dX2UKGgGR7/Myv9tMwlCaAdLA2gIR0CEuWyFfzBidX2UKGgGR7/MZR8+iaiLaAdLA2gIR0CEuTfP5YYBdX2UKGgGR7/S4Ajps41haAdLA2gIR0CEuMwTufEodX2UKGgGR7+46YE4ecQRaAdLAmgIR0CEt/Pa+N96dX2UKGgGR7/UHxBmf5DaaAdLA2gIR0CEtx4FA3UAdX2UKGgGR7+zCoCMglniaAdLAmgIR0CEtugOjIq9dX2UKGgGR7+9zhgmZ3LWaAdLAmgIR0CEtqu/UONHdX2UKGgGR7+5qWTot+TeaAdLAmgIR0CEwvKdQO4HdX2UKGgGR7/TLt/nW8RMaAdLA2gIR0CEwoZgG8mKdX2UKGgGR7/Sz2vjfek6aAdLA2gIR0CEwlGLDQ7cdX2UKGgGR7/SdU83dbgTaAdLA2gIR0CEwhwSamXPdX2UKGgGR7+9bt7a7EpBaAdLAmgIR0CEwQ63iJfqdX2UKGgGR7/MbGWD6FdtaAdLA2gIR0CEv2UW2w3YdX2UKGgGR7/AZ2IO6NEPaAdLAmgIR0CEvvomois5dX2UKGgGR7/HhJAdGRV7aAdLA2gIR0CEveqm0mdBdX2UKGgGR7/WzRx95QgtaAdLA2gIR0CEvDxe9i+ddX2UKGgGR7+8Wac7QswtaAdLAmgIR0CEvAde6ZpjdX2UKGgGR7/EF6AvtdAxaAdLAmgIR0CEuzD1oQFtdX2UKGgGR7/LDkU9IPK/aAdLA2gIR0CEusc8TzundX2UKGgGR7+yRNh3JPqLaAdLAmgIR0CEupLQokRjdX2UKGgGR7+514gRsdkraAdLAmgIR0CEuidXko4NdX2UKGgGR7/HjjJdSl3yaAdLA2gIR0CEuVEfkmx/dX2UKGgGR7+yXBxgiNbUaAdLAmgIR0CEuOYpDu0DdX2UKGgGR7/CGFBY3eenaAdLA2gIR0CEuLBQemvXdX2UKGgGR7+02hqTKT0QaAdLAmgIR0CEuHsZ5zHTdX2UKGgGR7/O8KXv6TGHaAdLA2gIR0CEuA/TLGJfdX2UKGgGR7/SA5Jbt7a7aAdLA2gIR0CEt9oSteUqdX2UKGgGR7+9ChN/OMVDaAdLAmgIR0CEt6QwsXizdX2UKGgGR7++Q9zOoo/iaAdLAmgIR0CExITA31jBdX2UKGgGR7+45NoJzDGcaAdLAmgIR0CExE0O3DvWdX2UKGgGR7/ICxu89Oh1aAdLA2gIR0CExBeQ+2VndX2UKGgGR7/T+iJwbVBlaAdLA2gIR0CEw3c+JP69dX2UKGgGR7/JcoH9m6GyaAdLA2gIR0CEwwwqRU3odX2UKGgGR7/C5EMLF4s3aAdLAmgIR0CEwZQCSzPbdX2UKGgGR7/NNHH3lCC0aAdLA2gIR0CEwPOmixmkdX2UKGgGR7+ws+V1Oj7AaAdLAmgIR0CEwL6dDpkgdX2UKGgGR7/SNW2gFotdaAdLA2gIR0CEwFN1QqI8dX2UKGgGR7/XRTS9du50aAdLBGgIR0CEwB+LFXJYdX2UKGgGR7/GmgJ1JUYLaAdLA2gIR0CEv3/jsD4hdX2UKGgGR7/MjBVMmF8HaAdLA2gIR0CEvxTIeYD1dX2UKGgGR7/J5RCQcPvsaAdLA2gIR0CEvqa86FM7dX2UKGgGR7/IahHskY4yaAdLA2gIR0CEvnCtzS1FdX2UKGgGR7/R3nZCfHxSaAdLA2gIR0CEvgYR/ViGdX2UKGgGR7/VW5Yoy9EkaAdLA2gIR0CEvdDOTq0MdX2UKGgGR7/T9VFQVKwqaAdLA2gIR0CEvZuE25xzdX2UKGgGR7/X4LkS26TXaAdLBGgIR0CEvWSmqHXVdX2UKGgGR7/FpaA4GUwBaAdLA2gIR0CEvS+pOvdNdX2UKGgGR7+oxrSE12q2aAdLAWgIR0CEvFkZrHlwdX2UKGgGR7+z40uUUwi8aAdLAmgIR0CEvCO4oZyddX2UKGgGR7/M9AX2ugYhaAdLA2gIR0CEu+5paibldX2UKGgGR7/TSYgJTl1baAdLA2gIR0CEu07OE/SqdX2UKGgGR7/DS8an752yaAdLAmgIR0CEuq9kjHGTdX2UKGgGR7/KPjGT9sJqaAdLA2gIR0CEukTlkpZwdX2UKGgGR7/BQzk6tDD1aAdLAmgIR0CEuW4Qz1sddX2UKGgGR7/DKf4AS39aaAdLAmgIR0CEuJYNiH6/dX2UKGgGR7+9IbwSamXPaAdLAmgIR0CEt02dd3SsdX2UKGgGR7+iaJAMUh3aaAdLAWgIR0CExJ9tuUD/dX2UKGgGR7/RAVO9FnZkaAdLA2gIR0CExDPNVzZIdX2UKGgGR7/aT101ZTybaAdLBGgIR0CEw/8QZn+RdX2UKGgGR7/SXGOuJUHZaAdLA2gIR0CEwocFQl8gdX2UKGgGR7/PehPCVKPGaAdLA2gIR0CEwlHMlkYodX2UKGgGR7/DznRsuWa+aAdLA2gIR0CEwNqKP4mDdX2UKGgGR7/VcTJyQxN7aAdLA2gIR0CEwDrSE12rdX2UKGgGR7+2pYLb5/LDaAdLAmgIR0CEwAX3xnWbdX2UKGgGR79qkyk9ECvHaAdLAWgIR0CEv2VafSQYdX2UKGgGR7/TZaV2Rq46aAdLA2gIR0CEvy4xUNrkdX2UKGgGR7+llbu+h4+saAdLAWgIR0CEvvdB0ITodX2UKGgGR7/Bjvuw5eZ5aAdLAmgIR0CEvou8scyWdX2UKGgGR7/YFvhqCYkWaAdLBGgIR0CEvUiwjdHldX2UKGgGR7/MFaB7NSqEaAdLA2gIR0CEvAg7HQyAdX2UKGgGR7/Cq5LAYYR/aAdLAmgIR0CEuzNTLns+dX2UKGgGR7/UAH3UQTVUaAdLA2gIR0CEulzwtrbhdX2UKGgGR7+5r/KhcqvvaAdLAmgIR0CEufGcWj46dX2UKGgGR7+3NeMQ2/BWaAdLAmgIR0CEuVCFbmlqdX2UKGgGR7+oAlv60pmVaAdLAWgIR0CEuOSh8IAwdX2UKGgGR7/BOzposZpBaAdLAmgIR0CEuHnnMdLhdWUu"}, "ep_success_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVhgAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIhlLg=="}, "_n_updates": 3125, "n_steps": 5, "gamma": 0.99, "gae_lambda": 1.0, "ent_coef": 0.0, "vf_coef": 0.5, "max_grad_norm": 0.5, "rollout_buffer_class": {":type:": "<class 'abc.ABCMeta'>", ":serialized:": "gAWVOgAAAAAAAACMIHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5idWZmZXJzlIwRRGljdFJvbGxvdXRCdWZmZXKUk5Qu", "__module__": "stable_baselines3.common.buffers", "__annotations__": "{'observation_space': <class 'gymnasium.spaces.dict.Dict'>, 'obs_shape': typing.Dict[str, typing.Tuple[int, ...]], 'observations': typing.Dict[str, numpy.ndarray]}", "__doc__": "\n Dict Rollout buffer used in on-policy algorithms like A2C/PPO.\n Extends the RolloutBuffer to use dictionary observations\n\n It corresponds to ``buffer_size`` transitions collected\n using the current policy.\n This experience will be discarded after the policy update.\n In order to use PPO objective, we also store the current value of each state\n and the log probability of each taken action.\n\n The term rollout here refers to the model-free notion and should not\n be used with the concept of rollout used in model-based RL or planning.\n Hence, it is only involved in policy and value function training but not action selection.\n\n :param buffer_size: Max number of element in the buffer\n :param observation_space: Observation space\n :param action_space: Action space\n :param device: PyTorch device\n :param gae_lambda: Factor for trade-off of bias vs variance for Generalized Advantage Estimator\n Equivalent to Monte-Carlo advantage estimate when set to 1.\n :param gamma: Discount factor\n :param n_envs: Number of parallel environments\n ", "__init__": "<function DictRolloutBuffer.__init__ at 0x1323cbeb0>", "reset": "<function DictRolloutBuffer.reset at 0x1323cbf40>", "add": "<function DictRolloutBuffer.add at 0x1323d8040>", "get": "<function DictRolloutBuffer.get at 0x1323d80d0>", "_get_samples": "<function DictRolloutBuffer._get_samples at 0x1323d8160>", "__abstractmethods__": "frozenset()", "_abc_impl": "<_abc._abc_data object at 0x13237dd80>"}, "rollout_buffer_kwargs": {}, "normalize_advantage": false, "observation_space": {":type:": "<class 'gymnasium.spaces.dict.Dict'>", ":serialized:": "gAWVsQMAAAAAAACMFWd5bW5hc2l1bS5zcGFjZXMuZGljdJSMBERpY3SUk5QpgZR9lCiMBnNwYWNlc5SMC2NvbGxlY3Rpb25zlIwLT3JkZXJlZERpY3SUk5QpUpQojA1hY2hpZXZlZF9nb2FslIwUZ3ltbmFzaXVtLnNwYWNlcy5ib3iUjANCb3iUk5QpgZR9lCiMBWR0eXBllIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYowNYm91bmRlZF9iZWxvd5SME251bXB5Ll9jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWAwAAAAAAAAABAQGUaBOMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLA4WUjAFDlHSUUpSMDWJvdW5kZWRfYWJvdmWUaBwolgMAAAAAAAAAAQEBlGggSwOFlGgkdJRSlIwGX3NoYXBllEsDhZSMA2xvd5RoHCiWDAAAAAAAAAAAACDBAAAgwQAAIMGUaBZLA4WUaCR0lFKUjARoaWdolGgcKJYMAAAAAAAAAAAAIEEAACBBAAAgQZRoFksDhZRoJHSUUpSMCGxvd19yZXBylIwFLTEwLjCUjAloaWdoX3JlcHKUjAQxMC4wlIwKX25wX3JhbmRvbZROdWKMDGRlc2lyZWRfZ29hbJRoDSmBlH2UKGgQaBZoGWgcKJYDAAAAAAAAAAEBAZRoIEsDhZRoJHSUUpRoJ2gcKJYDAAAAAAAAAAEBAZRoIEsDhZRoJHSUUpRoLEsDhZRoLmgcKJYMAAAAAAAAAAAAIMEAACDBAAAgwZRoFksDhZRoJHSUUpRoM2gcKJYMAAAAAAAAAAAAIEEAACBBAAAgQZRoFksDhZRoJHSUUpRoOIwFLTEwLjCUaDqMBDEwLjCUaDxOdWKMC29ic2VydmF0aW9ulGgNKYGUfZQoaBBoFmgZaBwolgYAAAAAAAAAAQEBAQEBlGggSwaFlGgkdJRSlGgnaBwolgYAAAAAAAAAAQEBAQEBlGggSwaFlGgkdJRSlGgsSwaFlGguaBwolhgAAAAAAAAAAAAgwQAAIMEAACDBAAAgwQAAIMEAACDBlGgWSwaFlGgkdJRSlGgzaBwolhgAAAAAAAAAAAAgQQAAIEEAACBBAAAgQQAAIEEAACBBlGgWSwaFlGgkdJRSlGg4jAUtMTAuMJRoOowEMTAuMJRoPE51YnVoLE5oEE5oPE51Yi4=", "spaces": "OrderedDict([('achieved_goal', Box(-10.0, 10.0, (3,), float32)), ('desired_goal', Box(-10.0, 10.0, (3,), float32)), ('observation', Box(-10.0, 10.0, (6,), float32))])", "_shape": null, "dtype": null, "_np_random": null}, "action_space": {":type:": "<class 'gymnasium.spaces.box.Box'>", ":serialized:": "gAWVngEAAAAAAACMFGd5bW5hc2l1bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lIwFZHR5cGWUk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMDWJvdW5kZWRfYmVsb3eUjBNudW1weS5fY29yZS5udW1lcmljlIwLX2Zyb21idWZmZXKUk5QolgMAAAAAAAAAAQEBlGgIjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSwOFlIwBQ5R0lFKUjA1ib3VuZGVkX2Fib3ZllGgRKJYDAAAAAAAAAAEBAZRoFUsDhZRoGXSUUpSMBl9zaGFwZZRLA4WUjANsb3eUaBEolgwAAAAAAAAAAACAvwAAgL8AAIC/lGgLSwOFlGgZdJRSlIwEaGlnaJRoESiWDAAAAAAAAAAAAIA/AACAPwAAgD+UaAtLA4WUaBl0lFKUjAhsb3dfcmVwcpSMBC0xLjCUjAloaWdoX3JlcHKUjAMxLjCUjApfbnBfcmFuZG9tlE51Yi4=", "dtype": "float32", "bounded_below": "[ True True True]", "bounded_above": "[ True True True]", "_shape": [3], "low": "[-1. -1. -1.]", "high": "[1. 1. 1.]", "low_repr": "-1.0", "high_repr": "1.0", "_np_random": null}, "n_envs": 64, "lr_schedule": {":type:": "<class 'function'>", ":serialized:": "gAWVPQQAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLA0sTQwx0AIgAfACDAYMBUwCUToWUjAVmbG9hdJSFlIwScHJvZ3Jlc3NfcmVtYWluaW5nlIWUjJ8vVXNlcnMvcGF0cmlja2thbGttYW4vTGlicmFyeS9DYWNoZXMvcHlwb2V0cnkvdmlydHVhbGVudnMvYTJjLXBhbmRhcmVhY2hkZW5zZS12My02QUdNRVJLTS1weTMuMTAvbGliL3B5dGhvbjMuMTAvc2l0ZS1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUjAg8bGFtYmRhPpRLYUMCDACUjA52YWx1ZV9zY2hlZHVsZZSFlCl0lFKUfZQojAtfX3BhY2thZ2VfX5SMGHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbpSMCF9fbmFtZV9flIwec3RhYmxlX2Jhc2VsaW5lczMuY29tbW9uLnV0aWxzlIwIX19maWxlX1+UjJ8vVXNlcnMvcGF0cmlja2thbGttYW4vTGlicmFyeS9DYWNoZXMvcHlwb2V0cnkvdmlydHVhbGVudnMvYTJjLXBhbmRhcmVhY2hkZW5zZS12My02QUdNRVJLTS1weTMuMTAvbGliL3B5dGhvbjMuMTAvc2l0ZS1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUdU5OaACMEF9tYWtlX2VtcHR5X2NlbGyUk5QpUpSFlHSUUpRoAIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaCF9lH2UKGgYjAg8bGFtYmRhPpSMDF9fcXVhbG5hbWVfX5SMIWdldF9zY2hlZHVsZV9mbi48bG9jYWxzPi48bGFtYmRhPpSMD19fYW5ub3RhdGlvbnNfX5R9lIwOX19rd2RlZmF1bHRzX1+UTowMX19kZWZhdWx0c19flE6MCl9fbW9kdWxlX1+UaBmMB19fZG9jX1+UTowLX19jbG9zdXJlX1+UaACMCl9tYWtlX2NlbGyUk5RoAihoByhLAUsASwBLAUsBSxNDBIgAUwCUaAkpjAFflIWUaA6MBGZ1bmOUS4VDAgQBlIwDdmFslIWUKXSUUpRoFU5OaB0pUpSFlHSUUpRoI2g+fZR9lChoGIwEZnVuY5RoJ4wZY29uc3RhbnRfZm4uPGxvY2Fscz4uZnVuY5RoKX2UaCtOaCxOaC1oGWguTmgvaDFHP0bwBo24useFlFKUhZSMF19jbG91ZHBpY2tsZV9zdWJtb2R1bGVzlF2UjAtfX2dsb2JhbHNfX5R9lHWGlIZSMIWUUpSFlGhHXZRoSX2UdYaUhlIwLg=="}, "system_info": {"OS": "macOS-15.0.1-arm64-arm-64bit Darwin Kernel Version 24.0.0: Tue Sep 24 23:35:10 PDT 2024; root:xnu-11215.1.12~1/RELEASE_ARM64_T6031", "Python": "3.10.12", "Stable-Baselines3": "2.3.2", "PyTorch": "2.5.0", "GPU Enabled": "False", "Numpy": "2.1.2", "Cloudpickle": "3.1.0", "Gymnasium": "0.28.1"}}
|
replay.mp4
ADDED
Binary file (608 kB). View file
|
|
results.json
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
{"mean_reward": -0.1411886302754283, "std_reward": 0.07378019561468058, "is_deterministic": true, "n_eval_episodes": 10, "eval_datetime": "2024-10-20T22:10:01.504595"}
|
vec_normalize.pkl
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:9ae4fc298aec5a2b27164a697e606c88c1539479ce0dfd7761bd12e19ac2ebe7
|
3 |
+
size 3004
|