|
from typing import Dict, List, Any |
|
import numpy as np |
|
from transformers import CLIPTokenizer, CLIPModel |
|
|
|
|
|
class PreTrainedPipeline(): |
|
def __init__(self, path=""): |
|
|
|
|
|
|
|
self.model = CLIPModel.from_pretrained("openai/clip-vit-base-patch32") |
|
self.tokenizer = CLIPTokenizer.from_pretrained("openai/clip-vit-base-patch32") |
|
|
|
def __call__(self, inputs: str) -> List[float]: |
|
""" |
|
Args: |
|
inputs (:obj:`str`): |
|
a string to get the features from. |
|
Return: |
|
A :obj:`list` of floats: The features computed by the model. |
|
""" |
|
token_inputs = self.tokenizer([inputs], padding=True, return_tensors="pt") |
|
query_embed = self.model.get_text_features(**token_inputs) |
|
return query_embed.detach().cpu().numpy()[0].tolist() |
|
|