pittawat commited on
Commit
49f66eb
·
1 Parent(s): 45b3750

Upload . with huggingface_hub

Browse files
.summary/0/events.out.tfevents.1677113085.f54eb2240718 ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:cc55a4c1084efc746a5ed4cf48120476b155daceb4bb870a4e15b9cf6c660c1d
3
+ size 2683
README.md CHANGED
@@ -15,7 +15,7 @@ model-index:
15
  type: doom_health_gathering_supreme
16
  metrics:
17
  - type: mean_reward
18
- value: 4.00 +/- 0.68
19
  name: mean_reward
20
  verified: false
21
  ---
 
15
  type: doom_health_gathering_supreme
16
  metrics:
17
  - type: mean_reward
18
+ value: 4.19 +/- 0.56
19
  name: mean_reward
20
  verified: false
21
  ---
checkpoint_p0/checkpoint_000002447_10022912.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:0788c774d56aa22ced225fdc77679ab03a5f12285c48857899a0cb39e9935424
3
+ size 34929220
config.json CHANGED
@@ -23,7 +23,7 @@
23
  "rollout": 32,
24
  "recurrence": 32,
25
  "shuffle_minibatches": false,
26
- "gamma": 0.98,
27
  "reward_scale": 1.0,
28
  "reward_clip": 1000.0,
29
  "value_bootstrap": false,
 
23
  "rollout": 32,
24
  "recurrence": 32,
25
  "shuffle_minibatches": false,
26
+ "gamma": 0.97,
27
  "reward_scale": 1.0,
28
  "reward_clip": 1000.0,
29
  "value_bootstrap": false,
replay.mp4 CHANGED
@@ -1,3 +1,3 @@
1
  version https://git-lfs.github.com/spec/v1
2
- oid sha256:70258433234a67ba882f938454e050765928c1bce517d1c7bb922800bacacd92
3
- size 4994059
 
1
  version https://git-lfs.github.com/spec/v1
2
+ oid sha256:fa318558a81f3083a89ea6e50af8629d4ddd3569b8c1d9991c6bc53794fa001e
3
+ size 5366056
sf_log.txt CHANGED
@@ -3024,3 +3024,566 @@ main_loop: 38.4461
3024
  [2023-02-23 00:39:49,195][05631] Avg episode rewards: #0: 4.500, true rewards: #0: 4.000
3025
  [2023-02-23 00:39:49,198][05631] Avg episode reward: 4.500, avg true_objective: 4.000
3026
  [2023-02-23 00:40:09,146][05631] Replay video saved to /content/train_dir/default_experiment/replay.mp4!
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3024
  [2023-02-23 00:39:49,195][05631] Avg episode rewards: #0: 4.500, true rewards: #0: 4.000
3025
  [2023-02-23 00:39:49,198][05631] Avg episode reward: 4.500, avg true_objective: 4.000
3026
  [2023-02-23 00:40:09,146][05631] Replay video saved to /content/train_dir/default_experiment/replay.mp4!
3027
+ [2023-02-23 00:40:14,495][05631] The model has been pushed to https://huggingface.co/pittawat/rl_course_vizdoom_health_gathering_supreme
3028
+ [2023-02-23 00:44:45,344][05631] Environment doom_basic already registered, overwriting...
3029
+ [2023-02-23 00:44:45,347][05631] Environment doom_two_colors_easy already registered, overwriting...
3030
+ [2023-02-23 00:44:45,351][05631] Environment doom_two_colors_hard already registered, overwriting...
3031
+ [2023-02-23 00:44:45,352][05631] Environment doom_dm already registered, overwriting...
3032
+ [2023-02-23 00:44:45,353][05631] Environment doom_dwango5 already registered, overwriting...
3033
+ [2023-02-23 00:44:45,356][05631] Environment doom_my_way_home_flat_actions already registered, overwriting...
3034
+ [2023-02-23 00:44:45,357][05631] Environment doom_defend_the_center_flat_actions already registered, overwriting...
3035
+ [2023-02-23 00:44:45,360][05631] Environment doom_my_way_home already registered, overwriting...
3036
+ [2023-02-23 00:44:45,361][05631] Environment doom_deadly_corridor already registered, overwriting...
3037
+ [2023-02-23 00:44:45,362][05631] Environment doom_defend_the_center already registered, overwriting...
3038
+ [2023-02-23 00:44:45,366][05631] Environment doom_defend_the_line already registered, overwriting...
3039
+ [2023-02-23 00:44:45,367][05631] Environment doom_health_gathering already registered, overwriting...
3040
+ [2023-02-23 00:44:45,368][05631] Environment doom_health_gathering_supreme already registered, overwriting...
3041
+ [2023-02-23 00:44:45,369][05631] Environment doom_battle already registered, overwriting...
3042
+ [2023-02-23 00:44:45,371][05631] Environment doom_battle2 already registered, overwriting...
3043
+ [2023-02-23 00:44:45,373][05631] Environment doom_duel_bots already registered, overwriting...
3044
+ [2023-02-23 00:44:45,376][05631] Environment doom_deathmatch_bots already registered, overwriting...
3045
+ [2023-02-23 00:44:45,377][05631] Environment doom_duel already registered, overwriting...
3046
+ [2023-02-23 00:44:45,378][05631] Environment doom_deathmatch_full already registered, overwriting...
3047
+ [2023-02-23 00:44:45,381][05631] Environment doom_benchmark already registered, overwriting...
3048
+ [2023-02-23 00:44:45,382][05631] register_encoder_factory: <function make_vizdoom_encoder at 0x7f0a330101f0>
3049
+ [2023-02-23 00:44:45,417][05631] Loading existing experiment configuration from /content/train_dir/default_experiment/config.json
3050
+ [2023-02-23 00:44:45,419][05631] Overriding arg 'gamma' with value 0.97 passed from command line
3051
+ [2023-02-23 00:44:45,426][05631] Experiment dir /content/train_dir/default_experiment already exists!
3052
+ [2023-02-23 00:44:45,428][05631] Resuming existing experiment from /content/train_dir/default_experiment...
3053
+ [2023-02-23 00:44:45,429][05631] Weights and Biases integration disabled
3054
+ [2023-02-23 00:44:45,438][05631] Environment var CUDA_VISIBLE_DEVICES is 0
3055
+
3056
+ [2023-02-23 00:44:47,591][05631] Starting experiment with the following configuration:
3057
+ help=False
3058
+ algo=APPO
3059
+ env=doom_health_gathering_supreme
3060
+ experiment=default_experiment
3061
+ train_dir=/content/train_dir
3062
+ restart_behavior=resume
3063
+ device=gpu
3064
+ seed=None
3065
+ num_policies=1
3066
+ async_rl=True
3067
+ serial_mode=False
3068
+ batched_sampling=False
3069
+ num_batches_to_accumulate=2
3070
+ worker_num_splits=2
3071
+ policy_workers_per_policy=1
3072
+ max_policy_lag=1000
3073
+ num_workers=8
3074
+ num_envs_per_worker=4
3075
+ batch_size=1024
3076
+ num_batches_per_epoch=1
3077
+ num_epochs=1
3078
+ rollout=32
3079
+ recurrence=32
3080
+ shuffle_minibatches=False
3081
+ gamma=0.97
3082
+ reward_scale=1.0
3083
+ reward_clip=1000.0
3084
+ value_bootstrap=False
3085
+ normalize_returns=True
3086
+ exploration_loss_coeff=0.001
3087
+ value_loss_coeff=0.5
3088
+ kl_loss_coeff=0.0
3089
+ exploration_loss=symmetric_kl
3090
+ gae_lambda=0.95
3091
+ ppo_clip_ratio=0.1
3092
+ ppo_clip_value=0.2
3093
+ with_vtrace=False
3094
+ vtrace_rho=1.0
3095
+ vtrace_c=1.0
3096
+ optimizer=adam
3097
+ adam_eps=1e-06
3098
+ adam_beta1=0.9
3099
+ adam_beta2=0.999
3100
+ max_grad_norm=4.0
3101
+ learning_rate=0.0001
3102
+ lr_schedule=constant
3103
+ lr_schedule_kl_threshold=0.008
3104
+ lr_adaptive_min=1e-06
3105
+ lr_adaptive_max=0.01
3106
+ obs_subtract_mean=0.0
3107
+ obs_scale=255.0
3108
+ normalize_input=True
3109
+ normalize_input_keys=None
3110
+ decorrelate_experience_max_seconds=0
3111
+ decorrelate_envs_on_one_worker=True
3112
+ actor_worker_gpus=[]
3113
+ set_workers_cpu_affinity=True
3114
+ force_envs_single_thread=False
3115
+ default_niceness=0
3116
+ log_to_file=True
3117
+ experiment_summaries_interval=10
3118
+ flush_summaries_interval=30
3119
+ stats_avg=100
3120
+ summaries_use_frameskip=True
3121
+ heartbeat_interval=20
3122
+ heartbeat_reporting_interval=600
3123
+ train_for_env_steps=10000000
3124
+ train_for_seconds=10000000000
3125
+ save_every_sec=120
3126
+ keep_checkpoints=2
3127
+ load_checkpoint_kind=latest
3128
+ save_milestones_sec=-1
3129
+ save_best_every_sec=5
3130
+ save_best_metric=reward
3131
+ save_best_after=100000
3132
+ benchmark=False
3133
+ encoder_mlp_layers=[512, 512]
3134
+ encoder_conv_architecture=convnet_simple
3135
+ encoder_conv_mlp_layers=[512]
3136
+ use_rnn=True
3137
+ rnn_size=512
3138
+ rnn_type=gru
3139
+ rnn_num_layers=1
3140
+ decoder_mlp_layers=[]
3141
+ nonlinearity=elu
3142
+ policy_initialization=orthogonal
3143
+ policy_init_gain=1.0
3144
+ actor_critic_share_weights=True
3145
+ adaptive_stddev=True
3146
+ continuous_tanh_scale=0.0
3147
+ initial_stddev=1.0
3148
+ use_env_info_cache=False
3149
+ env_gpu_actions=False
3150
+ env_gpu_observations=True
3151
+ env_frameskip=4
3152
+ env_framestack=1
3153
+ pixel_format=CHW
3154
+ use_record_episode_statistics=False
3155
+ with_wandb=False
3156
+ wandb_user=None
3157
+ wandb_project=sample_factory
3158
+ wandb_group=None
3159
+ wandb_job_type=SF
3160
+ wandb_tags=[]
3161
+ with_pbt=False
3162
+ pbt_mix_policies_in_one_env=True
3163
+ pbt_period_env_steps=5000000
3164
+ pbt_start_mutation=20000000
3165
+ pbt_replace_fraction=0.3
3166
+ pbt_mutation_rate=0.15
3167
+ pbt_replace_reward_gap=0.1
3168
+ pbt_replace_reward_gap_absolute=1e-06
3169
+ pbt_optimize_gamma=False
3170
+ pbt_target_objective=true_objective
3171
+ pbt_perturb_min=1.1
3172
+ pbt_perturb_max=1.5
3173
+ num_agents=-1
3174
+ num_humans=0
3175
+ num_bots=-1
3176
+ start_bot_difficulty=None
3177
+ timelimit=None
3178
+ res_w=128
3179
+ res_h=72
3180
+ wide_aspect_ratio=False
3181
+ eval_env_frameskip=1
3182
+ fps=35
3183
+ command_line=--env=doom_health_gathering_supreme --num_workers=8 --num_envs_per_worker=4 --train_for_env_steps=4000000
3184
+ cli_args={'env': 'doom_health_gathering_supreme', 'num_workers': 8, 'num_envs_per_worker': 4, 'train_for_env_steps': 4000000}
3185
+ git_hash=unknown
3186
+ git_repo_name=not a git repository
3187
+ [2023-02-23 00:44:47,598][05631] Saving configuration to /content/train_dir/default_experiment/config.json...
3188
+ [2023-02-23 00:44:47,602][05631] Rollout worker 0 uses device cpu
3189
+ [2023-02-23 00:44:47,603][05631] Rollout worker 1 uses device cpu
3190
+ [2023-02-23 00:44:47,606][05631] Rollout worker 2 uses device cpu
3191
+ [2023-02-23 00:44:47,608][05631] Rollout worker 3 uses device cpu
3192
+ [2023-02-23 00:44:47,609][05631] Rollout worker 4 uses device cpu
3193
+ [2023-02-23 00:44:47,610][05631] Rollout worker 5 uses device cpu
3194
+ [2023-02-23 00:44:47,612][05631] Rollout worker 6 uses device cpu
3195
+ [2023-02-23 00:44:47,613][05631] Rollout worker 7 uses device cpu
3196
+ [2023-02-23 00:44:47,732][05631] Using GPUs [0] for process 0 (actually maps to GPUs [0])
3197
+ [2023-02-23 00:44:47,734][05631] InferenceWorker_p0-w0: min num requests: 2
3198
+ [2023-02-23 00:44:47,890][05631] Starting all processes...
3199
+ [2023-02-23 00:44:47,893][05631] Starting process learner_proc0
3200
+ [2023-02-23 00:44:48,025][05631] Starting all processes...
3201
+ [2023-02-23 00:44:48,033][05631] Starting process inference_proc0-0
3202
+ [2023-02-23 00:44:48,033][05631] Starting process rollout_proc0
3203
+ [2023-02-23 00:44:48,035][05631] Starting process rollout_proc1
3204
+ [2023-02-23 00:44:48,035][05631] Starting process rollout_proc2
3205
+ [2023-02-23 00:44:48,035][05631] Starting process rollout_proc3
3206
+ [2023-02-23 00:44:48,035][05631] Starting process rollout_proc4
3207
+ [2023-02-23 00:44:48,035][05631] Starting process rollout_proc5
3208
+ [2023-02-23 00:44:48,035][05631] Starting process rollout_proc6
3209
+ [2023-02-23 00:44:48,035][05631] Starting process rollout_proc7
3210
+ [2023-02-23 00:44:56,168][39829] Using GPUs [0] for process 0 (actually maps to GPUs [0])
3211
+ [2023-02-23 00:44:56,168][39829] Set environment var CUDA_VISIBLE_DEVICES to '0' (GPU indices [0]) for learning process 0
3212
+ [2023-02-23 00:44:56,202][39829] Num visible devices: 1
3213
+ [2023-02-23 00:44:56,239][39829] Starting seed is not provided
3214
+ [2023-02-23 00:44:56,240][39829] Using GPUs [0] for process 0 (actually maps to GPUs [0])
3215
+ [2023-02-23 00:44:56,241][39829] Initializing actor-critic model on device cuda:0
3216
+ [2023-02-23 00:44:56,242][39829] RunningMeanStd input shape: (3, 72, 128)
3217
+ [2023-02-23 00:44:56,245][39829] RunningMeanStd input shape: (1,)
3218
+ [2023-02-23 00:44:56,288][39829] ConvEncoder: input_channels=3
3219
+ [2023-02-23 00:44:57,277][39829] Conv encoder output size: 512
3220
+ [2023-02-23 00:44:57,280][39829] Policy head output size: 512
3221
+ [2023-02-23 00:44:57,450][39829] Created Actor Critic model with architecture:
3222
+ [2023-02-23 00:44:57,468][39829] ActorCriticSharedWeights(
3223
+ (obs_normalizer): ObservationNormalizer(
3224
+ (running_mean_std): RunningMeanStdDictInPlace(
3225
+ (running_mean_std): ModuleDict(
3226
+ (obs): RunningMeanStdInPlace()
3227
+ )
3228
+ )
3229
+ )
3230
+ (returns_normalizer): RecursiveScriptModule(original_name=RunningMeanStdInPlace)
3231
+ (encoder): VizdoomEncoder(
3232
+ (basic_encoder): ConvEncoder(
3233
+ (enc): RecursiveScriptModule(
3234
+ original_name=ConvEncoderImpl
3235
+ (conv_head): RecursiveScriptModule(
3236
+ original_name=Sequential
3237
+ (0): RecursiveScriptModule(original_name=Conv2d)
3238
+ (1): RecursiveScriptModule(original_name=ELU)
3239
+ (2): RecursiveScriptModule(original_name=Conv2d)
3240
+ (3): RecursiveScriptModule(original_name=ELU)
3241
+ (4): RecursiveScriptModule(original_name=Conv2d)
3242
+ (5): RecursiveScriptModule(original_name=ELU)
3243
+ )
3244
+ (mlp_layers): RecursiveScriptModule(
3245
+ original_name=Sequential
3246
+ (0): RecursiveScriptModule(original_name=Linear)
3247
+ (1): RecursiveScriptModule(original_name=ELU)
3248
+ )
3249
+ )
3250
+ )
3251
+ )
3252
+ (core): ModelCoreRNN(
3253
+ (core): GRU(512, 512)
3254
+ )
3255
+ (decoder): MlpDecoder(
3256
+ (mlp): Identity()
3257
+ )
3258
+ (critic_linear): Linear(in_features=512, out_features=1, bias=True)
3259
+ (action_parameterization): ActionParameterizationDefault(
3260
+ (distribution_linear): Linear(in_features=512, out_features=5, bias=True)
3261
+ )
3262
+ )
3263
+ [2023-02-23 00:44:57,531][39843] Using GPUs [0] for process 0 (actually maps to GPUs [0])
3264
+ [2023-02-23 00:44:57,537][39843] Set environment var CUDA_VISIBLE_DEVICES to '0' (GPU indices [0]) for inference process 0
3265
+ [2023-02-23 00:44:57,689][39843] Num visible devices: 1
3266
+ [2023-02-23 00:44:58,288][39844] Worker 1 uses CPU cores [1]
3267
+ [2023-02-23 00:44:58,437][39850] Worker 0 uses CPU cores [0]
3268
+ [2023-02-23 00:44:58,552][39852] Worker 3 uses CPU cores [1]
3269
+ [2023-02-23 00:44:58,941][39854] Worker 2 uses CPU cores [0]
3270
+ [2023-02-23 00:44:59,465][39864] Worker 5 uses CPU cores [1]
3271
+ [2023-02-23 00:44:59,470][39857] Worker 4 uses CPU cores [0]
3272
+ [2023-02-23 00:44:59,564][39860] Worker 6 uses CPU cores [0]
3273
+ [2023-02-23 00:44:59,766][39866] Worker 7 uses CPU cores [1]
3274
+ [2023-02-23 00:45:02,236][39829] Using optimizer <class 'torch.optim.adam.Adam'>
3275
+ [2023-02-23 00:45:02,236][39829] Loading state from checkpoint /content/train_dir/default_experiment/checkpoint_p0/checkpoint_000002445_10014720.pth...
3276
+ [2023-02-23 00:45:02,270][39829] Loading model from checkpoint
3277
+ [2023-02-23 00:45:02,274][39829] Loaded experiment state at self.train_step=2445, self.env_steps=10014720
3278
+ [2023-02-23 00:45:02,275][39829] Initialized policy 0 weights for model version 2445
3279
+ [2023-02-23 00:45:02,278][39829] LearnerWorker_p0 finished initialization!
3280
+ [2023-02-23 00:45:02,280][39829] Using GPUs [0] for process 0 (actually maps to GPUs [0])
3281
+ [2023-02-23 00:45:02,390][39843] RunningMeanStd input shape: (3, 72, 128)
3282
+ [2023-02-23 00:45:02,392][39843] RunningMeanStd input shape: (1,)
3283
+ [2023-02-23 00:45:02,405][39843] ConvEncoder: input_channels=3
3284
+ [2023-02-23 00:45:02,507][39843] Conv encoder output size: 512
3285
+ [2023-02-23 00:45:02,507][39843] Policy head output size: 512
3286
+ [2023-02-23 00:45:04,694][05631] Inference worker 0-0 is ready!
3287
+ [2023-02-23 00:45:04,696][05631] All inference workers are ready! Signal rollout workers to start!
3288
+ [2023-02-23 00:45:04,798][39844] Doom resolution: 160x120, resize resolution: (128, 72)
3289
+ [2023-02-23 00:45:04,799][39852] Doom resolution: 160x120, resize resolution: (128, 72)
3290
+ [2023-02-23 00:45:04,790][39857] Doom resolution: 160x120, resize resolution: (128, 72)
3291
+ [2023-02-23 00:45:04,792][39860] Doom resolution: 160x120, resize resolution: (128, 72)
3292
+ [2023-02-23 00:45:04,797][39866] Doom resolution: 160x120, resize resolution: (128, 72)
3293
+ [2023-02-23 00:45:04,795][39854] Doom resolution: 160x120, resize resolution: (128, 72)
3294
+ [2023-02-23 00:45:04,799][39850] Doom resolution: 160x120, resize resolution: (128, 72)
3295
+ [2023-02-23 00:45:04,795][39864] Doom resolution: 160x120, resize resolution: (128, 72)
3296
+ [2023-02-23 00:45:05,438][05631] Fps is (10 sec: nan, 60 sec: nan, 300 sec: nan). Total num frames: 10014720. Throughput: 0: nan. Samples: 0. Policy #0 lag: (min: -1.0, avg: -1.0, max: -1.0)
3297
+ [2023-02-23 00:45:05,630][39864] Decorrelating experience for 0 frames...
3298
+ [2023-02-23 00:45:05,633][39866] Decorrelating experience for 0 frames...
3299
+ [2023-02-23 00:45:05,940][39854] Decorrelating experience for 0 frames...
3300
+ [2023-02-23 00:45:05,942][39860] Decorrelating experience for 0 frames...
3301
+ [2023-02-23 00:45:05,945][39857] Decorrelating experience for 0 frames...
3302
+ [2023-02-23 00:45:06,265][39844] Decorrelating experience for 0 frames...
3303
+ [2023-02-23 00:45:06,275][39860] Decorrelating experience for 32 frames...
3304
+ [2023-02-23 00:45:06,729][39854] Decorrelating experience for 32 frames...
3305
+ [2023-02-23 00:45:07,336][39864] Decorrelating experience for 32 frames...
3306
+ [2023-02-23 00:45:07,354][39866] Decorrelating experience for 32 frames...
3307
+ [2023-02-23 00:45:07,407][39852] Decorrelating experience for 0 frames...
3308
+ [2023-02-23 00:45:07,509][39860] Decorrelating experience for 64 frames...
3309
+ [2023-02-23 00:45:07,686][39854] Decorrelating experience for 64 frames...
3310
+ [2023-02-23 00:45:07,711][39844] Decorrelating experience for 32 frames...
3311
+ [2023-02-23 00:45:07,725][05631] Heartbeat connected on Batcher_0
3312
+ [2023-02-23 00:45:07,728][05631] Heartbeat connected on LearnerWorker_p0
3313
+ [2023-02-23 00:45:07,759][05631] Heartbeat connected on InferenceWorker_p0-w0
3314
+ [2023-02-23 00:45:08,275][39850] Decorrelating experience for 0 frames...
3315
+ [2023-02-23 00:45:08,280][39857] Decorrelating experience for 32 frames...
3316
+ [2023-02-23 00:45:08,857][39852] Decorrelating experience for 32 frames...
3317
+ [2023-02-23 00:45:09,043][39866] Decorrelating experience for 64 frames...
3318
+ [2023-02-23 00:45:09,122][39860] Decorrelating experience for 96 frames...
3319
+ [2023-02-23 00:45:09,189][39864] Decorrelating experience for 64 frames...
3320
+ [2023-02-23 00:45:09,271][39857] Decorrelating experience for 64 frames...
3321
+ [2023-02-23 00:45:09,351][05631] Heartbeat connected on RolloutWorker_w6
3322
+ [2023-02-23 00:45:09,472][39844] Decorrelating experience for 64 frames...
3323
+ [2023-02-23 00:45:09,955][39850] Decorrelating experience for 32 frames...
3324
+ [2023-02-23 00:45:10,106][39854] Decorrelating experience for 96 frames...
3325
+ [2023-02-23 00:45:10,365][05631] Heartbeat connected on RolloutWorker_w2
3326
+ [2023-02-23 00:45:10,438][05631] Fps is (10 sec: 0.0, 60 sec: 0.0, 300 sec: 0.0). Total num frames: 10014720. Throughput: 0: 0.0. Samples: 0. Policy #0 lag: (min: -1.0, avg: -1.0, max: -1.0)
3327
+ [2023-02-23 00:45:10,596][39852] Decorrelating experience for 64 frames...
3328
+ [2023-02-23 00:45:10,741][39864] Decorrelating experience for 96 frames...
3329
+ [2023-02-23 00:45:10,986][05631] Heartbeat connected on RolloutWorker_w5
3330
+ [2023-02-23 00:45:11,290][39844] Decorrelating experience for 96 frames...
3331
+ [2023-02-23 00:45:11,683][05631] Heartbeat connected on RolloutWorker_w1
3332
+ [2023-02-23 00:45:12,330][39857] Decorrelating experience for 96 frames...
3333
+ [2023-02-23 00:45:12,849][05631] Heartbeat connected on RolloutWorker_w4
3334
+ [2023-02-23 00:45:13,241][39852] Decorrelating experience for 96 frames...
3335
+ [2023-02-23 00:45:13,738][05631] Heartbeat connected on RolloutWorker_w3
3336
+ [2023-02-23 00:45:15,355][39866] Decorrelating experience for 96 frames...
3337
+ [2023-02-23 00:45:15,439][05631] Fps is (10 sec: 0.0, 60 sec: 0.0, 300 sec: 0.0). Total num frames: 10014720. Throughput: 0: 137.8. Samples: 1378. Policy #0 lag: (min: -1.0, avg: -1.0, max: -1.0)
3338
+ [2023-02-23 00:45:15,444][05631] Avg episode reward: [(0, '2.665')]
3339
+ [2023-02-23 00:45:16,721][05631] Heartbeat connected on RolloutWorker_w7
3340
+ [2023-02-23 00:45:16,893][39829] Signal inference workers to stop experience collection...
3341
+ [2023-02-23 00:45:16,943][39843] InferenceWorker_p0-w0: stopping experience collection
3342
+ [2023-02-23 00:45:17,440][39850] Decorrelating experience for 64 frames...
3343
+ [2023-02-23 00:45:18,212][39850] Decorrelating experience for 96 frames...
3344
+ [2023-02-23 00:45:18,373][05631] Heartbeat connected on RolloutWorker_w0
3345
+ [2023-02-23 00:45:18,423][39829] Signal inference workers to resume experience collection...
3346
+ [2023-02-23 00:45:18,424][39843] InferenceWorker_p0-w0: resuming experience collection
3347
+ [2023-02-23 00:45:18,435][39829] Stopping Batcher_0...
3348
+ [2023-02-23 00:45:18,436][39829] Loop batcher_evt_loop terminating...
3349
+ [2023-02-23 00:45:18,437][05631] Component Batcher_0 stopped!
3350
+ [2023-02-23 00:45:18,467][05631] Component RolloutWorker_w7 stopped!
3351
+ [2023-02-23 00:45:18,489][05631] Component RolloutWorker_w1 stopped!
3352
+ [2023-02-23 00:45:18,472][39866] Stopping RolloutWorker_w7...
3353
+ [2023-02-23 00:45:18,496][39866] Loop rollout_proc7_evt_loop terminating...
3354
+ [2023-02-23 00:45:18,494][39844] Stopping RolloutWorker_w1...
3355
+ [2023-02-23 00:45:18,505][05631] Component RolloutWorker_w5 stopped!
3356
+ [2023-02-23 00:45:18,511][39864] Stopping RolloutWorker_w5...
3357
+ [2023-02-23 00:45:18,511][39864] Loop rollout_proc5_evt_loop terminating...
3358
+ [2023-02-23 00:45:18,517][05631] Component RolloutWorker_w3 stopped!
3359
+ [2023-02-23 00:45:18,522][39852] Stopping RolloutWorker_w3...
3360
+ [2023-02-23 00:45:18,523][39852] Loop rollout_proc3_evt_loop terminating...
3361
+ [2023-02-23 00:45:18,526][39844] Loop rollout_proc1_evt_loop terminating...
3362
+ [2023-02-23 00:45:18,534][39857] Stopping RolloutWorker_w4...
3363
+ [2023-02-23 00:45:18,534][05631] Component RolloutWorker_w4 stopped!
3364
+ [2023-02-23 00:45:18,545][39857] Loop rollout_proc4_evt_loop terminating...
3365
+ [2023-02-23 00:45:18,557][39850] Stopping RolloutWorker_w0...
3366
+ [2023-02-23 00:45:18,557][39850] Loop rollout_proc0_evt_loop terminating...
3367
+ [2023-02-23 00:45:18,557][05631] Component RolloutWorker_w0 stopped!
3368
+ [2023-02-23 00:45:18,585][39854] Stopping RolloutWorker_w2...
3369
+ [2023-02-23 00:45:18,585][05631] Component RolloutWorker_w2 stopped!
3370
+ [2023-02-23 00:45:18,591][39860] Stopping RolloutWorker_w6...
3371
+ [2023-02-23 00:45:18,592][39860] Loop rollout_proc6_evt_loop terminating...
3372
+ [2023-02-23 00:45:18,586][39854] Loop rollout_proc2_evt_loop terminating...
3373
+ [2023-02-23 00:45:18,591][05631] Component RolloutWorker_w6 stopped!
3374
+ [2023-02-23 00:45:18,613][39843] Weights refcount: 2 0
3375
+ [2023-02-23 00:45:18,629][05631] Component InferenceWorker_p0-w0 stopped!
3376
+ [2023-02-23 00:45:18,633][39843] Stopping InferenceWorker_p0-w0...
3377
+ [2023-02-23 00:45:18,633][39843] Loop inference_proc0-0_evt_loop terminating...
3378
+ [2023-02-23 00:45:21,008][39829] Saving /content/train_dir/default_experiment/checkpoint_p0/checkpoint_000002447_10022912.pth...
3379
+ [2023-02-23 00:45:21,173][39829] Removing /content/train_dir/default_experiment/checkpoint_p0/checkpoint_000002443_10006528.pth
3380
+ [2023-02-23 00:45:21,183][39829] Saving /content/train_dir/default_experiment/checkpoint_p0/checkpoint_000002447_10022912.pth...
3381
+ [2023-02-23 00:45:21,420][39829] Stopping LearnerWorker_p0...
3382
+ [2023-02-23 00:45:21,421][05631] Component LearnerWorker_p0 stopped!
3383
+ [2023-02-23 00:45:21,421][39829] Loop learner_proc0_evt_loop terminating...
3384
+ [2023-02-23 00:45:21,424][05631] Waiting for process learner_proc0 to stop...
3385
+ [2023-02-23 00:45:22,957][05631] Waiting for process inference_proc0-0 to join...
3386
+ [2023-02-23 00:45:22,959][05631] Waiting for process rollout_proc0 to join...
3387
+ [2023-02-23 00:45:22,962][05631] Waiting for process rollout_proc1 to join...
3388
+ [2023-02-23 00:45:23,075][05631] Waiting for process rollout_proc2 to join...
3389
+ [2023-02-23 00:45:23,077][05631] Waiting for process rollout_proc3 to join...
3390
+ [2023-02-23 00:45:23,083][05631] Waiting for process rollout_proc4 to join...
3391
+ [2023-02-23 00:45:23,085][05631] Waiting for process rollout_proc5 to join...
3392
+ [2023-02-23 00:45:23,088][05631] Waiting for process rollout_proc6 to join...
3393
+ [2023-02-23 00:45:23,089][05631] Waiting for process rollout_proc7 to join...
3394
+ [2023-02-23 00:45:23,093][05631] Batcher 0 profile tree view:
3395
+ batching: 0.0454, releasing_batches: 0.0004
3396
+ [2023-02-23 00:45:23,095][05631] InferenceWorker_p0-w0 profile tree view:
3397
+ wait_policy: 0.0051
3398
+ wait_policy_total: 8.5334
3399
+ update_model: 0.0442
3400
+ weight_update: 0.0259
3401
+ one_step: 0.1178
3402
+ handle_policy_step: 3.6239
3403
+ deserialize: 0.0496, stack: 0.0089, obs_to_device_normalize: 0.3427, forward: 2.7631, send_messages: 0.1124
3404
+ prepare_outputs: 0.2459
3405
+ to_cpu: 0.1354
3406
+ [2023-02-23 00:45:23,097][05631] Learner 0 profile tree view:
3407
+ misc: 0.0000, prepare_batch: 6.3831
3408
+ train: 0.7580
3409
+ epoch_init: 0.0000, minibatch_init: 0.0000, losses_postprocess: 0.0004, kl_divergence: 0.0005, after_optimizer: 0.0041
3410
+ calculate_losses: 0.1495
3411
+ losses_init: 0.0000, forward_head: 0.1162, bptt_initial: 0.0202, tail: 0.0017, advantages_returns: 0.0010, losses: 0.0060
3412
+ bptt: 0.0038
3413
+ bptt_forward_core: 0.0037
3414
+ update: 0.6026
3415
+ clip: 0.0081
3416
+ [2023-02-23 00:45:23,101][05631] RolloutWorker_w0 profile tree view:
3417
+ wait_for_trajectories: 0.0003, enqueue_policy_requests: 0.0006
3418
+ [2023-02-23 00:45:23,104][05631] RolloutWorker_w7 profile tree view:
3419
+ wait_for_trajectories: 0.0003, enqueue_policy_requests: 0.0175, env_step: 0.2402, overhead: 0.0012, complete_rollouts: 0.0000
3420
+ save_policy_outputs: 0.0009
3421
+ split_output_tensors: 0.0004
3422
+ [2023-02-23 00:45:23,105][05631] Loop Runner_EvtLoop terminating...
3423
+ [2023-02-23 00:45:23,107][05631] Runner profile tree view:
3424
+ main_loop: 35.2166
3425
+ [2023-02-23 00:45:23,108][05631] Collected {0: 10022912}, FPS: 232.6
3426
+ [2023-02-23 00:51:07,960][05631] Loading existing experiment configuration from /content/train_dir/default_experiment/config.json
3427
+ [2023-02-23 00:51:07,965][05631] Overriding arg 'num_workers' with value 1 passed from command line
3428
+ [2023-02-23 00:51:07,967][05631] Adding new argument 'no_render'=True that is not in the saved config file!
3429
+ [2023-02-23 00:51:07,970][05631] Adding new argument 'save_video'=True that is not in the saved config file!
3430
+ [2023-02-23 00:51:07,972][05631] Adding new argument 'video_frames'=1000000000.0 that is not in the saved config file!
3431
+ [2023-02-23 00:51:07,974][05631] Adding new argument 'video_name'=None that is not in the saved config file!
3432
+ [2023-02-23 00:51:07,976][05631] Adding new argument 'max_num_frames'=1000000000.0 that is not in the saved config file!
3433
+ [2023-02-23 00:51:07,977][05631] Adding new argument 'max_num_episodes'=10 that is not in the saved config file!
3434
+ [2023-02-23 00:51:07,978][05631] Adding new argument 'push_to_hub'=False that is not in the saved config file!
3435
+ [2023-02-23 00:51:07,979][05631] Adding new argument 'hf_repository'=None that is not in the saved config file!
3436
+ [2023-02-23 00:51:07,980][05631] Adding new argument 'policy_index'=0 that is not in the saved config file!
3437
+ [2023-02-23 00:51:07,981][05631] Adding new argument 'eval_deterministic'=False that is not in the saved config file!
3438
+ [2023-02-23 00:51:07,983][05631] Adding new argument 'train_script'=None that is not in the saved config file!
3439
+ [2023-02-23 00:51:07,984][05631] Adding new argument 'enjoy_script'=None that is not in the saved config file!
3440
+ [2023-02-23 00:51:07,985][05631] Using frameskip 1 and render_action_repeat=4 for evaluation
3441
+ [2023-02-23 00:51:08,013][05631] RunningMeanStd input shape: (3, 72, 128)
3442
+ [2023-02-23 00:51:08,016][05631] RunningMeanStd input shape: (1,)
3443
+ [2023-02-23 00:51:08,038][05631] ConvEncoder: input_channels=3
3444
+ [2023-02-23 00:51:08,096][05631] Conv encoder output size: 512
3445
+ [2023-02-23 00:51:08,100][05631] Policy head output size: 512
3446
+ [2023-02-23 00:51:08,130][05631] Loading state from checkpoint /content/train_dir/default_experiment/checkpoint_p0/checkpoint_000002447_10022912.pth...
3447
+ [2023-02-23 00:51:08,807][05631] Num frames 100...
3448
+ [2023-02-23 00:51:08,941][05631] Num frames 200...
3449
+ [2023-02-23 00:51:09,054][05631] Num frames 300...
3450
+ [2023-02-23 00:51:09,207][05631] Avg episode rewards: #0: 3.840, true rewards: #0: 3.840
3451
+ [2023-02-23 00:51:09,209][05631] Avg episode reward: 3.840, avg true_objective: 3.840
3452
+ [2023-02-23 00:51:09,233][05631] Num frames 400...
3453
+ [2023-02-23 00:51:09,366][05631] Num frames 500...
3454
+ [2023-02-23 00:51:09,487][05631] Num frames 600...
3455
+ [2023-02-23 00:51:09,611][05631] Num frames 700...
3456
+ [2023-02-23 00:51:09,743][05631] Avg episode rewards: #0: 3.840, true rewards: #0: 3.840
3457
+ [2023-02-23 00:51:09,746][05631] Avg episode reward: 3.840, avg true_objective: 3.840
3458
+ [2023-02-23 00:51:09,788][05631] Num frames 800...
3459
+ [2023-02-23 00:51:09,912][05631] Num frames 900...
3460
+ [2023-02-23 00:51:10,031][05631] Num frames 1000...
3461
+ [2023-02-23 00:51:10,159][05631] Num frames 1100...
3462
+ [2023-02-23 00:51:10,318][05631] Avg episode rewards: #0: 4.280, true rewards: #0: 3.947
3463
+ [2023-02-23 00:51:10,322][05631] Avg episode reward: 4.280, avg true_objective: 3.947
3464
+ [2023-02-23 00:51:10,352][05631] Num frames 1200...
3465
+ [2023-02-23 00:51:10,477][05631] Num frames 1300...
3466
+ [2023-02-23 00:51:10,596][05631] Num frames 1400...
3467
+ [2023-02-23 00:51:10,710][05631] Num frames 1500...
3468
+ [2023-02-23 00:51:10,824][05631] Num frames 1600...
3469
+ [2023-02-23 00:51:10,877][05631] Avg episode rewards: #0: 4.500, true rewards: #0: 4.000
3470
+ [2023-02-23 00:51:10,879][05631] Avg episode reward: 4.500, avg true_objective: 4.000
3471
+ [2023-02-23 00:51:11,019][05631] Num frames 1700...
3472
+ [2023-02-23 00:51:11,141][05631] Num frames 1800...
3473
+ [2023-02-23 00:51:11,273][05631] Avg episode rewards: #0: 4.112, true rewards: #0: 3.712
3474
+ [2023-02-23 00:51:11,275][05631] Avg episode reward: 4.112, avg true_objective: 3.712
3475
+ [2023-02-23 00:51:11,332][05631] Num frames 1900...
3476
+ [2023-02-23 00:51:11,459][05631] Num frames 2000...
3477
+ [2023-02-23 00:51:11,582][05631] Num frames 2100...
3478
+ [2023-02-23 00:51:11,713][05631] Num frames 2200...
3479
+ [2023-02-23 00:51:11,817][05631] Avg episode rewards: #0: 4.067, true rewards: #0: 3.733
3480
+ [2023-02-23 00:51:11,820][05631] Avg episode reward: 4.067, avg true_objective: 3.733
3481
+ [2023-02-23 00:51:11,896][05631] Num frames 2300...
3482
+ [2023-02-23 00:51:12,021][05631] Num frames 2400...
3483
+ [2023-02-23 00:51:12,141][05631] Num frames 2500...
3484
+ [2023-02-23 00:51:12,259][05631] Num frames 2600...
3485
+ [2023-02-23 00:51:12,342][05631] Avg episode rewards: #0: 4.034, true rewards: #0: 3.749
3486
+ [2023-02-23 00:51:12,344][05631] Avg episode reward: 4.034, avg true_objective: 3.749
3487
+ [2023-02-23 00:51:12,452][05631] Num frames 2700...
3488
+ [2023-02-23 00:51:12,567][05631] Num frames 2800...
3489
+ [2023-02-23 00:51:12,689][05631] Num frames 2900...
3490
+ [2023-02-23 00:51:12,803][05631] Num frames 3000...
3491
+ [2023-02-23 00:51:12,932][05631] Num frames 3100...
3492
+ [2023-02-23 00:51:12,993][05631] Avg episode rewards: #0: 4.255, true rewards: #0: 3.880
3493
+ [2023-02-23 00:51:12,995][05631] Avg episode reward: 4.255, avg true_objective: 3.880
3494
+ [2023-02-23 00:51:13,113][05631] Num frames 3200...
3495
+ [2023-02-23 00:51:13,236][05631] Num frames 3300...
3496
+ [2023-02-23 00:51:13,369][05631] Num frames 3400...
3497
+ [2023-02-23 00:51:13,526][05631] Avg episode rewards: #0: 4.209, true rewards: #0: 3.876
3498
+ [2023-02-23 00:51:13,528][05631] Avg episode reward: 4.209, avg true_objective: 3.876
3499
+ [2023-02-23 00:51:13,554][05631] Num frames 3500...
3500
+ [2023-02-23 00:51:13,678][05631] Num frames 3600...
3501
+ [2023-02-23 00:51:13,801][05631] Num frames 3700...
3502
+ [2023-02-23 00:51:13,924][05631] Num frames 3800...
3503
+ [2023-02-23 00:51:14,038][05631] Num frames 3900...
3504
+ [2023-02-23 00:51:14,135][05631] Avg episode rewards: #0: 4.336, true rewards: #0: 3.936
3505
+ [2023-02-23 00:51:14,137][05631] Avg episode reward: 4.336, avg true_objective: 3.936
3506
+ [2023-02-23 00:51:35,049][05631] Replay video saved to /content/train_dir/default_experiment/replay.mp4!
3507
+ [2023-02-23 00:51:35,237][05631] Loading existing experiment configuration from /content/train_dir/default_experiment/config.json
3508
+ [2023-02-23 00:51:35,239][05631] Overriding arg 'num_workers' with value 1 passed from command line
3509
+ [2023-02-23 00:51:35,246][05631] Adding new argument 'no_render'=True that is not in the saved config file!
3510
+ [2023-02-23 00:51:35,248][05631] Adding new argument 'save_video'=True that is not in the saved config file!
3511
+ [2023-02-23 00:51:35,250][05631] Adding new argument 'video_frames'=1000000000.0 that is not in the saved config file!
3512
+ [2023-02-23 00:51:35,252][05631] Adding new argument 'video_name'=None that is not in the saved config file!
3513
+ [2023-02-23 00:51:35,257][05631] Adding new argument 'max_num_frames'=100000 that is not in the saved config file!
3514
+ [2023-02-23 00:51:35,258][05631] Adding new argument 'max_num_episodes'=10 that is not in the saved config file!
3515
+ [2023-02-23 00:51:35,259][05631] Adding new argument 'push_to_hub'=True that is not in the saved config file!
3516
+ [2023-02-23 00:51:35,261][05631] Adding new argument 'hf_repository'='pittawat/rl_course_vizdoom_health_gathering_supreme' that is not in the saved config file!
3517
+ [2023-02-23 00:51:35,262][05631] Adding new argument 'policy_index'=0 that is not in the saved config file!
3518
+ [2023-02-23 00:51:35,263][05631] Adding new argument 'eval_deterministic'=False that is not in the saved config file!
3519
+ [2023-02-23 00:51:35,269][05631] Adding new argument 'train_script'=None that is not in the saved config file!
3520
+ [2023-02-23 00:51:35,270][05631] Adding new argument 'enjoy_script'=None that is not in the saved config file!
3521
+ [2023-02-23 00:51:35,271][05631] Using frameskip 1 and render_action_repeat=4 for evaluation
3522
+ [2023-02-23 00:51:35,306][05631] RunningMeanStd input shape: (3, 72, 128)
3523
+ [2023-02-23 00:51:35,308][05631] RunningMeanStd input shape: (1,)
3524
+ [2023-02-23 00:51:35,336][05631] ConvEncoder: input_channels=3
3525
+ [2023-02-23 00:51:35,400][05631] Conv encoder output size: 512
3526
+ [2023-02-23 00:51:35,402][05631] Policy head output size: 512
3527
+ [2023-02-23 00:51:35,434][05631] Loading state from checkpoint /content/train_dir/default_experiment/checkpoint_p0/checkpoint_000002447_10022912.pth...
3528
+ [2023-02-23 00:51:36,290][05631] Num frames 100...
3529
+ [2023-02-23 00:51:36,467][05631] Num frames 200...
3530
+ [2023-02-23 00:51:36,651][05631] Num frames 300...
3531
+ [2023-02-23 00:51:36,865][05631] Avg episode rewards: #0: 3.840, true rewards: #0: 3.840
3532
+ [2023-02-23 00:51:36,868][05631] Avg episode reward: 3.840, avg true_objective: 3.840
3533
+ [2023-02-23 00:51:36,908][05631] Num frames 400...
3534
+ [2023-02-23 00:51:37,124][05631] Num frames 500...
3535
+ [2023-02-23 00:51:37,321][05631] Num frames 600...
3536
+ [2023-02-23 00:51:37,519][05631] Num frames 700...
3537
+ [2023-02-23 00:51:37,712][05631] Num frames 800...
3538
+ [2023-02-23 00:51:37,896][05631] Num frames 900...
3539
+ [2023-02-23 00:51:38,009][05631] Avg episode rewards: #0: 5.640, true rewards: #0: 4.640
3540
+ [2023-02-23 00:51:38,012][05631] Avg episode reward: 5.640, avg true_objective: 4.640
3541
+ [2023-02-23 00:51:38,141][05631] Num frames 1000...
3542
+ [2023-02-23 00:51:38,301][05631] Num frames 1100...
3543
+ [2023-02-23 00:51:38,469][05631] Num frames 1200...
3544
+ [2023-02-23 00:51:38,603][05631] Num frames 1300...
3545
+ [2023-02-23 00:51:38,674][05631] Avg episode rewards: #0: 5.040, true rewards: #0: 4.373
3546
+ [2023-02-23 00:51:38,675][05631] Avg episode reward: 5.040, avg true_objective: 4.373
3547
+ [2023-02-23 00:51:38,785][05631] Num frames 1400...
3548
+ [2023-02-23 00:51:38,906][05631] Num frames 1500...
3549
+ [2023-02-23 00:51:39,030][05631] Num frames 1600...
3550
+ [2023-02-23 00:51:39,208][05631] Avg episode rewards: #0: 4.740, true rewards: #0: 4.240
3551
+ [2023-02-23 00:51:39,210][05631] Avg episode reward: 4.740, avg true_objective: 4.240
3552
+ [2023-02-23 00:51:39,221][05631] Num frames 1700...
3553
+ [2023-02-23 00:51:39,334][05631] Num frames 1800...
3554
+ [2023-02-23 00:51:39,452][05631] Num frames 1900...
3555
+ [2023-02-23 00:51:39,574][05631] Num frames 2000...
3556
+ [2023-02-23 00:51:39,721][05631] Avg episode rewards: #0: 4.560, true rewards: #0: 4.160
3557
+ [2023-02-23 00:51:39,723][05631] Avg episode reward: 4.560, avg true_objective: 4.160
3558
+ [2023-02-23 00:51:39,752][05631] Num frames 2100...
3559
+ [2023-02-23 00:51:39,874][05631] Num frames 2200...
3560
+ [2023-02-23 00:51:39,995][05631] Num frames 2300...
3561
+ [2023-02-23 00:51:40,113][05631] Num frames 2400...
3562
+ [2023-02-23 00:51:40,283][05631] Avg episode rewards: #0: 4.493, true rewards: #0: 4.160
3563
+ [2023-02-23 00:51:40,286][05631] Avg episode reward: 4.493, avg true_objective: 4.160
3564
+ [2023-02-23 00:51:40,295][05631] Num frames 2500...
3565
+ [2023-02-23 00:51:40,408][05631] Num frames 2600...
3566
+ [2023-02-23 00:51:40,526][05631] Num frames 2700...
3567
+ [2023-02-23 00:51:40,641][05631] Num frames 2800...
3568
+ [2023-02-23 00:51:40,787][05631] Avg episode rewards: #0: 4.400, true rewards: #0: 4.114
3569
+ [2023-02-23 00:51:40,789][05631] Avg episode reward: 4.400, avg true_objective: 4.114
3570
+ [2023-02-23 00:51:40,818][05631] Num frames 2900...
3571
+ [2023-02-23 00:51:40,943][05631] Num frames 3000...
3572
+ [2023-02-23 00:51:41,058][05631] Num frames 3100...
3573
+ [2023-02-23 00:51:41,172][05631] Num frames 3200...
3574
+ [2023-02-23 00:51:41,286][05631] Num frames 3300...
3575
+ [2023-02-23 00:51:41,458][05631] Avg episode rewards: #0: 4.740, true rewards: #0: 4.240
3576
+ [2023-02-23 00:51:41,459][05631] Avg episode reward: 4.740, avg true_objective: 4.240
3577
+ [2023-02-23 00:51:41,473][05631] Num frames 3400...
3578
+ [2023-02-23 00:51:41,594][05631] Num frames 3500...
3579
+ [2023-02-23 00:51:41,710][05631] Num frames 3600...
3580
+ [2023-02-23 00:51:41,824][05631] Num frames 3700...
3581
+ [2023-02-23 00:51:41,944][05631] Num frames 3800...
3582
+ [2023-02-23 00:51:42,010][05631] Avg episode rewards: #0: 4.787, true rewards: #0: 4.231
3583
+ [2023-02-23 00:51:42,013][05631] Avg episode reward: 4.787, avg true_objective: 4.231
3584
+ [2023-02-23 00:51:42,125][05631] Num frames 3900...
3585
+ [2023-02-23 00:51:42,253][05631] Num frames 4000...
3586
+ [2023-02-23 00:51:42,370][05631] Num frames 4100...
3587
+ [2023-02-23 00:51:42,528][05631] Avg episode rewards: #0: 4.692, true rewards: #0: 4.192
3588
+ [2023-02-23 00:51:42,532][05631] Avg episode reward: 4.692, avg true_objective: 4.192
3589
+ [2023-02-23 00:52:02,869][05631] Replay video saved to /content/train_dir/default_experiment/replay.mp4!