felipesanma
commited on
Commit
•
b1863ac
1
Parent(s):
db66fc9
update readme model card
Browse files
README.md
CHANGED
@@ -4,4 +4,83 @@ datasets:
|
|
4 |
- squad
|
5 |
language:
|
6 |
- en
|
7 |
-
---
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
4 |
- squad
|
5 |
language:
|
6 |
- en
|
7 |
+
---
|
8 |
+
|
9 |
+
|
10 |
+
# Question Generator
|
11 |
+
|
12 |
+
This model should be used to generate questions based on a given string.
|
13 |
+
|
14 |
+
### Out-of-Scope Use
|
15 |
+
|
16 |
+
English language support only.
|
17 |
+
|
18 |
+
## How to Get Started with the Model
|
19 |
+
|
20 |
+
Use the code below to get started with the model.
|
21 |
+
|
22 |
+
```python
|
23 |
+
import torch
|
24 |
+
from transformers import T5ForConditionalGeneration, T5Tokenizer
|
25 |
+
|
26 |
+
def question_parser(question: str) -> str:
|
27 |
+
return " ".join(question.split(":")[1].split())
|
28 |
+
|
29 |
+
def generate_questions_v2(context: str, answer: str, n_questions: int = 1):
|
30 |
+
model = T5ForConditionalGeneration.from_pretrained(
|
31 |
+
"pipesanma/chasquilla-question-generator"
|
32 |
+
)
|
33 |
+
tokenizer = T5Tokenizer.from_pretrained("pipesanma/chasquilla-question-generator")
|
34 |
+
|
35 |
+
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
|
36 |
+
model = model.to(device)
|
37 |
+
text = "context: " + context + " " + "answer: " + answer + " </s>"
|
38 |
+
|
39 |
+
encoding = tokenizer.encode_plus(
|
40 |
+
text, max_length=512, padding=True, return_tensors="pt"
|
41 |
+
)
|
42 |
+
input_ids, attention_mask = encoding["input_ids"].to(device), encoding[
|
43 |
+
"attention_mask"
|
44 |
+
].to(device)
|
45 |
+
|
46 |
+
model.eval()
|
47 |
+
beam_outputs = model.generate(
|
48 |
+
input_ids=input_ids,
|
49 |
+
attention_mask=attention_mask,
|
50 |
+
max_length=72,
|
51 |
+
early_stopping=True,
|
52 |
+
num_beams=5,
|
53 |
+
num_return_sequences=n_questions,
|
54 |
+
)
|
55 |
+
|
56 |
+
questions = []
|
57 |
+
|
58 |
+
for beam_output in beam_outputs:
|
59 |
+
sent = tokenizer.decode(
|
60 |
+
beam_output, skip_special_tokens=True, clean_up_tokenization_spaces=True
|
61 |
+
)
|
62 |
+
print(sent)
|
63 |
+
questions.append(question_parser(sent))
|
64 |
+
|
65 |
+
return questions
|
66 |
+
|
67 |
+
|
68 |
+
context = "President Donald Trump said and predicted that some states would reopen this month."
|
69 |
+
answer = "Donald Trump"
|
70 |
+
|
71 |
+
questions = generate_questions_v2(context, answer, 1)
|
72 |
+
print(questions)
|
73 |
+
```
|
74 |
+
|
75 |
+
## Training Details
|
76 |
+
|
77 |
+
### Dataset generation
|
78 |
+
|
79 |
+
The dataset is "squad" from datasets library.
|
80 |
+
|
81 |
+
Check the [utils/dataset_gen.py](utils/dataset_gen.py) file for the dataset generation.
|
82 |
+
|
83 |
+
### Training model
|
84 |
+
|
85 |
+
Check the [utils/t5_train_model.py](utils/t5_train_model.py) file for the training process
|
86 |
+
|